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Abstract: This paper provides a way to observe embedings of a graph on surfaces based

on join trees and then characterizations of orientable and nonorientable embeddabilities of

a graph with given genus.
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§1. Introduction

A drawing of a graph G on a surface S is such a drawing with no edge crosses itself, no adjacent

edges cross each other, no two edges intersect more than once, and no three edges have a

common point. A Smarandache λS-drawing of G on S is a drawing of G on S with minimal

intersections λS . Particularly, a Smarandache 0-drawing of G on S, if existing, is called an

embedding of G on S.

The term joint three looks firstly appeared in [1] and then in [2] in a certain detail and

[3] firstly in English. However, the theoretical idea was initiated in early articles of the author

[4–5] in which maximum genus of a graph in both orientable and nonorientable cases were

investigated.

The central idea is to transform a problem related to embeddings of a graph on surfaces

i.e., compact 2-manifolds without boundary in topology into that on polyhegons (or polygons

of even size with binary boundaries). The following two principles can be seen in [3].

Principle A Joint trees of a graph have a 1–to–1 correspondence to embeddings of the graph

with the same orientability and genus i.e., on the same surfaces.

Principle B Associate polyhegons (as surfaces) of a graph have a 1–to–1 correspondence to

joint trees of the graph with the same orientability and genus, i.e., on the same surfaces.

The two principle above are employed in this paper as the theoretical foundation. These

enable us to discuss in any way among associate polyhegons, joint trees and embeddings of a

graph considered.
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§2. Layers and Exchangers

Given a surface S = (A). it is divided into segments layer by layer as in the following.

The 0th layer contains only one segment, i.e., A(= A0);

The 1st layer is obtained by dividing the segment A0 into l1 segments, i.e., S = (A1, A2,

· · · , Al1), where A1, A2, · · · , Al1 are called the 1st layer segments;

Suppose that on k − 1st layer, the k − 1st layer segments are An(k−1)
where n(k−1) is an

integral k − 1-vector satisfied by

1(k−1) 6 (n1, n2, · · · , nk−1) 6 N (k−1)

with 1(k−1) = (1, 1, · · · , 1), N (k−1) = (N1, N2, · · · , Nk−1), N1 = l1 = N(1), N2 = lAN(1)
,

N3 = lAN(2)
, · · · , Nk−1 = lAN(k−2)

, then the kth layer segments are obtained by dividing each

k − 1st layer segment as

An(k−1),1
, An(k−1),2

, · · · , An(k−1),lAn(k−1)
(1)

where 1(k) = (n(k−1), 1) 6 (n(k−1), i) 6 N (k) = (N (k−1), Nk) and Nk = lAN(k−1)
. Segments in

(1) are called successors of An(k−1)
. Conversely, An(k−1)

is the predecessor of any one in (1).

A layer segment which has only one element is called an end segment and others, principle

segments. For an example, let

S = (1,−7, 2,−5, 3,−1, 4,−6, 5,−2, 6, 7,−3,−4).

Fig.2.1 shows a layer division of S and Tab.2.1, the principle segments in each layer.

For a layer division of a surface, if principle segments are dealt with vertices and edges

are with the relationship between predecessor and successor, then what is obtained is a tree

denoted by T . On T , by adding cotree edges as end segments, a graph G = (V,E) is induced.

For example, the graph induced from the layer division shown in Fig.1 is as

V = {A,B,C,D,E, F,G,H, I} (2)

and

E = {a, b, c, d, e, f, g, h, 1, 2, 3, 4, 5, 6, 7}, (3)

where
a = (A,B), b = (A,C), c = (A,D), d = (B,E),

e = (C,F ), f = (C,G), g = (D,H), h = (D, I),

and
1 = (B,F ), 2 = (E,H), 3 = (F, I), 4 = (G, I),

5 = (B,C), 6 = (G,H), 7 = (D,E).

By considering ET = {a, b, c, d, e, f, g, h}, ET = {1, 2, 3, 4, 5, 6, 7}, δi = 0, i = 1, 2, · · · , 7, and

the rotation σ implied in the layer division, a joint tree T̂ δ
σ is produced.
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〈1,−7, 2 − 5; 3,−1, 4,−6, 5;−2, 6, 7,−3 − 4〉

〈1;−7, 2;−5〉 〈3,−1; 4,−6; 5〉 〈−2, 6; 7;−3,−4〉

〈1〉 〈−7; 2〉 〈−5〉 〈3;−1〉 〈4;−6〉 〈5〉 〈−2; 6〉 〈7〉 〈−3;−4〉

〈−7〉 〈2〉 〈3〉 〈−1〉 〈4〉 〈−6〉 〈−2〉 〈6〉 〈−3〉 〈−4〉

Fig.1 Layer division of surface S

Layers Principle segments

0th layer A = 〈1,−7, 2− 5; 3,−1, 4,−6, 5;−2, 6, 7,−3− 4〉

1st layer B = 〈1;−7, 2;−5〉, C = 〈3,−1; 4,−6; 5〉,

D = 〈−2, 6; 7;−3,−4〉

2nd layer E = 〈−7; 2〉, F = 〈3;−1〉, G = 〈4;−6〉,

H = 〈−2; 6〉, I = 〈−3;−4〉

Tab.1 Layers and principle segments

Theorem 1 A layer division of a polyhegon determines a joint tree. Conversely, a joint tree

determines a layer division of its associate polyhegon.

Proof For a layer division of a polyhegon as a polyhegon, all segments are treated as

vertices and two vertices have an edge if, and only if, they are in successive layers with one as

a subsegment of the other. This graph can be shown as a tree. Because of each non-end vertex

with a rotation and end vertices pairwise with binary indices, this tree itself is a joint tree.

Conversely, for a joint tree, it is also seen as a layer division of the surface determined by

the boundary polyhegon of the tree. �

Then, an operation on a layer division is discussed for transforming an associate polyhegon

into another in order to visit all associate polyhegon without repetition.

A layer segment with all its successors is called a branch in the layer division. The operation

of interchanging the positions of two layer segments with the same predecessor in a layer division

is called an exchanger.

Lemma 1 A layer division of an associate polyhegon of a graph under an exchanger is still a

layer division of another associate polyhegon. Conversely, the later under the same exchanger

becomes the former.

Proof On the basis of Theorem 1, only necessary to see what happens by exchanger on

a joint tree once. Because of only changing the rotation at a vertex for doing exchanger once,
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exchanger transforms a joint tree into another joint tree of the same graph. This is the first

conclusion. Because of exchanger inversible, the second conclusion holds. �

On the basis of this lemma, an exchanger can be seen as an operation on the set of all

associate surfaces of a graph.

Lemma 2 The exchanger is closed in the set of all associate polyhegons of a graph.

Proof From Theorem 1, the lemma is a direct conclusion of Lemma 1. �

Lemma 3 Let A(G) be the set of all associate polyhegons of a graph G, then for any S1,

S2 ∈ A(G), there exist a sequence of exchangers on the set such that S1 can be transformed

into S2.

Proof Because of exchanger corresponding to transposition of two elements in a rotation

at a vertex, in virtue of permutation principle that any two rotation can be transformed from

one into another by transpositions, from Theorem 1 and Lemma 1, the conclusion is done. �

If A(G) is dealt as the vertex set and an edge as an exchanger, then what is obtained in

this way is called the associate polyhegon graph of G, and denoted by H(G). From Principle A,

it is also called the surface embedding graph of G.

Theorem 2 In H(G), there is a Hamilton path. Further, for any two vertices, H(G) has a

Hamilton path with the two vertices as ends.

Proof Since a rotation at each vertex is a cyclic permutation(or in short a cycle) on the set

of semi-edges with the vertex, an exchanger of layer segments is corresponding to a transposition

on the set at a vertex.

Since any two cycles at a vertex v can be transformed from one into another by ρ(v)

transpositions where ρ(v) is the valency of v, i.e., the order of cycle(rotation), This enables us

to do exchangers from the 1st layer on according to the order from left to right at one vertex

to the other. Because of the finiteness, an associate polyhegon can always transformed into

another by |A(G)| exchangers. From Theorem 1 with Principles 1–2, the conclusion is done.�

First, starting from a surface in A(G), by doing exchangers at each principle segments

in one layer to another, a Hamilton path can always be found in considering Theorem 2 and

Theorem 1. Then, a Hamilton path can be found on H(G).

Further, for chosen S1, S2 ∈ A(G) = V (H(G)) adjective, starting from S1, by doing ex-

changers avoid S2 except the final step, on the basis of the strongly finite recursion principle, a

Hamilton path between S1 and S2 can be obtained. In consequence, a Hamilton circuit can be

found on H(G).

Corollary 1 In H(G), there exists a Hamilton circuit.

Theorem 2 tells us that the problem of determining the minimum, or maximum genus of

graph G has an algorithm in time linear on H(G).
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§3. Main Theorems

For a graph G, let S(G) be the the associate polehegons (or surfaces) of G, and Sp and Sq̃, the

subsets of, respectively, orientable and nonorientable polyhegons of genus p > 0 and q > 1.

Then, we have

S(G) =
∑

p>0

Sp +
∑

q>1

Sq̃.

Theorem 3 A graph G can be embedded on an orientable surface of genus p if, and only if,

S(G) has a polyhegon in Sp, p > 0. Moreover, for an embedding of G, there exist a sequence of

exchangers by which the corresponding polyhegon of the embedding can be transformed into one

in Sp.

Proof For an embedding of G on an orientable surface of genus p, from Theorem 1 there

is an associate polyhegon in Sp, p > 0. This is the necessity of the first statement.

Conversely, given an associate polyhegen in Sp, p > 0, from Theorems 1–2 with Principles

A and B, an embedding of G on an orientable surface of genus p can be done. This is the

sufficiency of the first statement.

The last statement of the theorem is directly seen from the proof of Theorem 2. �

For an orientable embedding µ(G) of G, denote by S̃µ the set of all nonorientable associate

polyhegons induced from µ(G).

Theorem 4 A graph G can be embedded on a nonorientable surface of genus q(> 1) if, and only

if, S(G) has a polyhegon in S̃q, q > 1. Moreover, if G has an embedding µ̃ on a nonorientable

surface of genus q, then it can always be done from an orientable embedding µ arbitrarily given

to another orientable embedding µ′ by a sequence of exchangers such that the associate polyhegon

of µ̃ is in S̃µ′ .

Proof For an embedding of G on a nonorientable surface of genus q, Theorem 1 and

Principle B lead to that its associate polyhegon is in Sq, q > 1. This is the necessity of the first

statement.

Conversely, let Sq̃ be an associate polyhegon of G in S̃q, q > 1. From Principles A and

B, an embedding of G on a nonorietable surface of genus q can be found from Sq̃. This is the

sufficiency of the first statement.

Since a nonorientable embedding of G has exactly one under orientable embedding of G

by Principle A, Theorem 2 directly leads to the second statement. �

§4. Research Notes

A. Theorems 1 and 2 enable us to establish a procedure for finding all embeddings of a graph

G in linear space of the size of G and in linear time of size of H(G). The implementation of

this procedure on computers can be seen in [6].

B. In Theorems 3 and 4, it is necessary to investigate a procedure to extract a sequence of

transpositions considered for the corresponding purpose efficiently.
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C. On the basis of the associate polyhegons, the recognition of operations from a polyhegon

of genus p to that of genus p+ k for given k > 0 have not yet be investigated. However, for the

case k = 0 the operations are just Operetions 0–2 all topological that are shown in [1–3].

D. It looks worthful to investigate the associate polyhegon graph of a graph further for accessing

the determination of the maximum(orientable) and minimum(orientable or nonorientable) genus

of a graph.
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