Total Dominator Colorings in Cycles

A.Vijayalekshmi

(S.T.Hindu College, Nagercoil, Tamil Nadu-629 002, India)

E-mail: vijimath.a@gmail.com

Abstract: Let *G* be a graph without isolated vertices. A total dominator coloring of a graph *G* is a proper coloring of *G* with the extra property that every vertex in *G* properly dominates a color class. The smallest number of colors for which there exists a total dominator coloring of *G* is called the total dominator chromatic number of *G* and is denoted by $\chi_{td}(G)$. In this paper we determine the total dominator chromatic number in cycles.

Key Words: Total domination number, chromatic number and total dominator chromatic number, Smarandachely *k*-dominator coloring, Smarandachely *k*-dominator chromatic number.

AMS(2010): 05C15, 05C69

§1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [3]. Let G = (V, E) be a graph of order n with minimum degree at least one. The open neighborhood N(v) of a vertex $v \in V(G)$ consists of the set of all vertices adjacent to v. The closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood N(S) is defined to be $\bigcup_{v \in S} N(v)$, and the closed neighborhood of S is $N[S] = N(S) \cup S$.

A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. A total dominating set is minimal total dominating set if no proper subset of S is a total dominating set of G. The total domination number γ_t is the minimum cardinality taken over all minimal total dominating sets of G. A γ_t -set is any minimal total dominating set with cardinality γ_t .

A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$. Let $V = \{u_1, u_2, u_3, \ldots, u_p\}$ and $\mathcal{Q} = \{C_1, C_2, C_3, \ldots, C_n\}, n \leq p$ be a collection of subsets $C_i \subset V$. A color represented in a vertex u is called a non-repeated color if there exists one color class $C_i \in \mathcal{Q}$ such that $C_i = \{u\}$.

Let G be a graph without isolated vertices. For an integer $k \ge 1$, a Smarandachely kdominator coloring of G is a proper coloring of G with the extra property that every vertex

¹Received September 2, 2012. Accepted December 16, 2012.

in G properly dominates a k-color classes and the smallest number of colors for which there exists a Smarandachely k-dominator coloring of G is called the Smarandachely k-dominator chromatic number of G and is denoted by $\chi_{td}^S(G)$. A total dominator coloring of a graph G is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The smallest number of colors for which there exists a total dominator coloring of G is called the total dominator chromatic number of G and is denoted by $\chi_{td}(G)$. In this paper, we determine total dominator chromatic number in cycles.

Throughout this paper, we use the following notations.

Notation 1.1 Usually, the vertices of C_n are denoted by u_1, u_2, \ldots, u_n in order. For i < j, we use the notation $\langle [i, j] \rangle$ for the subpath induced by $\{u_i, u_{i+1}, \ldots, u_j\}$. For a given coloring C of $C_n, C|\langle [i, j] \rangle$ refers to the coloring C restricted to $\langle [i, j] \rangle$.

We have the following theorem from [1].

Theorem 1.2([1]) Let G be any graph with $\delta(G) \ge 1$. Then

$$\max\{\chi(G), \gamma_t(G)\} \le \chi_{td}(G) \le \chi(G) + \gamma_t(G).$$

Definition 1.3 We know from Theorem (1.2) that $\chi_{td}(P_n) \in {\gamma_t(P_n), \gamma_t(P_n) + 1, \gamma_t(P_n) + 2}.$ We call the integer n, good (respectively bad, very bad) if $\chi_{td}(P_n) = \gamma_t(P_n) + 2$ (if respectively $\chi_{td}(P_n) = \gamma_t(P_n) + 1, \chi_{td}(P_n) = \gamma_t(P_n)$).

First, we prove a result which shows that for large values of n, the behavior of $\chi_{td}(P_n)$ depends only on the residue class of nmod4 [More precisely, if n is good, m > n and $m \equiv n \pmod{4}$ then m is also good]. We then show that n = 8, 13, 15, 22 are the least good integers in their respective residue classes. This therefore classifies the good integers.

Fact 1.4 Let 1 < i < n and let C be a td-coloring of P_n . Then, if either u_i has a repeated color or u_{i+2} has a non-repeated color, $C|\langle [i+1,n]\rangle$ is also a td-coloring. This fact is used extensively in this paper.

§2. Determination of $\chi_{td}(C_n)$

It is trivially true that $\chi_{td}(C_3) = 3$ and $\chi_{td}(C_4) = 2$. We assume $n \ge 5$.

Lemma 2.1 If P_n has a minimum td-coloring in which the end vertices have different colors, then $\chi_{td}(C_n) \leq \chi_{td}(P_n)$.

Proof Join u_1u_n by an edge and we get an induced td-coloring of C_n .

Corollary 2.2 $\chi_{td}(C_n) \leq \chi_{td}(P_n)$ for $\forall n \neq 3, 11, 18$.

Lemma 2.3 If C_n has a minimal td-coloring in which either there exists a color class of the form N(x), where x is a non-repeated color or no color class of the form N(x), then

 $\chi_{td}(P_n) \le \chi_{td}(C_n).$

Proof We have assumed n > 3. If n = 3, conclusion is trivially true. We have the following two cases.

Case 1 C_n has a minimal td-coloring C in which there is a color class of the form N(x), where x is a non-repeated color. Let C_n be the cycle $u_1u_2...u_nu_1$. Let us assume $x = u_2$ has a non-repeated color n_1 and $N(x) = \{u_1, u_3\}$ is the color class of color r_1 . Then u_{n-1} has a non-repeated color since u_n has to dominate a color class which must be contained in $N(u_n) = \{u_1, u_{n-1}\}$. Thus $C|\langle [1, n] \rangle$ is a td-coloring. Thus $\chi_{td}(P_n) \leq \chi_{td}(C_n)$.

Case 2 There exists C_n has a minimal td-coloring which has no color class of the form N(x). It is clear from the assumption that any vertex with a non-repeated color has an adjacent vertex with non-repeated color. We consider two sub cases.

Subcase *a* There are two adjacent vertices u, v with repeated color. Then the two vertices on either side of u, v say u_1 and v_1 must have non-repeated colors. Then the removal of the edge uv leaves a path P_n and $C|\langle [1, n] \rangle$ is a td-coloring.

Subcase b There are adjacent vertices u, v with u (respectively v) having repeated (respectively non-repeated) color. Then consider the vertex $u_1 \neq v$) adjacent to u. We may assume u_1 has non-repeated color (because of sub case (a)). v_1 must also have a non-repeated color since v must dominate a color class and u has a repeated color. Once again, $C|(C_n - uv)$ is a td-coloring and the proof is as in sub case (a). Since either sub case (a) or sub case (b) must hold, the lemma follows.

Lemma 2.4 $\chi_{td}(C_n) = \chi_{td}(P_n)$ for n = 8, 13, 15, 22.

proof We prove for n = 22. By Lemma 2.1, $\chi_{td}(P_{22}) \geq \chi_{td}(C_{22})$. Let $\chi_{td}(C_{22}) < \chi_{td}(P_{22}) = 14$. Then by Lemma 2.3, C_{22} has a minimal td-coloring in which there is a color class of the form N(x), where x is a repeated color (say C_1). Suppose $x = u_2$ First, we assume that the color class of u_2 is not $N(u_1)$ or $N(u_3)$. Then we have u_4, u_5, u_{22}, u_{21} must be non-repeated colors.

Fig.1

Then $C|\langle [6,20] \rangle$ is a coloring (which may not be a td-coloring for the section) with 8 colors including $C_1 \Rightarrow$ The vertices u_7 and u_{19} have the color C_1 . (The sets $\{u_6, u_8\}, \{u_7, u_9\}, \{u_{10}, u_{12}\}, \{u_{11}, u_{13}\}, \{u_{14}, u_{16}\}, \{u_{15}, u_{17}\}, \{u_{18}, u_{20}\}$ must contain color classes. Therefore the remaining vertex u_{19} must have color C_1 . Similarly, going the other way, we get u_7 must have color C_1). Then $\{u_6, u_8\}, \{u_{18}, u_{20}\}$ are color classes and $u_9, u_{10}, u_{16}, u_{17}$ are non-repeated colors. This leads $\langle [11, 15] \rangle$ to be colored with 2 colors including C_1 , which is not possible. Hence $\chi_{td}(C_{22}) = 14 = \chi_{td}(P_{22})$. If the color class of u_2 is $N(u_1)$ or $N(u_3)$, the argument is similar. Proof is similar for n = 8,13,15.

Lemma 2.5 Let n be a good integer. Then $\chi_{td}(P_n) \leq \chi_{td}(C_n)$

Proof We use induction on n. Let u_1, u_2, \ldots, u_n be vertices of C_n in order. Let C be a minimal td-coloring of C_n . For the least good integers in their respective residue classes mod 4 is 8, 13, 15, 22, the result is proved in the previous Lemma 2.4. So we may assume that the result holds for all good integers < n and that n - 4 is also a good integer. First suppose, there exists a color class of the form N(x). Let $x = u_2$. Suppose u_2 has a repeated color. Then we have u_4, u_5, u_n, u_{n-1} must be non-repeated color. We remove the vertices $\{u_1, u_2, u_3, u_n\}$ and add an edge u_4u_{n-1} in C_n . Therefore, we have the coloring $C|\langle [4, n - 1] \rangle$ is a td-coloring with colors $\chi_{td}(C_n) - 2$. Therefore, $\chi_{td}(C_n) \ge 2 + \chi_{td}(C_{n-4}) \ge 2 + \chi_{td}(P_{n-4}) = \chi_{td}(P_n)$.

If x is a non-repeated color, then by Lemma 2.3, $\chi_{td}(P_n) \leq \chi_{td}(C_n)$. If there is no color class of the form N(x), then $\chi_{td}(P_n) \leq \chi_{td}(C_n)$.

Theorem 2.6 $\chi_{td}(C_n) = \chi_{td}(P_n)$, for all good integers n.

Proof The result follows from Corollary 2.2 and Lemmas 2.4 and 2.5.

Remark Thus the $\chi_{td}(C_n) = \chi_{td}(P_n)$ for n = 8, 12, 13, 15, 16, 17 and $\forall n \ge 19$. It can be verified that $\chi_{td}(C_n) = \chi_{td}(P_n)$ for n = 5, 6, 7, 9, 10, 14 and that $\chi_{td}(C_n) = \chi_{td}(P_n) + 1$ for n = 3, 11, 18 and that $\chi_{td}(P_4) = \chi_{td}(C_4) + 1$.

References

- M.I.Jinnah and A.Vijayalekshmi, *Total Dominator Colorings in Graphs*, Ph.D Thesis 2010, University of Kerala, India.
- [2] A.Vijayalekshmi, Total dominator colorings in Paths, International Journal of Mathematical Combinatorics, Vol 2 (2012), p. 89–95.
- [3] F.Harary, Graph Theory, Addition Wesley Reading Mass, 1969.
- [4] Terasa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, *Domination in Graphs*, Marcel Dekker, New York, 1998.
- [5] Terasa W.Haynes, Stephen T.Hedetniemi, Peter J. Slater, Domination in Graphs Advanced Topics, Marcel Dekker, New York, 1998.