Total Dominator Colorings in Cycles

A. Vijayalekshmi
(S.T. Hindu College, Nagercoil, Tamil Nadu-629 002, India)

E-mail: vijimath.a@gmail.com

Abstract: Let G be a graph without isolated vertices. A total dominator coloring of a graph G is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The smallest number of colors for which there exists a total dominator coloring of G is called the total dominator chromatic number of G and is denoted by $\chi_{td}(G)$. In this paper we determine the total dominator chromatic number in cycles.

Key Words: Total domination number, chromatic number and total dominator chromatic number, Smarandachely k-dominator coloring, Smarandachely k-dominator chromatic number.

AMS(2010): 05C15, 05C69

§1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [3]. Let $G = (V,E)$ be a graph of order n with minimum degree at least one. The open neighborhood $N(v)$ of a vertex $v \in V(G)$ consists of the set of all vertices adjacent to v. The closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood $N(S)$ is defined to be $\bigcup_{v \in S} N(v)$, and the closed neighborhood of S is $N[S] = N(S) \cup S$.

A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. A total dominating set is minimal total dominating set if no proper subset of S is a total dominating set of G. The total domination number γ_t is the minimum cardinality taken over all minimal total dominating sets of G. A γ_t-set is any minimal total dominating set with cardinality γ_t.

A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$. Let $V = \{u_1, u_2, u_3, \ldots, u_p\}$ and $\mathcal{C} = \{C_1, C_2, C_3, \ldots, C_n\}$, $n \leq p$ be a collection of subsets $C_i \subset V$. A color represented in a vertex u is called a non-repeated color if there exists one color class $C_i \in \mathcal{C}$ such that $C_i = \{u\}$.

Let G be a graph without isolated vertices. For an integer $k \geq 1$, a Smarandachely k-dominator coloring of G is a proper coloring of G with the extra property that every vertex...
in G properly dominates a k-color classes and the smallest number of colors for which there exists a Smarandachely k-dominator coloring of G is called the Smarandachely k-dominator chromatic number of G and is denoted by $\chi_{td}^k(G)$. A total dominator coloring of a graph G is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The smallest number of colors for which there exists a total dominator coloring of G is called the total dominator chromatic number of G and is denoted by $\chi_{td}(G)$. In this paper, we determine total dominator chromatic number in cycles.

Throughout this paper, we use the following notations.

Notation 1.1 Usually, the vertices of C_n are denoted by u_1, u_2, \ldots, u_n in order. For $i < j$, we use the notation $\langle [i, j] \rangle$ for the subpath induced by $\{u_i, u_{i+1}, \ldots, u_j\}$. For a given coloring C of C_n, $C([i, j])$ refers to the coloring C restricted to $\langle [i, j] \rangle$.

We have the following theorem from [1].

Theorem 1.2([1]) Let G be any graph with $\delta(G) \geq 1$. Then

$$\max\{\chi(G), \gamma_t(G)\} \leq \chi_{td}(G) \leq \chi(G) + \gamma_t(G).$$

Definition 1.3 We know from Theorem (1.2) that $\chi_{td}(P_n) \in \{\gamma_t(P_n), \gamma_t(P_n) + 1, \gamma_t(P_n) + 2\}$. We call the integer n, good (respectively bad, very bad) if $\chi_{td}(P_n) = \gamma_t(P_n) + 2$ (if respectively $\chi_{td}(P_n) = \gamma_t(P_n) + 1$, $\chi_{td}(P_n) = \gamma_t(P_n)$).

First, we prove a result which shows that for large values of n, the behavior of $\chi_{td}(P_n)$ depends only on the residue class of $n \mod 4$ [More precisely, if n is good, $m > n$ and $m \equiv n \mod 4$ then m is also good]. We then show that $n = 8, 13, 15, 22$ are the least good integers in their respective residue classes. This therefore classifies the good integers.

Fact 1.4 Let $1 < i < n$ and let C be a td-coloring of P_n. Then, if either u_i has a repeated color or u_{i+2} has a non-repeated color, $C|\langle [i + 1, n] \rangle$ is also a td-coloring. This fact is used extensively in this paper.

§2. Determination of $\chi_{td}(C_n)$

It is trivially true that $\chi_{td}(C_3) = 3$ and $\chi_{td}(C_4) = 2$. We assume $n \geq 5$.

Lemma 2.1 If P_n has a minimum td-coloring in which the end vertices have different colors, then $\chi_{td}(C_n) \leq \chi_{td}(P_n)$.

Proof Join u_1u_n by an edge and we get an induced td-coloring of C_n. \qed

Corollary 2.2 $\chi_{td}(C_n) \leq \chi_{td}(P_n)$ for \forall $n \neq 3, 11, 18$.

Lemma 2.3 If C_n has a minimal td-coloring in which either there exists a color class of the form $N(x)$, where x is a non-repeated color or no color class of the form $N(x)$, then
\(\chi_{td}(P_n) \leq \chi_{td}(C_n) \).

Proof We have assumed \(n > 3 \). If \(n = 3 \), conclusion is trivially true. We have the following two cases.

Case 1 \(C_n \) has a minimal td-coloring \(C \) in which there is a color class of the form \(N(x) \), where \(x \) is a non-repeated color. Let \(C_n \) be the cycle \(u_1u_2\ldots u_nu_1 \). Let us assume \(x = u_2 \) has a non-repeated color \(n_1 \) and \(N(x) = \{u_1, u_3\} \) is the color class of color \(r_1 \). Then \(u_{n-1} \) has a non-repeated color since \(u_n \) has to dominate a color class which must be contained in \(N(u_n) = \{u_1, u_{n-1}\} \). Thus \(C\langle[1,n]\rangle \) is a td-coloring. Thus \(\chi_{td}(P_n) \leq \chi_{td}(C_n) \).

Case 2 There exists \(C_n \) has a minimal td-coloring which has no color class of the form \(N(x) \). It is clear from the assumption that any vertex with a non-repeated color has an adjacent vertex with non-repeated color. We consider two sub cases.

Subcase a There are two adjacent vertices \(u, v \) with repeated color. Then the two vertices on either side of \(u, v \) say \(u_1 \) and \(v_1 \) must have non-repeated colors. Then the removal of the edge \(uv \) leaves a path \(P_n \) and \(C\langle[1,n]\rangle \) is a td-coloring.

Subcase b There are adjacent vertices \(u, v \) with \(u \) (respectively \(v \)) having repeated (respectively non-repeated) color. Then consider the vertex \(u_1 \neq v \) adjacent to \(u \). We may assume \(u_1 \) has non-repeated color (because of sub case (a)). \(v_1 \) must also have a non-repeated color since \(v \) must dominate a color class and \(u \) has a repeated color. Once again, \(C\langle(C_n - uv)\rangle \) is a td-coloring and the proof is as in sub case (a). Since either sub case (a) or sub case (b) must hold, the lemma follows. \(\Box \)

Lemma 2.4 \(\chi_{td}(C_n) = \chi_{td}(P_n) \) for \(n = 8, 13, 15, 22 \).

proof We prove for \(n = 22 \). By Lemma 2.1, \(\chi_{td}(P_{22}) \geq \chi_{td}(C_{22}) \). Let \(\chi_{td}(C_{22}) < \chi_{td}(P_{22}) = 14 \). Then by Lemma 2.3, \(C_{22} \) has a minimal td-coloring in which there is a color class of the form \(N(x) \), where \(x \) is a repeated color (say \(C_1 \)). Suppose \(x = u_2 \) First, we assume that the color class of \(u_2 \) is not \(N(u_1) \) or \(N(u_3) \). Then we have \(u_4, u_5, u_{22}, u_{21} \) must be non-repeated colors.

![Fig.1](image-url)
Then $C[(6, 20)]$ is a coloring (which may not be a td-coloring for the section) with 8 colors including $C_1 \Rightarrow$ The vertices u_7 and u_{19} have the color C_1. (The sets $\{u_6, u_8\}, \{u_7, u_9\}, \{u_{10}, u_{12}\}, \{u_{11}, u_{13}\}, \{u_{14}, u_{16}\}, \{u_{15}, u_{17}\}, \{u_{18}, u_{20}\}$ must contain color classes. Therefore the remaining vertex u_{19} must have color C_1. Similarly, going the other way, we get u_7 must have color C_1). Then $\{u_6, u_8\}, \{u_{18}, u_{20}\}$ are color classes and $u_9, u_{10}, u_{16}, u_{17}$ are non-repeated colors. This leads $\{11, 15\}$ to be colored with 2 colors including C_1, which is not possible. Hence $\chi_{td}(C_{22}) = 14 = \chi_{td}(P_{22})$. If the color class of u_2 is $N(u_1)$ or $N(u_3)$, the argument is similar. Proof is similar for $n = 8, 13, 15$. \[\square\]

Lemma 2.5 Let n be a good integer. Then $\chi_{td}(P_n) \leq \chi_{td}(C_n)$

Proof We use induction on n. Let u_1, u_2, \ldots, u_n be vertices of C_n in order. Let C be a minimal td-coloring of C_n. For the least good integers in their respective residue classes mod 4 is 8, 13, 15, 22, the result is proved in the previous Lemma 2.4. So we may assume that the result holds for all good integers $< n$ and that $n - 4$ is also a good integer. First suppose, there exists a color class of the form $N(x)$. Let $x = u_2$. Suppose u_2 has a repeated color. Then we have u_4, u_5, u_n, u_{n-1} must be non-repeated color. We remove the vertices $\{u_1, u_2, u_3, u_n\}$ and add an edge u_4u_{n-1} in C_n. Therefore, we have the coloring $C[(4, n - 1)]$ is a td-coloring with colors $\chi_{td}(C_n) - 2$. Therefore, $\chi_{td}(C_n) \geq 2 + \chi_{td}(C_{n-4}) \geq 2 + \chi_{td}(P_{n-4}) = \chi_{td}(P_n)$.

![Fig.2](image-url)

If x is a non-repeated color, then by Lemma 2.3, $\chi_{td}(P_n) \leq \chi_{td}(C_n)$. If there is no color class of the form $N(x)$, then $\chi_{td}(P_n) \leq \chi_{td}(C_n)$. \[\square\]

Theorem 2.6 $\chi_{td}(C_n) = \chi_{td}(P_n)$, for all good integers n.

Proof The result follows from Corollary 2.2 and Lemmas 2.4 and 2.5. \[\square\]

Remark Thus the $\chi_{td}(C_n) = \chi_{td}(P_n)$ for $n = 8, 12, 13, 15, 16, 17$ and $\forall n \geq 19$. It can be verified that $\chi_{td}(C_n) = \chi_{td}(P_n)$ for $n = 5, 6, 7, 9, 10, 14$ and that $\chi_{td}(C_n) = \chi_{td}(P_n) + 1$ for $n = 3, 11, 18$ and that $\chi_{td}(P_4) = \chi_{td}(C_4) + 1$.

References

