Smarandachely Precontinuous maps

and Preopen Sets in Topological Vector Spaces

Sayed Elagan
Department of Mathematics and Statistics
Faculty of Science, Taif University
Al-Haweiah, Kingdom of Saudi Arabia
Egypt
E-mail: sayed_khalil2000@yahoo.com

Abstract: It is shown that linear functional on topological vector spaces are Smarandachely precontinuous. Prebounded, totally prebounded and precompact sets in topological vector spaces are identified.

Key Words: Smarandachely Preopen set, precompact set, Smarandachely precontinuous map.

AMS(2000): 34A10, 34C10

§1. Introduction

N. Levine [7] introduced the theory of semi-open sets and the theory of α-sets for topological spaces. For a systematic development of semi-open sets and the theory of α-sets one may refer to [1], [2], [4], [5] and [9]. The notion of preopen sets for topological spaces was introduced by S. N. Mashour, M. E. Abd El-Moncef and S.N. El-Deep in [8]. These concepts above are closely related. It is known that, in a topological space, a set is preopen and semi-open if and only if it is an α-set [10], [11]. Our object in section 3 is to define a prebounded set, totally prebounded set, and precompact set in a topological vector space. In Sections 3 and 4 we identify them. Moreover, in Section 2, we show that every linear functional on a topological vector space is precontinuous and deduce that every topological vector space is a prehausdorff space.

§2. Precontinuous maps

We recall the following definitions [2], [8].

Definition 2.1 Let X be a topological space. A subset S of X is said to be Smarandachely preopen if there exists a set $U \subseteq \text{cl}(S)$ such that $S \subseteq \text{int}((\text{cl}(S) \cup U))$. A Smarandachely preneighbourhood of the point $x \in X$ is any Smarandachely preopen set containing x. Particularly, a

\footnote{Received March 12, 2009. Accepted April 16, 2009.}
Smarandachely \(\emptyset \)-preopen set \(S \) is usually called a preopen set.

Definition 2.2 Let \(X \) and \(Y \) be topological spaces and \(f : X \to Y \). The function \(f \) is said to be Smarandachely precontinuous if the inverse image \(f^{-1}(B) \) of each open set \(B \) in \(Y \) is a Smarandachely preopen set in \(X \). The function \(f \) is said to be Smarandachely preopen if the image \(f(A) \) of every open set \(A \) in \(X \) is Smarandachely preopen in \(Y \). Particularly, if we replace each Smarandachely preopen by preopen, \(f \) is called to be precontinuous.

The following lemma is obvious.

Lemma 2.1 Let \(X \) and \(Y \) be topological vector spaces and \(f : X \to Y \) linear. The function \(f \) is preopen if and only if, for every open set \(U \) containing \(0 \in X \), \(0 \in Y \) is an interior point of \(\text{cl}(f(U)) \).

The following two theorems are known but we include the proofs for convenience of the reader.

Theorem 2.1 Let \(X,Y \) be topological vector spaces and let \(Y \) have the Baire property, that is, whenever \(Y = \bigcup_{n=1}^{\infty} B_n \) with closed sets \(B_n \), there is is \(N \) such that \(\text{int}(B_N) \) is nonempty. Let \(f : X \to Y \) be linear and \(f(X) = Y \). Then \(f \) is preopen.

Proof Let \(U \subset X \) be a neighborhood of 0. There is a neighborhood \(V \) of 0 such that \(V - V \subset U \). Since \(V \) is a neighborhood of 0 we have \(X = \bigcup_{n=1}^{\infty} nV \). It follows from linearity and surjectivity of \(f \) that \(Y = \bigcup_{n=1}^{\infty} nf(V) \). Since \(Y \) has the Baire property, there is \(N \) such that \(\text{cl}(Nf(V)) = N\text{cl}(f(V)) \) contains an open set \(S \) which is not empty. Then \(\text{cl}(f(V)) \) contains the open set \(T = \frac{1}{N}S \). It follows that

\[
T - T \subset \text{cl}(f(V)) - \text{cl}(f(V)) \subset \text{cl}(f(V) - f(V)) = \text{cl}(f(V - V)) \subset \text{cl}(f(U)).
\]

The set \(T - T \) is open and contains 0. Therefore, \(0 \in Y \) is an interior point of \(\text{cl}(f(U)) \). From Lemma 2.1 we conclude that \(f \) is preopen. \(\square \)

Note that \(f \) can be any linear surjective map. It is not necessary to assume that \(f \) is continuous or precontinuous.

Theorem 2.2 Let \(X,Y \) be topological vector spaces, and let \(X \) have the Baire property. Then every linear map \(f : X \to Y \) is precontinuous.

Proof Let \(G = \{(x,f(x)) : x \in X \} \) be the graph of \(f \). The projections \(\pi_1 : G \to X \) and \(\pi_2 : G \to Y \) are continuous. The projection \(\pi_1 : G \to X \) is bijective. It follows from Theorem ?? that \(\pi_1 \) is preopen. Therefore, the inverse mapping \(\pi_1^{-1} \) is precontinuous. Then \(f = \pi_2 \circ \pi_1^{-1} \) is precontinuous. \(\square \)

Theorem 2.2 shows that many linear maps are automatically precontinuous. Therefore, it is natural to ask for an example of a linear map which is not precontinuous.

Let \(X = C[0,1] \) be the vector space of real-valued continuous functions on \([0,1]\) equipped with the norm

\[
\|f\| = \max_{x \in [0,1]} |f(x)|.
\]
\[\|f\|_1 = \int_0^1 |f(x)| \, dx. \]

Let \(Y = C[0,1] \) be equipped with the norm
\[\|f\|_\infty = \max_{x \in [0,1]} |f(x)|. \]

Lemma 2.2 The identity operator \(T : X \to Y \) is not precontinuous.

Proof Let \(U = \{ f \in C[0,1] : \|f\|_\infty < 1 \} \) which is an open subset of \(Y \). Let \(\text{cl}(U) \) be the closure of \(U \) in \(X \). We claim that
\[(2.1) \quad \text{cl}(U) \subset \{ f \in C[0,1] : \|f\|_\infty \leq 1 \}. \]

For the proof, consider a sequence \(f_n \in U \) and a function \(f \in C[0,1] \) such that \(\{ f_n \} \) converges to \(f \) in \(X \). Suppose that there is \(x_0 \in [0,1] \) such that \(f(x_0) > 1 \). By continuity of \(f \), there are \(a < b \) and \(\delta > 0 \) such that \(0 \leq a \leq x_0 \leq b \leq 1 \) and \(f(x) > 1 + \delta \) for \(x \in (a, b) \). Then, as \(n \to \infty \),
\[(b - a)\delta \leq \int_a^b |f_n(x) - f(x)| \, dx \leq \int_0^1 |f_n(x) - f(x)| \, dx \to 0 \]
which is a contradiction. Therefore, \(f(x) \leq 1 \) for all \(x \in [0,1] \). Similarly, we show that \(f(x) \geq -1 \) for all \(x \in [0,1] \). Now \(0 \in U = T^{-1}(U) \) but \(U \) is not preopen in \(X \). We see this as follows. Suppose that \(U \) is preopen in \(X \). The sequence \(g_n(x) = 2x^n \) converges to 0 in \(X \). Therefore, \(g_n \in \text{cl}(U) \) for some \(n \) and (2.1) implies \(2 = \|g_n\|_\infty \leq 1 \) which is a contradiction. □

We can improve Theorem 2.2 for linear functionals.

Theorem 2.3 Let \(f \) be a linear functional on a topological vector space \(X \). If \(V \) is a preopen subset of \(\mathbb{R} \) then \(f^{-1}(V) \) is a preopen subset of \(X \). In particular, \(f \) is precontinuous.

Proof We distinguish the cases that \(f \) is continuous or discontinuous.

Suppose that \(f \) is continuous. If \(f(x) = 0 \) for all \(x \in X \) the statement of the theorem is true. Suppose that \(f \) is onto. We choose \(u \in X \) such that \(f(u) = 1 \). Let \(V \) be a preopen subset of \(\mathbb{R} \), and set \(U := f^{-1}(V) \). Let \(x \in U \) so \(f(x) \in V \). Since \(V \) is preopen, there is \(\delta > 0 \) such that
\[(2.2) \quad I := (f(x) - \delta, f(x) + \delta) \subset \text{cl}(V). \]

Since \(f \) is continuous, \(f^{-1}(I) \) is an open subset of \(X \) containing \(x \). We claim that
\[(2.3) \quad f^{-1}(I) \subset \text{cl}(U). \]

In order to prove (2.3), let \(y \in f^{-1}(I) \) so \(f(y) \in I \). By (2.2), there is a sequence \(\{t_n\} \) in \(V \) converging to \(f(y) \). Set
\[y_n := y + (t_n - f(y))u. \]
We have $f(y_n) = t_n \in V$ so $y_n \in U$. Since X is a topological vector space, y_n converges to y. This establishes (2.3). It follows that U is preopen.

Suppose now that f is not continuous. By [3, Corollary 22.1], $N(f) = \{x \in X : f(x) = 0\}$ is not closed. Therefore, there is $y \in \text{cl}(N(f))$ such that $y \notin N(f)$ so $f(y) \neq 0$. Let x be any vector in X. There is $t \in \mathbb{R}$ such that $f(x) = tf(y)$ and so $x - ty \in N(f)$. It follows that $x \in \text{cl}(N(f))$. We have shown that $N(f)$ is dense in X. Let $a \in \mathbb{R}$. There is $y \in X$ such that $f(y) = a$. Then $f^{-1}(\{a\}) = y + N(f)$ and so the closure of $f^{-1}(\{a\})$ is $y + \text{cl}(N(f)) = X$. Therefore, $f^{-1}(\{a\})$ is dense for every $a \in \mathbb{R}$. Let V be a preopen set in \mathbb{R}. If V is empty then $f^{-1}(V)$ is empty and so is preopen. If V is not empty choose $a \in V$. Then $f^{-1}(V) \supset f^{-1}(\{a\})$ and so $f^{-1}(V)$ is dense. Therefore, $f^{-1}(V)$ is preopen. □

§3. Subsets of topological vector spaces

In this section our principal goal is to define prebounded sets, totally prebounded sets and precompact sets in a topological vector space, and to find relations between them. We begin this section with some definitions.

Definition 3.1 A subset E of a topological vector space X is said to be prebounded if for every preneighbourhood V of 0 there exists $s > 0$ such that $E \subset tV$ for all $t > s$.

Definition 3.2 A subset E of a topological vector space X is said to be totally prebounded if for every preneighbourhood U of 0 there exists a finite subset F of X such that $E \subset F + U$.

Definition 3.3 A subset E of a topological vector space X is said to be precompact if every preopen cover of E admits a finite subcover.

Lemma 3.1 Every precompact set in a topological vector space X is totally prebounded.

Proof Let E be precompact. Let V be preopen with $0 \in V$. Then the collection $\{x + V : x \in E\}$ is a cover of E consisting of preopen sets. There are $x_1, x_2, \ldots, x_n \in E$ such that $E \subset \bigcup_{i=1}^{n} \{x_i + V\}$. Therefore, E is totally prebounded. □

Lemma 3.2 In a topological vector space X the singleton $\{0\}$ is the only prebounded set.

Proof It is enough to show that every singleton $\{u\}$, $u \neq 0$, is not prebounded. Let $V = X - \{\frac{1}{n}u : n \in \mathbb{N}\}$. The closure of V is X so V is preopen. But $\{u\}$ is not subset of nV for $n = 1, 2, 3, \ldots$. Therefore, $\{u\}$ is not prebounded. □

Theorem 3.1 If E is a prebounded subset of a topological vector space X, then E is totally prebounded. The converse statement is not true.

Proof This follows from the fact that every finite set is totally prebounded, and by using Lemma 3.2. □
§4. Applications of Theorem 2.3

We need the following known lemma.

Lemma 4.1 If U, V are two vector spaces, and W is a linear subspace of U and $f : W \to V$ is a linear map, then there is a linear map $g : U \to V$ such that $f(x) = g(x)$ for all $x \in W$.

Proof We choose a basis A in W and then extend to a basis $B \supset A$ in U. We define $h(a) = f(a)$ for $a \in A$ and $h(b)$ arbitrary in V for $b \in B - A$. There is a unique linear map $g : U \to V$ such that $g(b) = h(b)$ for $b \in B$. Then $g(x) = f(x)$ for all $x \in W$. □

We obtain the following result.

Theorem 4.1 Every topological vector space X is a prehausdorff space, that is, for each $x, y \in X$, $x \neq y$, there exists a preneighbourhood U of x and a preneighbourhood V of y such that $U \cap V = \emptyset$.

Proof Let $x, y \in X$ and $x \neq y$. If x, y are linearly dependent we choose a linear functional on the span of $\{x, y\}$ such that $f(x) < f(y)$. If x, y are linearly independent we set $f(sx + ty) = s$. By Lemma 4.1 we extend f to a linear functional g with $g(x) < g(y)$. Choose $c \in (g(x), g(y))$ and define $U = g^{-1}((c, \infty))$ and $V = g^{-1}((-\infty, c))$. Then, using Theorem 2.3, U, V are preopen. Also U and V are disjoint and $x \in U$, $y \in V$. □

We now determine totally prebounded subsets in \mathbb{R}. The result may not be surprising but the proof requires some care.

Lemma 4.2 A subset of \mathbb{R} is totally prebounded if and only if it is finite.

Proof It is clear that a finite set is totally prebounded. Let E be a countable (finite or infinite) subset of \mathbb{R} which is totally prebounded. Let $A := \{x - y : x, y \in E\}$. The set A is countable. We define a sequence $\{u_n\}$ of real numbers inductively as follows. We set $u_1 = 0$. Then we choose $u_2 \in (-1, 0)$ such that $u_2 - u_1 \notin A$. Then we choose $u_3 \in (0, 1)$ such that $u_3 - u_1 \notin A$ for $i = 1, 2$. Then we choose $u_4 \in (-1, -\frac{1}{2})$ such that $u_4 - u_2 \notin A$ for $i = 1, 2, 3$. Continuing in this way we construct a set $U = \{u_n : n \in \mathbb{N}\} \subset (-1, 1)$ such that every interval of the form $(m2^{-k}, (m + 1)2^{-k})$ with $-2^k < m < 2^k$, $k \in \mathbb{N}$, contains at least one element of U, and such that $0 \in U$ and $u - v \notin A$ for all $u, v \in U$, $u \neq v$. Then $cl(U) = [-1, 1]$ so U is a preneighbourhood of 0. Since E is totally prebounded, there is a finite set F such that $E \subset F + U$. If $z \in F$ and $x, y \in E$ lie in $z + U$ then $x = z + u$, $y = z + v$ with $u, v \in U$. It follows that $u - v = x - y \notin A$ and, by construction of U, $u = v$. Therefore, $x = y$ and so each set $z + U$, $z \in F$, contains at most one element of E. Therefore, E is finite. We have shown that every countable set which is totally prebounded is finite. It follows that every totally prebounded set is finite. □

Combining several of our results we can now identify totally prebounded and precompact subset of any topological vector space.

Theorem 4.2 Let X be a topological vector space. A subset of X is totally prebounded if and only if it is finite. Similarly, a subset of X is precompact if and only if it is finite.

Proof Every finite set is totally prebounded. Conversely, suppose that E is a totally
prebounded subset of X. Let f be a linear functional on X. It follows easily from Theorem 2.3 that $f(E)$ is a totally prebounded subset of \mathbb{R}. By Lemma 4.2, $f(E)$ is finite. It follows that E is finite as we see as follows. Suppose that E contains a sequence $\{x_n\}_{n=1}^{\infty}$ which is linearly independent. Then, using Lemma 4.1, we can construct a linear functional f on X such that $f(x_n) \neq f(x_m)$ if $n \neq m$. This is a contradiction so E must lie in a finite dimensional subspace Y of X. We choose a basis y_1, \ldots, y_k in Y, and represent each $x \in E$ in this basis

$$x = f_1(x)y_1 + \cdots + f_k(x)y_k.$$

Every f_j is a linear functional on Y so $f_j(E)$ is a finite set for each $j = 1, 2, \ldots, k$. It follows that E is finite.

Clearly, every finite set is precompact. Conversely, by Lemma 3.1, a precompact subset of X is totally prebounded, so it is finite. \qed

References