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Abstract: We develop in detail, the classical magneonopoles of non-abelian Yang-Mills
gauge theory, and show how these classical monspaleen analyzed using Gauss’ / Stokes’
theorem, appear to confine their gauge fields, afsb, appear to be composite objects. Of
course, baryons, which include the protons and noest at the heart of nuclear physics, also
confine their gauge fields and are similarly-compo®bjects. This raises the question whether
the magnetic monopoles of Yang-Mills theory aresime fashion related to the observed
physical baryons. After developing inverse sohgidor the non-abelian electric charge
densities while carefully examining uniqueness gauge fixing, we use these solutions together
with Dirac theory to “populate” these classical mmpoles with fermions. Applying the Fermi-
Dirac-Pauli Exclusion Principle to these fermiormsdes the selection of a rank-3 gauge group
initially chosen to be SU(3). We then find thasth non-abelian magnetic monopoles have the
exact chromodynamic symmetries of baryons anddoteria colored magnetic fields with the
exact chromodynamic symmetries of mesons. We shaivthese monopoles are also
topologically stable, and that a required U(1) factvhich ensures this stability also “flavors”
these monopole as protons and neutrons. Becaisestposition is classical, we also discuss
the extent to which classical field theory can Isedito effectively analyze baryons and
confinement. We finally point out how a recursagpect of the non-abelian electric charge
solution may be used to perform an analyticallyetxguantum path integration for Yang-Mills
theory, proving the existence of a non-trivial qian Yang—Mills theory on“Ror any simple
gauge group G.
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1. Introduction: The Field Strength Curvature Tensor in Gauge Theory,
and a Review of Gauge-Covariant Derivatives

In 1918, [1], [2] Hermann Weyl first conceived tltea that electrodynamics might be
unified with Einstein’s recently-developed geonwtiieory of gravitation [3], by analyzing a
“twisting” of vectors under parallel transport toeasure the geometric curvature of a gauge
space. While Weyl first conceived of this as aldgauge” symmetry, in 1929 [4] he corrected
his original misconception into the modern viewadbcal “phase” symmetry. Notwithstanding,
the original misnomer “gauge” is still used to nakiveyl's theory, perhaps as a reminder to
posterity that even the most foundational physdilcabries are sometimes properly-conceived in
the abstract but misconceived in some detailsrteat! to be worked out over time.

In gravitational theory the Riemann curvature terR’_ may of course bdefinedas a

auy

measure of the degree to which the gravitationadlyariant derivatived., is non-commuting
when it operates on an arbitrary vectdy, that is, as R?, A s[aw,a;v] A . What Weyl

essentially found is that the antisymmetric, secoank, field strength tensor / bivectéi,,

which appears in electromagnetic theory may benddfas a measure of the extent to which the
gauge-covariant derivativ®, is not self-commuting when it operates on an eahyjt scalar

field ¢. That is,F,, may bedefinedanalogously toR’,,,, . as a type of curvature in “gauge
space,” by:

F,¢=i[D,.D,]¢=iD,(D,¢)-D,(D,4). (1.1)

It is instructive to review how the explicit relatiship between the field streng#),, and a
gauge / vector potentig,, then arises from this definition (1.1).

Gauge-covariant derivatives, like covariant demxeg in Riemannian geometry, take a
form that depends on the representation of thecolipey act upon. Taking the gauge field as
the defining (fundamental) representation, the fofrthe gauge-covariant derivatives in (1.1) is
D,=0,-iG,. Butin other situations to be reviewed, it isitamore complicated than this. (In

general, for compactness, we scale the interadi@mrge strengtly into the gauge field via
gG, -~ G,. Thisg can always be extracted back out when explicigded.) So, applying

D,=0,-iG, in (1.1), we may write:

iD, (D,¢)=i(9,-iG,)((3, -iG,)#)=id, (8,4 -G ,$)+G (0,4 -IG,8)

H - ) (1-2)
=i0,0,4+90,G,¢+G,0,4+G,0,0-iG,G ¢
as well as the reverse-signed, transposed-indexed:
-iD, (D,#)=-10,0,4-09,G,$-G,0,4 -G,0,4+iG,G,0. (1.3)

3
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Using (1.2) and (1.3) in (1.1) then yields:
F,¢=i[D,.D,]¢=D,(D,¢)-D,D,4)=i[0,0,]6+,6,-[C,G,]é. (1.4)

In flat spacetime whereR’,,, A =|0.,.0, | A =[0,.0,] A=0 and removing the arbitrary
operand fieldg , the above becomes the more familiar:

F. =0,6, _i[Gﬂ'GVJ :(a[# - inﬂ) G =0.G. (1.5)

Again, D, =0, -iG, above is the gauge-covariant derivative when it apon gauge field
objects G, in the fundamental representation, but in genewdien operating on other
representations, it is a bit more complicated asha! now see.

If the gauge fields commute, ie., i{G,G |=0, then (15) reduces to

F,=0,G,=0,G -9,G, and the gauge theory is known asadelian gauge theory. If the

MVl
gauge fields daot commute,[Gy,Gv]i 0, then (1.5) becomes the field strength fonamn-

abeliangauge theory, often also referred to as Yang-N#l|ggauge theory.

Using differential forms, we may write the abelfégld strength as:

F=5F,dx'0dX =20,G,dx 0 dk=0, ¢ ok dx= d. (1.6)

In general, the wedge produdk” O dX = dx dk— d% d‘k:[ dk dﬂ is antisymmetric under

adjacent index interchange, and the differentiainants are anticommutingx”dxX = - dx dX.
So, by inspection from (1.5) in view of (1.6), then-abelian field strength is:

F=4F,d<0dX =4(6,G -G, G]) D dk= dG [i G §= DC (1.7)

Here, compacted into differential forms, the gaageariant derivative is not separable from its
operand as wa®, =0, —iG,when operating or5, in (1.1) to (1.5), but rather involves the

commutator ofG with the operand which, in this case, just so leagpo also b&. That is, it
involves[G,G]. This in fact reveals the more-general form & gauge-covariant derivative as

we shall review next.

Now, focusing on non-abelian gauge theories, Mmduce a set of traceless Hermitian
generatorst' =t" which form a closed group under multiplication \[ié,tj]:if "tk where

f' are the group structure constants and are antiggrismnunder the transposition of any two
adjacent indexes. For any simple group SU(N),ithernal symmetry indexes of the adjoint

4



Jay R. Yablon

representationi, j k =1.N?-1. We may then defind~,, =t“F*,
these in (1.5) to expand:

and G, =t'G, and use

4

F, =t'F*, =0,G, -i[G,.G ]=t9,6", -i[t,v]6,d,=tq,C, + *tC,q,. 18
Factoring outt® this simplifies to the recognizable:
ka :a[kaV] + f”kG‘yG"V. (2.9)

Now, for illustration, let us momentarily considée situation where thg are one half
(%) times the three (3) Pauli spin matrix genesati SU(2),t' =1¢', so that f' simply

becomes the rank-3 Levi-Civita tensdr® _, &

In spacetime, if we were to write™® A'B' for any two vectorsA' and B' and were to regard
i,j,k as indexes for the space dimensions X, y, 2z then, for example,

EBAB = AB- K Blz(AxB)3 is the z-component of the cross produckB, and more

, Which again, is antisymmetric in all indexes.

generally, e AB' =(A XB)k. But of course, thé, j k indexes in (1.9) are not space indexes,

but areinternal symmetryndexes. So rather than using the cross-produsbal “x” which is
used for vectors in physical space, and becausgtiivevish to be able compactly represent the

fundamentally-antisymmetric character 6 in the form of a “cross-like product” in internal
symmetry space, we instead employ the wedge symiidl Although G‘ﬂ and G’, in (1.9)
both are gauge fieldS, they have different spacetime indexesandv, so we may still think of
them as two different vectors just liké and B’ above. So analogously &3 AB’ =(A ><B)k

in the three space dimensions of spacetime, weewfit'G' G/, :(G#DGV)k in internal

symmetry space. Then, we use this in (1.9) toewFit , =9,,G", +(Gﬂ 0 Gv)k. Because the

general form of this equation holds in SU(N) foclkeaf the indexek =1...N*-1, we may
suppress thk index throughout to write:

F, =0,G,+G,0G,. (1.10)

[p=V]

Then, compacting (1.10) to differential forms aglir6), we have:
F=4F,dx0dX =4(0,G,+ GOG) dk0 dk= d@ @ &( ¢ G) & D. (111)

Now, Jaffe and Witten point out at pages 1 and [Bpthat:

“If A denotes the U(1) gauge connection, locally a onefon space-time, then
the curvature or electromagnetic field tensor s tho-form F =dA [see (1.6)
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above], and Maxwell’'s equations in the absence hafrges and currents read
O=dF=d*F."

They then proceed to explain that in “non-abeliangg theory”:

“at the classical level one replaces the gaugepté(d) of electromagnetism by a
compact gauge group G. The definition of the ctunea arising from the
connection must be modified t& =dA+ AL A and Maxwell's equations are
replaced by the Yang—-Mills equatior3=d,F =d,* F, whered, is the gauge-
covariant extension of the exterior derivative.”

Equation (1.11) is preciselir =dA+ A A with the gauge field simply renamed frolto G,
and what Jaffe and Witten write above is a condérsglanation for what we have laid out
above in equations (1.1) through (1.11). When sethe generalized one-foigand two-form

F without any particular generator sét then the differential forms equation is writtes a
F =dG-i[G, G in (1.7). But when one does introduce a set ofigrgenerators' and the
antisymmetric structure contestart¥ - [, the differential forms equation & =dG+ GO G

in (1.11). To display the particular=1..N? -1 field components for a compact simple gauge
group SU(N), this equation i§' =dG +(GOG). SoF =dG- i[G,G] (commutator form)
and F =dG+ G G (wedge form) are just alternative ways of saying same thing. But a
benefit of the wedge form is that we may wrffe=(d + GO) G= DG so as to define a gauge-
covariant derivativeD =(d +GU0) (=d,) in a form which is fully-separable from its opedan

and which is generally applicable amy and all operands We will find it useful in general to
develop both these forms.

Indeed, the reason we have gone through the eredfi (1.8) through (1.11), is to
explore the question of how one generally perfordys= D, independently of its operand,

“where d, is the gauge-covariant extension of the exter@ivdtive.” That is, we want to be

able to generalize the taking of these derivatiaesl especially, to ascertain the correct way to
derive the equationsJ =d,* F=D' F and P=d,F = DF in the presence dhe electric and

magnetic three-form charge densitiels and P .

Specifically, as already stated, if we write eqoratf1.11) asF =(d + GO) G= DG with

D=(d+G0), we find thatD =(d+G0) is in fact the generalized definition of the gauge-

covariant derivative which tells us how to takeh@grank gauge derivatives, independent of the
representation of the operand Thus, the Maxwell equations for Yang-Mills thgorn

differential forms, where¢' and f™ are specified, with indexsuppressed, for SU(N), where we
use the duality operator *, and with=dG+ GO G, are merely thé =1..N? - 1 equations:
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*J=D*F=D" DG=(d+GOf F=d F+GH F=%d (dG G ¢+ & ( d& G |
=d*dG+ ¢ (GO Q+ GF d& GY ( G ¢

P=DF=DDG=(d+GL) F=dF+ GO F= d dG & G+ G( d& G 5
=ddG+d(GO G+ GJ d& G1 G G

(1.12)

The duality operator * was first developed by Reinj7] later elaborated by Wheeler [8], and it
makes integral use of the Levi-Civita tensor ag it in [9] at pages 87-89.

In this paper, we shall develop the classical Yhtils magnetic monopole density
and a related “faux” magnetic charge densRy in detail, and shall show how the related
monopole densityP’, when analyzed using Gauss’ / Stokes’ theoremeagpto confine its
gauge fields. Of course, baryons, which includeglotons and neutrons at the heart of nuclear
physics, also confine their gauge fields. So thises the question which we thereafter explore
in detail, whether the magnetic monopoles of YanigsMheory are in some fashion related to
baryons.

2. Classical Field Equations for the Yang-Mills Magetic Monopole

To further develop the monopole densiRy first, akin to the derivation (1.1) through
(1.5), we calculate the commutator:

[D,.F,, |#=D,(F,¢)-F.D,¢=(0,-iG,)(F.8)-F, (9, -G )P

(2.1)
_aUF/.(V¢+ )74 0'¢ IGUF,W¢ v U¢+|va 0’¢ aa ,uv¢ II:GLT’ /.1v:|

We canuse D, =D, =d,-iG, in the above, precisely because this is a comntahd so
the gauge field will be commuted with the operafg, as in F=dG-i[G,G] aka.
F =dG+ GOG. Removingg we see that (2.1) contains the useful identity:

b,.F, ]=08,F, -i[G,.F, |=D,F,, (2.2)

with the commutator included in the gauge-covaridativative. Then, combining (2.2) with
(1.1) in the formF,, =i[D,,,D, |first yields:

D,F, =[D,.F, ]=i[D,,[D,.D,]] (2.3)

containing an anticommuting succession of gaugextant derivatives. This in turn means that
the index-cyclical combination:

P, = D,F, +D,F, +D,F, =i([D,[D,.D,]]+[D,[D,.D,]]+[D, [D, D,]])=0. (2.

ouv U vo
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by the Jacobian identitya,[b,c| |+ b[c §]+[ [ a b]=0. So we see that theang-Mills

magnetic monopole densities vanish, just like tladsebelian gauge theoryConsequently, we
can appen® =0 from (2.4) to (1.12), and so writeP = DF = DDG =0, which is the non-
abelian analog to the abeliaidG=0.

But there is another zero in the monopBlef (1.12), and that is the zero which comes
from this very same abeliaddG=0. This is rooted in the geometric relationsidd =0 of
exterior calculus in spacetime: “the exterior dative of an exterior derivative is zero.” In
general in this paper, we shall highlight the zefodd =0 to distinguish it from the (not
highlighted) zero of the Jacobian identiBDG =0 which is established by the combination of
(2.12) and (2.4). The highlighted zerodid =0 is a “subset” identity contained within (1.12),
which we may now rewrite as:

0=P=DF=DDG=ddG+ d GJ G+ Gl dG G @ | 2.5)
=0+d(GUG)+ GO dG+ GI GJ C |

Of course, in an abelian gauge theory such as Mi#isveéectrodynamics wherEGﬂ, GV] =0 so
that F, =9,,G, in (1.5) thus F =dG, the Magnetic monopole densities are themselves

(1]
specified by P, .,= dF = ddG=0. This means that the Yang-Mills monopole densit{2.5),

although it too is equal to zero, contains a nunaberon-zero terms embedded within, as well as
the termddG=0 which we associate with the vanishing monopoleslettrodynamics. This
will be very important to keep in mind as we deyekhis monopole, because this “abelian
subset” embedding oldG=0 within (2.5) will be directly responsible faonfiningthe gauge
fields within the Yang-Mills monopole, and will ldaus to consider whether there is some
connection between Yang-Mills monopoles and baryons

Next let us ascertain the commutator form for ti@nopole (2.5). Via the exact same
type of calculation we used to turn (1.5) a.k.a7)lnto (1.11), one may demonstrate that

P=DF=dF-i[G,F] is equivalent toP=DF =(d+GL) F. So, combining the former,
P=DF=dF-i[G,F], with F =DG=dG-i[G G from (1.7) aka.F =DG=(d+G0) G
from (1.11) , we may translate (2.5) into the cortatar expression:
P=DF=DDG=dF-i[G F|=d(dG- {Gd)- | GdG | G §]
=ddG-id[G §- { G d§-[ G G §¢] . (2.6)
= 0-id[G,G]-i[G,dg-[ G[G d]=0

Let us now expand (2.6) above into tensor compisnemm-by-term, and then do some
additional reductions. Fd*and -id[G, G| we have:
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=Lip,df 0d¥0dk= B, dk dk ¢, 2.7)
-id[G,6]=-4i(9,[G,.G |+9,[G.G]+3,[ G, G]) dk O kD dx
=-4i0,[G,.G, |d¢ Ddx' D dx=-d,( G G) dk0 d«O dx | 2.8)
=-i(0,6,G,+G,0,G ) dX 0 d¢ 0 dk=(-4a, G G+ iGd, §) ok dxd &
=-1dGG+iGdG

The sign reversal in the third line of (2.8) regethe identityd[G, G] = dGG- GdC, in contrast

to scalar product rule (a[b) = dab+ dldt. For-i [G,dG] in (2.6) we further have:

-i[6,d6]=-14i([G,.0,,G, |*[ G, G, ]+[ G0, G |) d% O oD o
=-%i[G, a[ﬂev]}dfmdmdkz—[g,aﬂ G| dxO kO dx
=-i(G,0,G, -0,(G,G,)) d¥ 0 d¥ O d% 2.9)
=-i(G,0,G,-G,0,G,-9,GG) df 0 dx O d

=(-2i6,0,G, +i0,G,G, ) d¥ Ddx* O dx

=-2iGdG+idGG

in which theGdG doubles by a similar sign reversal in the fiftheli Finally, by the Jacobian
identity [ a,[b,d |+[ b[ 6 §]+[ ¢[ a b]=0, for [G,[G,G]] in (2.6), we find (cf. (2.4)) that:

-leled]=-3([G.G]]+[ Gl G ¢|]+[ ¢[ 6. §]]) &0 &0 bxC 210)

In (2.6), we then use-id[G,G]=-idGG+ iGdC and -i[G,dG]=-2iGdG+ idGG and
—[G,[G,Gﬂzo from (2.8) to (2.10) in (2.6) to restructure andnsolidate the monopole

density as much as possible while retaining an &A6sokes integrabld[G, G| term, into:

P=0-id[G,G]-i[G,dj
:o—idGG+ iIGdG-2iGdG+ idGG. (2.11)
=0-iGdG
=-0+id[G, G| -idGG=0

This in turn reveals the additional identitig$G, G| = dGG and GdG=0.
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Now, of central interest in the discussion to falJdhe monopole density in the final line
above contains a Gauss/Stokes-integrable @, G| (and the0=ddG ) together with the

non-integrable terndGG. Applying Gauss’ / Stokes Theore_fﬁdx :<j5 X for any differential

form X to the final line above, we may ascertain thesitas surface flux associated with this
non-abelian magnetic monopole, namely:

f[[P=[[[(-ddG+id] G - idGcQ =[[[(-0+ i] G ¢~ idG}

=-JpdG+ifp[G, G- i[[[ dGG=-0+ ifp[ G d- {[[ dGG=0 @12
By then writing (2.12) using the not-highlighte@Dthe Jacobian identity (2.4) as:
~fpdG+ifp[G, ¢ = i[[] dGG 013

-0+iff[G.G] =i[[[daG

we clearly see the relationship between what idainad within the three-dimensional volume
”j and what net flows through the closed two-dimemslimmrface# enclosing that volume.

Now, we wish to interpret what is being taught By1@).

3. Confinement of Gauge fields within, and the Compsite Nature of,
Yang-Mills Magnetic Monopoles

We start with the termﬁ) dG =0 which is embedded in (2.13). In electrodynamics,
Gauss’ law for magnetism and Faraday’s law are botitained within:

JifP=[]jaF = [[] ddG={p F=qp P~ dg dx=¢p dG-0. 3.

At rest, this tells us that while magnetic fieldsyrflow across some surfaces, there is never a
net flux of a magnetic field through anglosed two dimensional surface. In the form
P =dF = ddG=0, this simply says there are no observed magnbticges. So how might we

interpret the presence qi]}dG =0 asone of the termamong a number afon-vanishingerms
in equations (2.12) and (2.13) for the Yang-Millagnetic monopoles?

To find out, let us return to theon-abelian, Yang-Milldield strength (1.5), namely
F,=90,G, —i[Gy,GV], and rewrite this using the differential forms atjon:

fpF=%fpr. o Ddx =fo,G d¥ O dk-% [ G, G| dO dx

={pdc-ifp[c =0~ iff[G G

(3.2)

10
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We may then use (3.2) to rewrite (2.13) with a sigyersal as:

fpF =-ifp[c,6]=-i[[[dcG
=_im’%(aa[gﬂ,q]+aﬂ[q’,GJ]+0V[GU, q,}) df O d¥ O d. (3.3)
=-i[[[4(0,,6,G, +9,G,G, +3,G, G) df 0 dk O d&z0

o=~V

So, while (3.1) tells us that there is no net mégnield flux over of any closed surface in
abelian electrodynamics, (3.3) tells us that in non-AbegliX¥ang-Mills gauge theory, there is

indeed anon-vanishingnet flux across closed surfac&ﬁ% F #0, of whatever the Yang-Mills
analog is to an ordinary abelian magnetic field

Now, we have a puzzle: any time we see a tﬁrﬁ , we know that we are talking about

a magnetic monopole, and that whatever is contawigdn the associated volume integral is a
magnetic charge. Indeed, (3.3) may be thoughsdfe very definition of a magnetic charge
which in (3.3) isnot zero. At the same time, we found in (2.4) a.kia.6) that
P=DF =DDG=0, which is to say, that the magnetic charge densitgero, just as it is in

electrodynamics. So iP=DF =DDG=0 but <ﬂ>F #0, how do we reconcile the former

equation which says the magnetic charge densigris with the latter equation which says there
iS a non-zero magnetic charge?

One way to think this through, is take the Yangi®iklectric charge field equation
(2.12),*J = D* F, revert this (merely for pedagogic simplicity) ite abelian form*J =d* F
which contains Gauss’ law for electricity, and thegrply Gauss’ / Stokes’ Theorem to obtain

fpF =3 (:md* F). Just asaﬂ')F in the rest frame represents a net flux of magneti

field through a closed surfacqf‘tf)*F in the rest frame represents a net flux of eledigld
through a closed surface. And th#*F then becomes the very definition of thkctric
charge. But here, electric charge density is @efiby*J inside IH*J , While in (3.3) magnetic

charge density is defined byidGG inside —ijﬂdGG. That is, we have a magnetic charge
density -idGG which we need to think about in comparison to lastéc charge densityJ .

The answer to this puzzle is that the magnetic gehaensity in (3.3) isiot the P of
P=DF=DDG=0, it is the P'=-idGG which, via (2.11) can be extended to
P'=-id[G, G| =-idGG. The magnetic charge as defined by the encloaumace#F is a
three-form just likerJ andP, but it is not arelementarythree-form source. Rather, it is a three-
form constructed from-idGG which includes some dynamical behavior of the gafiglds
inside the volume integral. That is, the magnehiargeP’' = —id[G, G] =-idGG is acomposite
three-formbuilt out of gauge fields, rather than an elemmsntiaree form like the abelian electric
charge sourcé&J. Indeed, we may take this a step further:

11
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In electrodynamics, the three-forhd which in tensor language is related to the electri
source current density vectdr’ by *J,, = (—g)’5£ J9, is atrue electric sourcavhich then

aouv
gives rise to gauge fields in abelian gauge thetay*J = d* F=d dG, and per (1.12), via
*J =D* F=D* DG in Yang-Mills gauge theory. On the other han& Bi=-idGG in (3.3),

written in tensor form a®, , = -i (6[06#] G +9,G,G +q,G C‘z) and converted over to a one
foom via the related general identites *P'" =4(-g)" ™ P,  and

-5 . . .
*0"G =1(-g) " £™0,,G,, will result in afaux magnetic source

P = (-0) e, = (-0 e 3 0,6,6 42,6 G+, G G)
=~(-0) *3i(16773,6,6 +1670, 6,6, +167°9, G, G) o
=-3i(d"6"6, ++3°G" G, + "G G

=-i*0lGIG,

which is constructed solely out of gauge fiel& which themselves are sourced by
*J=D* F=D* DG. So, there is only orglementarysourcel, not two sourced andP. From
this one sourcd, gauge field<G are emitted from interaction vertices. From thgaage fields
G, a faux magnetic sourc® =-idGG is assembled. And finally, from this faux magoeti

source,cﬁﬁ F #0 flows across closed surfaces as in (3.3). Thetr@desourceJ“, whether in

abelian or non-abelian gauge theory, has its owlepandent existence, and it is the source of
any and all gauge fields. But the faux magnetiore® charge in (3.3) haso independent
existenceapart from the gauge fieldd. Rather, it is built out of the gauge fieldSo the Yang-
Mills monopoles are composite, not elementary, @bjeAnd, by the way, so too are baryons.

Having resolved the puzzle of how to recondides DF = DDG =0 with <ﬁ> F#£0, we

next pose the following question: what happenthéototal fluxc.fjﬁ F in (3.2) under the local

gauge-like transformatioff®’ — F*'=F* —-9YG*? In differential forms, this transformation
is F - F'=F -dG, which means, precisely becat@dG =0, that:

fpF - fpF =¢p(F-de)=4p F, (3.5)

So, the net surface flux in the monopole equat®B)(is invariant under the transformation
F* . F*'=F# -9YG*, which means that the gauge fieldnist observablenith respect to
net flux across closed surfaces of the monopolee dbelian expressiorﬁ) dG =0, expanded to

show the Riemann tensor, may be WrittenﬁsF =<ﬁ>dGz” R,., G dX dkX dk=0, and

explicitly shows how individual gauge fields, couple with spacetime geometry as represented

vou
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by R',,,,. This represents absenceof monopoles in electrodynamics, and yieldssjx@metry
principle (3.5) for the behavior of magnetic monopoles imy-Mills theory generally.

But if the non-zero flux in the Yang-Mills monogoéquation (3.3) is invariant under the

gauge-like transformatioff*’ - F*'=F* —-9“G* which means that the gauge fiel@¢ are

not net observables over a closed monopole surfasewould seem to suggest that the Yang-
Mills monopole inherently confine their gauge feldThis is another hint that the monopole
equation (3.3) could be the classical field equatar a baryon, in integral form.

The final point is that because tla@ix magnetic sourcé’' = —-idGG is constructed out of
gauge fields, and because the gauge fields ararmdourced by*J = D* F =D* DG, and
because electric sources may be represented irorvémtm in terms of Dirac fermion

wavefunctionsy via J¥ =gy*“y , it should be possible in principle, and wouldtaey be
desirable in practice, to rewrite tli@ux magnetic source-idGG in terms of thetrue source
currentsJ# from which they arise, and then to rewrite thé=gy*y in terms of their fermion

wavefunctionsy . The upshot of all this, is that Whil# F in (3.3) is presently expressed in
terms of gauge fields a# F (G) once we obtain the gauge fieldﬁ(\]) in terms of sources
and the sources (1//) in terms of fermions, we will end up Wikﬂ) F (G(J(l/l))) Then, if we

happen to find more than one fermion (maybe eveeetlfiermions) within the enclose# F

“system” in its “ground” state, we would need tgbpthe Exclusion Principle of Fermi-Dirac-
Pauli statistics to maintain thgg in distinct quantum eigenstates, which would gige the

opportunity, for example, to introduce a color degof freedom to do so and thus make a
connection to SU(3)Chromodynamics, Withﬂ) F (G(J(t/lR,t/JG,wB))). So this means that the

Yang-Mills monopoles are not only composite objebtg are composite objects which contain
fermions and gauge fields, and that these fermiiisneed to obey some form of quantum
exclusion which may include SU@E) And, by the way, all of the same the same is ol
baryons, and as to fermion exclusion, quarks.

It is for these reasons, that it may be fruittukentertain the prospect that (3.3) is not only
the classical field equation for a Yang-Mills maggnenonopole, but may be synonymous with
the classical field equation for a baryon. Alltbé development in sections 5 through 10 serves
the singular purpose of proving that this is tr@ait first, we need to discuss whether a classical
analysis along the lines of (3.3) can really teash anything useful about baryons and
confinement.

4. Can a Classical Field Equation Really Teach usmything Useful about
Baryons and Confinement?

Given that (3.3) is a classical field equation, mvast pose the question whether such a

classical equation can really have anything ofregeto say about baryons and confinement,
which have many features that arise only out ointiwa field theory. For example, it might be
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observed that a classical analysis which seeksderstand baryons and confinement in no way
takes account of quantum field theory with operatdued fields. This, it might be argued, is
despite the fact that there are many reasons tevieetonfinement and the existence of a mass
gap are related to the running of the coupling taoriswhich is an inherently quantum effect.

Certainly, (3.3) above is a completely classicaldfiequation, not yet taking into account
any aspects (or the need to prove existence) ajnatnvial relativistic quantum Yang—Mills
theory on®* [6]. And, of course, there are many reasons liev®that confinement is related to
the running of the strong coupling constant, whtan inherently quantum effect, and which
manifests in asymptotic freedom at “ultraviolet’eegy and infrared slavery at low energy [10].
However, just like electrodynamics, Yang-Mills gautpeory has a classical formulation and (is
expected once quantum Yang-Mills existence is prp¥e have) a quantum field formulation.
This means that (3.3) may reveal inherently-confimattributes for the magnetic monopoles of
Yang-Mills gauge theory which appear at the cladslevel and which are rooted in the
relationshipdd =0 of Riemannian spacetime exterior geometry, as aglhherently-composite

attributes expressed b@g F (G(J(l/l))) That opens up the question how these sameud#sb
translate through to quantum Yang-Mills theory.

Specifically, if in fact (3.3) for #F is an equation for baryon-like gauge field

confinement properties of Yang-Mills magnetic mool@s based upon their abelian-subset
behaviors rooted in the classical equatiddG=0 and its integral formﬁ) dG=0 and the

consequent symmetry (3.5), and if the composite faagnetic chargd® = -idGG in (3.3) in
some way represents a baryon charge, then thdacalbbsryons that would be represented by
(3.3) would not suddenly become “not baryons” iramum field theory. Rather, there would
two sets of behaviorthat need to be studied: a) how these monopoleavieein a classical
formulation, which includes (3.3) and (3.5) aboaed b) how these monopoles additionally
behave in quantum field theory. So if we can destrate that the classical behaviors appear to
be confining and appear to involve a non-elementaoynposite charge that includes some
amalgam of fermions and gauge fields, one shoupe@xthat this will “bleed” through to yield
guantum amplitudes and running couplings and ceyonmetries that buttress, not defy, these
classical behaviors, just as abelian magnetic molespdo not suddenly appear and ordinary
magnetic fields do not suddenly net flow througbseld surfaces, once one goes from classical
to quantum electrodynamics.

Further, one might take the perspective that dhesefor confinement and baryon
compositeness is the classical field equation (8B)a Yang-Mills monopole which has the
symmetry (3.5), and that one of th#ectsof this is that in a quantum field treatment oésa
baryon monopoles, the strong coupling will weaken dltraviolet and strengthen for infrared
probes. And, it can be argued that this is a nmateral approach than simply trying to figure
out how to “glue” together disparate quarks intoybas without knowing to begin with what
sorts of covariant objects baryons actually arespacetime Indeed, if the hints of baryons and
confinement that arise in (3.3) and (3.5) are abyrihen we would need to start thinking of
baryons as third-rank antisymmetric tensors anated| three-forms in spacetime governed by
the classical equation (3.3) with the symmetry }3&nd then see how that connects to
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everything else we know about baryons. The “lgjlae together the quarks” approach,
notwithstanding many opportunities to do so, has flar failed to explain why QCD “must have
‘quark confinement, that is, even though the thasrgescribed in terms of elementary fields,
such as the quark fields, that transform non-tiliviander SU(3), the physical particle states—
such as the proton, neutron, and pion—are SU(3riamt,” see [6] at page 3. This SU(3)-
invariance ofphysical particle statess a symmetry principleand while not every classical
symmetry carries through to quantum field theooy, éxample, the chiral anomaly (e.g., [11],
section IV.7), there is no apparenpriori reason to believe that whatever classical symesgetri
are found for these monopoles (such as (3.5)) evilly manifest in the classical but not the
guantum field theory. At the very least, the gioesfor study becomes: do these symmetries
carry over from classical to quantum field theaagd if not, why not, and in what manner are
they altered? Further, if the baryon charge reafly P'=-idGG, then as we turn

<ﬁ>F (G) - <ﬂ> F(G(J(l/l))), so too would we turrP'(G) - F’( G( J(l/l))) This may reveal

that the inherently-composite nature of titis= —idGG charge is in fact the long-sought “glue”
to aggregate quarks and gluons together into desth@rge systepab initio.

Additionally, approaching confinement starting franclassical treatment of baryons has
validating precedent in the MIT Bag Model reviewade.g., [12], section 18. Irrespective of
the specifics of any particular bag-type model ohfmement, the MIT Bag Model very
correctly makes one very important poiicicus carefully on what flows and does not flonoasr
any closed two-dimensional surfacAnd it does so using thdassicalformulation of Gauss’ /
Stokes’ theorem. This is why the integral formMedixwell’'s equations in classical field theory
may well be a very sensible starting point studyiogfinement, because from the Bag Model
viewpoint, confinement is all about what passes dods not pass through closed surfaces
containing the extended field configuration withi@ baryon volume.

Further, by talking about the “classical level” ‘wion-abelian gauge theory” right on
page 1 of [6], Jaffe and Witten themselves recagitimt Yang-Mills theoryhas a classical
level and that a reasonable starting point for devatppjuantum Yang-Mills theory, is to first
fully and properly develop and understand Yang-$/gauge theory at this classical level.

Finally, it is certainly unrealistic to expect thatclassical-only treatment of baryons
based on Yang-Mills magnetic monopoles will explalhof the observed phenomenology of
baryons. It cannot and will not. Only a propeaquum field treatment may be expected to do
so. Yet, at the same time, there are some impoptaysics insights to be gained even from a
classical treatment of the Yang-Mills monopole doum(3.3). And we know, if we can fully

develop a classical theory on its own terms, armah thbtain its Lagrangian densilsg/(qo) and
action S(qo) in terms of its fieldsp, that we can then convert over to a quantum fiedsbry via
the path integratiorz :I Dgoexpi_[ﬁd“x:_[ Dy expiS. While carrying out the path integration

of a non-linear theory such as Yang-Mills gaugeotitfgand especially gravitational theory) is
still an exceptionally challenging problem, thaedmot mean one ought not make the effort to
find the correct road for doing so, which roadeaseaaled in section 8 and used to carry out an
analytically-exact path integration in section 1But this all this begins by finding and fleshing
out, the right classical theory to quantize.
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So what is most important is for researchers inigar baryon and nuclear theory to be
aware of the possibility of modelling baryons asnya@ills magnetic monopoles to gain
possible insight into confinement and related Q@Dimetries, so that this possible connection
can be further developed, vetted, and empiricalbted by anyone who finds it interesting or
promising. We now explore the next several stafghis development.

5. Classical Field Equations for the Yang-Mills Eletric Charge

Now let us develop the electric charge densityin (1.12). Once again, via the same
type of calculation used to go from (1.5) a.k.a7 1o (1.11), which was also used to go from

(2.5) to (2.6), together withk = DG = dG- i[ G G] , we write (1.12) forJ in commutator form:

*J=D*F=D*DG=d¢ F-i[¢ F]=d (d&-[Gd)- |6 (dG['GC];)]
=d*dG-i[G d-{& dd-[ & [ G ¢]

This should be contrasted with the analog”Raon the middle line of (2.6). Above, however, we
do not have all the zeroes that were in (2.6), hgniEG, P=0, and| G,[G, G| |=0.

(5.1)

As in (2.7) to (2.10), we expand the differenf@ims of each term. We first have:

*J=24x 3 dX OdX O dk= J, dk dx d, (5.2)

d*dG=4(0,*0,,G, +9,* 0, G, +8,* 8,,G ) dR O dk O dk

$0,%0,,6,0¢ Dd 0 dx =320, ((- 9°£,0,0" &) oD o0 ex . (5.3)

[;1 V]

1(-0)° £,,0,0°GAdX D O dk=1(- §°¢,,,0,0° & dkO dkd ¢

apuv™ ;o

1
l\)lpa

Above, we have used the duality relationshith,G, =4(-9)"€,,,0""G”". We have also
allowed for a curved spacetime by using the cowargerivatives, as well as the product rule

which simplifies tod., ((—g)'sa;[“Gﬁ] ) =(-0)°0,,0"" & because of the metricity,,, =0. In
flat spacetimeg., - 9, and(—g-S):l.

Next, in contrast to (2.8), using[Gﬂ, GJ:%(—g) WV[G’ G‘?] and of course

... =0, with the analogous sign reversal at the sixtt s in (2.8), we have:
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~id*[G G]=-%i0,*[G, G |d¥ O dX O dk
=3 41(-0) 6,9, [G°.G" [ DX O dk=-4 (- 9°¢

aﬂ,uv 0

w00 ( G 6) dkO dxd dx

== 2i(-9)° £, (0,G°G?) ¥ D ¥ O dk—% (- 9° &, ( GO, &) kO dxO dx

==32i(-9)° £, (0,GG” ) dx¥ Dd¥ O dk - 44 (- 9”&, ( &0, @) dkO dkO &
i(0,%G,G,)d¥ Dd¥ O d%-% (* G2, G) dkO dxO dx

[p=v]

i(0,%G,G,)d¢ Dd¥ 0 dk+4 {* Gd, G) dkO D dx

[tV

=—|(a. *G,G,)d¥ Od¥ O dk+ (* Go,, G) dkO dkO dx
i(0,%G,G, +9,* G,G, +0,* G,G ) df 0 dkO dk

(1=

+4i(*G,0,G,+G,0,G, + G,0,G ) df O d4 O d&

lo™u™=V]

l|(*a G,G, +9,,G,G, +0,,G, G) df 0 dk O d&

lo=ul
+1i(G,*9,,G,+G,*9,,G, + G* 9, G, ) df 0 dk O d&

=(-i*0,,G,G, +iG,*9,,G ) dX 0 d¥ O dk
=-i*dGG+iG* dG

I
w||_\

,(5.4)

Note that within the differential forms, and giveR,, :%(—g) ¥ andg,,., =0, we are
able to “transfer” the duality operation, i.e.,tthe are able to s&t,*G G, -*9,,G; G, etc.

and *G,0,,G, - G,*9,,G,, etc. This revealsd*[G G]=* dGG- G dC as a duality
product-rule identity, contrast[G, G| = dGG- GdC from (2.8).

Similarly, in contrast to (2.9), using, G, =

as previously in the sixth line, and transferring,d.,G, - G,* 0,,G; in the eighth line as

[

was done in (5.4) above without repeating the egioarnto third rank tensor form, we obtain:

(- 9) £,5,0™ G?, with a sign reversal
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-i[G,*dG] =-4i([G,*0,,G, |+[ G.* 9, G, |*+[ G* 9, G |) dk D kO dx

=—%i[G 0,6, [d¢ OdX O dk=-42 (- 9° €., [ G0 @] dkO dkO o
(

0)° £, [ G,,0°G” | X D d¥ O ik
-9)” £up (Gga;"Gﬂ -9 (G’ Gg)) dX O dX O dk
)'e

5

NI
A
@ @

'\_Jll—‘

|( Ean (G,0°G” - GP0° G, -0° & G) d€ 0 dk D dk . (55)
1(-9)° £, (G,01°G" + 307 G, -9'" G G) df O dkO dx
-1i(G,*9,,G,+G,0,G *9,,G, G) df O dk DO d&

=- 2,'(26 *9,,G, —*0,, ,,]Gv)dfmdx'm d

=(-2iG, *3,,G, +i*0,G,G,) d¥ O dx O dk

= —2iG *dG+ i* dGG

|
N
N

I\J||_\

Finally, in contrast to (2.10), usiﬂ@[Gﬂ, G J:%(—g) -~ [ cif G‘f]

4

(6 d]=-3([6*[G 6]]*[G*[ G Gl]+[ *[ & §]]) &0 O o
=-1[G,.*[G, G ||d¢ Da¥ O dk=-33(- §°c,, [ 6] & 6&]] 60 @O tx .(5.6)

212!

=-33(-9)" (£ [ G [ 6. & |]# £ G G B+, [G,.[67, & ]]) X D a¥ D ckz 0

Unlike (2.10), this isnot zero via the Jacobian identifya,[b,c]|+[ b[ ¢ ]+ ¢ a b]=
because aIthougﬁG” GﬂJ is common to each of the three terms in the botiom of (5.6),

G #2¢ ., G #¢&

EapnCo # €45,0C, # €,5,G are three distinct tensors.

So now we use-id *[G, G] = -i* dGG+ iG& dC and -i[G,*dG| = 2iG* dG+ I dGC
found in (5.4) and (5.5), in (5.1). Analogously(#11) we obtain:

*J=d* dG-id [¢ - [ & d§-[ &[G §]
=d*dG- ¥ dGG+ iG dG2 iG dG-*i dGG[ . 6[,G §
=d*dG-iG* dG-[ &[G §]
=d*dG+id*[G G-t dGG-[ G [ G §]
=4+ F-i[6+a¢]-[ 6 [ q]
=d* F-2iG* dG+ t dGG-[ & [ & §]

(5.7)
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This corresponds to (2.11), however, here*a¥0 in contrast toP=0; b) d*dG#0 in
contrast to ddG=0; c) |G,*[G G]|#0 in contrast to| G,[G,G]|=0, and d) the terms

id[G,G] - id*[G G and -idGG - -i*dGG. Based on the top line, we also use
*F =% (dG-i[G G]) which is the differential form forF,, =* (8,,G, ~i[ G, G, ] in the final

two lines.

Now we wish to apply Gauss’ / Stokes’ theorem 3/’), as we earlier did to (2.11).
Using the last two lines of (5.7) with the integeaterm d* F separated on the left, we have:

fe=oe
=[[[(9+i[cac]+[ =[G d]) : (5.8)

=[[[(x3-* deG+2ic de+[ & [ & §])

The Abelian portion of this equatioqu}*F :III* J which we used for pedagogic simplicity in

the analysis following (3.3), is clearly includedhi@n the gauge fields are set to zero. Putting the
Yang-Mills electric charge equation (5.8) togetheath the magnetic charge equation (3.3), we
find that Maxwell’s Yang-Mills equations in intedgfarm are:

fbF =-i[[[race+ ([} 3+[[[f ic de+[ @ [ §])
fpF =-i[[[dcc=-iff[G,q]

In this form, the parallels and differences are ifiestly clear. @*F is the net electric

: (5.9)

field flux and <ﬁ> F the net magnetic field flux over a closed surfaéd. is the electric source
charge density and it is non-vanishing, while tregmetic source densit =0 vanishes by the
Jacobian (2.4). Similarly, whil&* dG#0 and [G,*[Ci G]] #0 in the electric field equation,
their duality counterpart$sdG=0 and [G,[G, G]]: 0 are also part of the magnetic charge

equation, but vanish by the respective identiteestl in (2.11) and (2.10). We see how the only
true, elementary source faJ and that there are then a number of faux sour¢eshwnclude

P' = -idGG for the net magnetic field qu@ F, and*J'=-i* dGG+2 iG* dG+| & [ G §]
which is a faux electric source which contributesthe net electric field flux beyond that
contributed by “true” electric sourdein the abelian portioxﬁ*F = ”_[*J of (5.9).

Because the only elementary, real, not-faux sourdbe Yang-Mills equations (5.9) is
the electric sourcéJ, it will be desirable to solve the electric chadgnsity equation (5.7) for
the gauge fields in terms of*J. Particularly, as laid out at the end of sectorour eventual

goal is to findc'fjﬁ F (G(J(z/l))) . So a key step along the way is to obtain theygdieldsG(J)
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in terms of sources. Equation (5.7) has a numbatternative ways to express (G) , but the
most compact way is on the third line. So we exp@iose differential forms to obtain:

*J=4* ., d¥ O0d¥ O dk

=d*dG-iG dG-[ &' [ G §]

=4(0,*0,G, +9,* §,G, +9,* §,G; ) dX D dx O d% . (5.10)
_%i(Ga*a[,qu] +G/,1* a[VGU] + Q/* a[gq]) d)g U de dls(

-3([e,*[e. q]]* (66 6]+ [ 6*[ ¢ G]]) o da &

Stripping off the forms, we obtain the tensor edrat
*3, =(0,%0,G, +0,% 9,G, +0,* 4, G, )
-i(G,*9,,6,+G,* 9,6, +G* 4,G) . (5.11)

_([Gw*[gﬂ, q]}[eﬂ,*[(‘a, %]]{ G*| G (Eﬂ)

Then, we apply the duality operations,,, =(=9)" €40 3%, *0,,G,; =4(-9)° £,5,0° G and

aouv [u=v] — 2 aBuv
*[G, G |=%(-0) &, [ G @], and the metricityg,,, =0 as discussed after (5.3), to
obtain (a good summary of the use of duality istamed in [9], pages 87-89):

=4(-9)"(£,500,0C” +£,,,,0,0°C" +¢,,,0,d° G )
i(-g)° (g,ﬂnga[”Gﬂ] +6,5,,G,0°C +¢,,, GI G )

(-0)° (eun [ G [, & | n[ G @ B+ e[ G G, €]))

(5.12)

N

N

Factoring out(—g)'5 and multiplying through by**" next yields:
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£,,,07 ==315°,17 =-6J

=1 (;Z:saﬁwaga[”c;ﬁ] +e e 1,0, 0°Gh +e e o 0,07GH )
—4i (ekgﬂ“eaﬁWGga[”Gﬁ] +& M, ,C0 G+, GI G )
—%(ekgﬂ”eaﬁw [Gg [ G, Gﬁﬂ + N E e [ GG, Gﬁﬂ + M E [GV [ G, Gﬁﬂ) . (5.13)
=~(0",,0,0°G” +3%,,0,0°G” +0* 0,8 G )
+i(0%,,G,0°G” +5%,,G,d°G +5%,,Gd" &)

+(o7,4[6, [0, & ]]+0%,[q [ & ]+a",[ 6] ¢, ¢]))
Using 0, =0°,0° ;-9 ;0°,, and the like, withk - v index renaming, this reduces to:
-3 =0,0"6"-i6,d°6¢" - G [ &, &]|. (5.14)

Contrasting to the originalJ = d* dG- iG dG—[ & [ G Cﬂ , we see that aside from the sign

reversal, the * between two objects essentiallyltesn an index contraction between those two
objects when they are written as tensors. If vemtbxpand all the commutators and reorganize
terms in a familiar way, we obtain:

-3"=9,0"G"-iG,8°6" - G, [ &, ¢ ]
=(0,0° -iG,0° -G,G°) &' -(8°0" - iG°0" -2 G + G G) G
=97 (0,0"-iG,0"-G,G') G, (970" - iG0" -2 G+ G G) G
=(¢”D,D" -D’D’)G,

(5.15)

with a configuration space operatgf’ D, D" — D’ D" where in the final line we have defined:
D?D" =090" -iG?0" -2G’G'+ G’ G’ (5.16)
which, upon contraction, does yield:

D,D'=9,0" -iG.0" -G,G' . (5.17)

By way of contrast, in Abelian gauge theory” = ( 970.0" —a“aV) G,. So (5.15) ford" (G,),
is now in a familiar form which we can use to agmto taking the inverséBJ(J“). This is the

first step toward being able to obtarj%ﬁ» F (G(J ((//))) .
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Finally, let us find the continuity equation fasreservation of the electric source density
and current, based on (5.15). Equation (5.15) aldkarly be recognized as another way to

express—-J” = D, F? which may be similarly derived frohd = D* F in (1.12). Particularly,
we wish to show thatD,J" = D,D,F? =0, by identity. Similarly to (2.1), we may take the
gauge-covariant derivative af’ via the commutation:

[D,,3"]¢=D,(3¢)-2Dg=(0,-iG)(I)- ¥ (3, - iG)¢

. (5.18)
=0,0'¢+30,¢~iG I~ Yo,8+iF Gp=0,3¢- [ G, J|p= D I
Stripping off theg , we see the correct derivative:
[D,.,3"]=0,3"~i[G,|=D Y (5.19)

which includes the commutat@GV, JV]. So, we start with-D,J" = D,D,F* and apply
[D,.F, ]=D,F, from(2.2),[D,,J" |=D,J" from (5.19),-J" = D,F”, and iF,, =[D,,D, ]

from (1.1) to show via simple index commutativibat the continuity equation, due to the scalar
contractionF, F? of like-objects, is:

-D,J"=-[D,,3]=[D,,D,F"]=| D [D,,F"]]
=D,D,F” -D,F”D, -D,F”D, +F®”D,D,
=D,D,F™ +F*D,D, =[D,D,,F*|=4[[D,.D,] . F"]
=1i[F, . F”]=0

(5.20)

The continuity equation in differential forms, teére, isD* J = DD* F =0 . This equation for
the conservation of the non-abelian charge demsityplay a very central role the development
to follow.

6. Abelian and non-Abelian Massive Gauge Boson Inkges for the Electric
Charge Density, Using the “Coleman-Zee” Method

The next stage in our development to demonstm:teq'@ F= —im'dGG in (5.9) is the

integral-form classical equation for a baryon, @sitvert the configuration space operator
g D,D" -D’D" of (5.15) to obtainGU(J“), So we can obtai@F(G(J)). This inverse,

: _ v : :
w» May be defined bys, =1,J". Ingenerall , #1,, is not necessarily

symmetric, soG, =1,J" is an inner product definition not necessarily #@ne as an outer

which we denote by
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product definitionG, = I/ J”. Making use ofG, =1 ,J" to left-multiply (5.15) by-1, allows
us to write:

l,3"=-1,/(9""D,D" -DD")G, =G, =&°,G,, (6.1)

v
from which we may extract a more-directly defineddrse:
-1,,(9*°D,D' -D°D")=¢&",,. (6.2)

Now the task is to show that this inverse existsjiderstand the degree to which any particular
inverse which does exist is non-unique, to revile options for fixing the gauge of these
inverses, and to select the inverse or inversds suttable gauge choices or better yetique

gauge requirementsvhich best illustrate whysEﬁF :—i”_[dGG based on a faux magnetic
chargeP’' = -idGG of (3.4) has all of the key symmetries of a baryon

Taking inverses in gauge theory is a tricky businégcause one is often free to choose
the gauge resulting in non-unique inverses, anduseparticularly for massless gauge bosons —
which include the gluons of QCD — the inversay not even existithout a careful selection and
fixing of the gauge, see, e.g., [11] chapter lllAdditionally, because the gauge field is thedfiel
of integration used to turn a classical act®into a quantum field amplitud&/, a symmetry that
exists classically may not be a symmetry of thatesl quantum field theory, see, e.g., [11]
chapter IV.7 (Chiral Anomaly). Specifically, a stacal symmetry exists if some transformation

leaves the actiorS(¢) invariant. A quantum symmetry exists if (and intsethe classical
symmetry) if the same transformation leaves thé pdaegral Z :I D¢ expiS(¢) invariant. But

this may not always be the case. Therefore, Istars by carefully parsing out the various issues
that come into play when taking inverses of thet@6.2).

First, as to classical versus quantum fields, weser the local non-abelian gauge
transformation which isG, -~ G, =G, +0,6- 1 G,,8] in tensors,G —~ G = G+ dd- | G4
in differential commutator forms, an@ - G = G+ d9+ GO&= G+( d+ GJ)& in differential

wedge forms. These are all alternative but eqaiMalvays of saying the same thing. All of the
classical field equations developed thus far incigd1.12), (2.11), (3.3), (5.1), (5.7) and (5.9)
are symmetric under such a gauge transformation.to8, the electric charge field equation

(5.15) with the specifid’D" and D,D" identified in (5.16) and (5.17) is symmetric unties
non-abelian gauge transformation. This should besurprise: all of these equations were
developed with the express purpose of preservilgyghuge symmetry. This means that the

action S(G):IS%(G)d‘) is similarly invariant. But when we take a pathtegral
Z:IDGexpiS( G =¢ expiW( ) to obtain the associated quantum field theory tioe

amplitudeW ( J), we see that we are not necessarily assuredndaneasurddG will have this
same symmetry. And this in turn means that thenyuna field theory may not share all of the
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symmetries of the classical field theory. Typigaknsuring that the path integral also carries
forward the gauge symmetry und®G - D(G+ do - i[G,H]) is what gives rise to gauge-
fixing measures such as Faddeev-Popov [13] inctudimticommuting scalar “ghost” fields, see
some concise development of this in [11], chapt#®, and VII.1. However, so long as we
restrict ourselves to classical field theory, whigh are doing at the moment, we can develop
inverses without this particular worry. We juseddo be prepared to address this issue once we
are ready to calculate the path integral, whictoi®e done only after the classical theory has
been fully elaborated. Again, as to why there aghbvalidity and benefit to doing taking this
approach of fully elaborating the classical theoryadvance of the quantum theory, see the
discussion of section 4.

Second, as to why we need to take inverses whig m classical to quantum field
theory, this is because the mathematical exerdisaloulating a path integral revolves around

clever extrapolations of the Gaussian integﬁdkexp(—% AX - J>) =(-27/ A° ex;( K} /24
into Z = [ DGexp(iS( §)) = Cexi{ iW( J), with the correspondenad/(J) ~ ¥ /2 A. Because
the abstracted coefficienA of AX* gets inverted inJ®/2A, and becauseA ends up
corresponding with the configuration space opergGmD, D" — D D" in (6.2) which then gets
inverted via J*/2A into I, which then becomes proportionately related to de@ntum

propagator assuming we can find a way as we willsattions 8 and 11 to deal with
g”“D,D'-D’D" not being quadratic inG,, one must expect to have to obtain

(g“" D,D" - D? DV)_1 to arrive at quantum field theory, in additionhaving to deal with the

invariance of the measure undbG - D(G+ dg - i[G,H]). Thus, it is desirable to have a

number of inverses already developed “on the shdfiién it comes time to use them to calculate
a path integral. But, as we see in (6.2), eveworlefve start approaching path integration, we
still need this inverseven to develop the classical theoand specifically, in order to obtain

Fr(c(9):

Third, even in classical theory, configuration @paperators of the forrg”’0,0" —9?9"
simply have no inverse! Although often couchediystery, this problem arises from the simple
fact that for a massless gauge boson, a Lorentové;, with four spacetime components is

used to describe physical fields — for examplepheton in electrodynamics and the gluons in
chromodynamics — which only haweo physical degrees of freedom. That ispathematical

object G, with four degrees of freedom is used to represgpttysical objectwhich only has

half as many degrees of freedom. This is an imftenedundancy in how we describe gauge
fields that causes inverses to be non-unique aimgrabout the need for gauge fixing. Gauge
fixing and related methods are then used to createenu of gauge-fixed solutions out of the
non-uniqgueness stemming from this redundan€lgis gauge non-uniqueness is a separate and

distinct issue from gauge symmetriyor example, the field equationl” :(g"”a,af —6"0“) A

for a photon fieldA, sourced by a current densidy is fully symmetric under an abelian gauge
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transformationA, - A = A +0,6. But A is still redundant insofar as it has four spacetim
degrees of freedom while a photon only has twostrarse degrees of freedom. Additionally, as
mentioned, the operatoy”d, 0" —9°9” has no inverse, or, to be more precise, has arsav
which is of infinite magnitude and so is completelgleterminate.

Now, as Zee points out on page 30 of [11]:

“In order to avoid complications at this stage assed with gauge invariance
[we] will consider instead the field theory of a $save spin 1 meson, or vector
meson. . .. We can adopt a pragmatic attitudeuGde a photon mass and set
m=0 at the end, and if the result does not blow upunfaces, we will presume
that it is OK.”

Zee states in a footnote to this passage that Wwaetook a field theory course as a student with
Sidney Coleman this was how he treated QED to ad@dussing gauge invariance.” So to
simplify the development here, we shall take thisie pragmatic approach as Coleman and Zee:
We shall introduce a non-zero “Proca mass” for ¢faeige fieldsG, develop the classical

monopolecfj} F= —iﬂ]dGG of (5.9) to show how it has all of the classicahsnetries that one

would expect of a baryon, and then set 0 at the appropriate point in the development (which
will come at (9.15) infra) and explore the masdimeassless correspondences.

In this section, we shall develop the inverse hef hassiveboson configuration space
operatorsg” ( D, D" + rr12) - DY ¥ for non-abelian gauge theory amgf (a,af + mz) -070" for

abelian gauge theory, and then follow Coleman aeel &y setting the mass to zero to see what
results. In the next section we will take the mfmenal approach of developing the inverses

g D,D" -D?D" and g*?0,0" —0°0" for amasslesgparticle directly, using the Faddeev-Popov

method. We will then contrast the both approadbesee where they meet, to give us some
guidance about how to then use these inverseseimdim-abelian magnetic monopole field

equation(_ﬁg F=- _[_UdGG.
So, following the Coleman-Zee approach, let usa&doca mass to (5.15), thus:

—J“=(g””(DTD’+mZ)—D’Df)q. (6.3)

Let us then consider (6.3) in flat spacetime wiggesslient operatorgaﬂ,av] =0 commute. Let
us also momentarily reveld — 0 to ordinary derivatives to make a pedagogical p@nd so
write (6.3) as its abelian subset]” :(g””(a,awmz)—a”a”) G,. The current density is
conserved by the continuity equati@)J’ =0, so if we take the gradient of each side and
reduce, we find thatm’d, G’ =0. Because we take the mass to be non-zero, thamsnibat
d,G" =0, which is a fully-covariant equation known as tleegenz gauge. Here, G" =0 is not
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a gauge condition at all; it is requirementneeded to ensure continuity for a massive vector
boson. The number of degrees of freedom imththematicabbject G” is covariantly reduced
from four to three byd,G” =0, and this matches precisely with the three padion degrees of
freedom — one longitudinal and two transverse -s@g&sed by thehysicalgauge boson. So
now, most of the gauge redundancy is squeezedaut®”. Even here, however, there is still
a residual redundancy that requires gauge fixiRgr, if we transformG” - G” +9"@, then the
Lorenz condition becomes, (G“ +6“0) =0, or 0,G" =-0,0"¢. So to maintaind, G’ =0
under any such gauge transformation, we may thistifé gauge completely by the gauge
condition0,0"d =0. Therefore, with everything taken together, (6s3hvariant under a gauge
transformationG” - G’ +0"4, the four degrees of freedom iB" are covariantly-reduced
down to three degrees of freedom &)y =0 which is required to match the three polarization
degrees of freedom of the physical field, and #&dual gauge freedom is fixed and thereby
removed byd, "6 =0. The field equation-J” =(g”"(arar + m?)—a”aV) G, remains invariant
under the gauge transformati@f — G’ +0“€ and this invariance does not depend in any way
on d,0"d =0 because nowhere does the non-observable gaudlg, (péese) angled appear in
the field equation.

In the non-abelian (6.3) it is a bit more compkch because we hav from (5.15),
(5.16) notd, and because the proper way to take the gaugeatied of the current density is by

[DV,J”] =0,J" - i[GV, J”] =D Y derived in (5.19). But we already saw that thaticwity
equationD,J" =0 of (5.20) which we now combine with (5.15), by gy, is:

-D,J* =D, (¢ DD - D’ D")G, =0. (6.4)
So if we simply add a Proca mass to (6.4) and raeargontinuity, we must have:

-D,3*=D,(¢g” (DD +nf)- D) G=D(¢"DB- U D) G+ MDY G=0
=0+n?D,G =0 |

(6.5)

This includesD, (g”"szg) = Q( i G) = m D G=0, where the highlighted zero in (6.4) and
(6.5) is the zero-by-identity of the continuity edion (5.20). But the symmetries of the term
D,G" in the above are driven by those of (5.19) which D,J"=9,3"~i[G,J"|.
Consequently, D,G’ =9,G’ - i[GV, G“} because of (5.19). Additionally, because of (6.5),
D,G" =0,G - i[GV, G“] =0. As in the abelian case just discussed, for ssiv@gauge boson,

and this is not a mere gauge condition. Heiguiredto ensure continuity. As in abelian theory
this reduces the gauge freedom of a four-compospatdetime objed, down to three to match

the three massive boson polarizations. Additignlere the commutatdiG,, G’ | = 0 because
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of the scalar contractio®,G" of like objects. This means in turn thefG” =d,G" =0. And

this means that,G" =0 still applies even to the non-abelian theaapd is not a gauge
condition but is a requirement for a massive gaaagon.

As to the residual gauge freedom, beca@e- G" =G +0"8- [ 9} G+ D@
is the non-abelian gauge transformation,G" =D,G"+ D,D'0=0,G"+d,D’8=0 is the
required covariant gauge condition f&. Taken withD,G" =0 this means that for a non-
abelian theory,D,D"8=0 replacesd,0"d=0as the residual gauge condition. Taken with
9,G" =0, this means thad,D'6=0,0"6-id, [G",6] =0, which means thab,D"6=0 may
be written out with ordinary derivatives @50 6—|0V[G“,6} =0. So while (6.3) is invariant
under a non-abelian gauge transformat®h - G = G’ +9"6 - i[GV,H], we arerequired to
have D,G" =0,G" =0 because the boson in (6.3) is presumed to be wveaasid subject to
continuity, and the remaining gauge freedom isdikg imposingD,D"8 =0 which as just seen
is equivalent to the expressioﬂvave—iaV[GV,H] =0. Nonetheless, as in the abelian theory,
this invariance does not depend in any waylpp’6=0 ak.a.0,0"6~id,[G",6] =0 because
nowhere does the non-observable gauge / phase @ragipear in the field equation (6.3).

Now, let us stop for a moment to take a close labthe gauge-covariant, second-rank,
second-derivative operatd“D" in (5.16) and its gauge-covariant d'AlembertismD,D" of

(5.17). Close study oD?D" will reveal that there is no apparent way to safgaeach oD’
and D" to make D°D" a product of two separate expressions ff, D”. Even the
commutator of (5.16), which we can calculate toipp?,D" |=G“0"” ~3|G?,G" | in flat

spacetime, is different frorrFW¢:i[Du,Dv]¢:( ey |[Gﬂ,G D¢ which is the field

strength defined in (1.1), (1.5). This is becasé.15) D’D" is operating onG, not ¢ and

because, as noted at the outset following (1.1lugegaovariant derivatives, like covariant
derivatives in Riemannian geometry, take a fornt tlegpends on the representation of the object
they act upon.

However, foro=D,D" we may make use of the very recent finding afteb)( that

0,G” =0 for a massive gauge bosewmen in non-abelian gauge thepgnd specifically, may
add this “zero” to (5.17) and thus write:

D" =0,0"-id,G" -iG,0" -G,G" =9, (8" -iG")-iG, (6" -iG"') =(9, -iG,) (6" -iG)
=0,0" +V

, (6.6)

where in the final line we have defined the gaugkel perturbation(see, e.g., [14] eq. [4.4]):
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i0 -k

V=-i(0,G'+Gd")-GG =-kG- Gk- GG. (6.7)

This use ofd,G" =0 doesallow a clean separatioD, D" = (0, —iGr)(ar —iGT), and it enables

us to explicitly introduce and identify gauge fieperturbations. This will be very useful
throughout the subsequent development. And admgnause we are considering a massive

gauge bosong G =0 is not just an optional gauge condition; it isuiegd for continuity.

With these preliminaries behind us, it is time tdcalate the inverse of (5.15) for a
massive gauge boson. We start with the inveseof (6.2), for which we follow Coleman and

Zee and add the Proca mass as follows:
|W(gV”(D,DT+m2)— D”Dv)z—daﬂ. (6.8)

It is well-known how to calculate inverses of tloenh (6.8), but we do need to be cognizant of
two important points because tBeare not the same as ordinatyespecially in flat spacetime.

First, while [6”,0”]:0 in flat spacetime, we cannot treBX’ D" as commuting here, that is,
[D?,D”|#0. In fact, as noted prior to (6.6)| D?,D" |=G!“0" ~3[G?,G" | # 0 when the
operand isG,. So we need to be very careful throughout to mainstrict commutation

ordering. Second, we cannot just put expressiovaving D°D” or D,D into a denominator.
Rather, we have to treat carefully, as inversesradmere denominators, inverse expressions
which containD?D" as well as the gauge-covariant d'AlembertianD, D" .

With that in mind, let us calculatg,, . First, we specifyl , using the general form with
A andB unknown and to-be-deduced:

|, =Ag, +BD,D,. (6.9)

Given thatl , #1,, (to see this, simply note th& D, # D,D,), the above definition together
with G,=1,J" leads to G,=(Ag, +BD,Q)J = Ag, I+ B) PJI= AJ once the

continuity relationD,J” =0 of (5.20) is applied. So the inner-product deiim G, =1,,J"

combined with the inverse definition (6.9) will exgally allow the important simplification of
setting BD,D, - O by continuity, which is analogous to what happegnabelian gauge theory

when the continuity equatiod,J” =0 is applied.

So, the task now is to find the unknowkandB. If we place (6.9) into (6.8) we obtain:
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-5°,=(Ag,, +BD,0)(¢"(0 D+ nf)- O D)
=Ag, ¢°(DD +nf)- Ag, DB+ BR D& ( DD+ f)- Bp PO D. (6.10)
=p5,(D,D"+nf)- A’ D,+ BQ, (DO + M)- BR DO D

Matching up the terms witd” , we first obtain-1= A( D,D" + mz) , Or inverting:

A=-(D,D" +n?)". (6.11)
We then use (6.11) in (6.10) and reduce, to netdiob
0=(D,0"+m*)" D’D, +B(D, 07 (D, D' + nf)- D, R ' ), (6.12)
or, rearranged:

-1 -1
B=-(D,D'+m?) (D'’ (DD +nf)- DR D D) . (6.13)
Finally, we use (6.11) and (6.13) in (6.9) to fuheht:
l,, ==(D,D" +m2)‘1[gw +D7D(D°D7(D, D' +nf)- D' D Y D’)'l D, Q] (6.14)

Above, each derivative pair is defined DY D" =079" -iG?0" -2G°G" + G’ G’ in (5.16) and
o=D,D" =9,0" —iG,0" —-G,G" in (5.17) (remember too, thatG" = 0which produces (6.6) and

(6.7)). We may then substitute (6.14) into thgjioal definitionG, = IWJ" to conclude that:

G :IWJ“=—(D,D’+mZ)_1[gW+ o(0D(DD+ni)-0D0D D)‘l D, [3} J

U

=-(p,0"+m?)" g, ¥-(DD+n) DO(DD(DD+mM)- B DO D) pDJIG6IG

-1

=~-(D,D" +n?) " J

-1

,=—(0,0"-iGo" -GG+ i) g
In an essential step, we get to the final line fpreing continuityD,J” =0 from (5.20),
and then making use of the d'Alembertian D,D" of (5.17). We shall shortly add a term

-i0,G" =0 to the expression for which the inverse is beaigh, so that we can take advantage
of (6.6) and explicitly identify the perturbatiok’s

To make all of this appear a bit more familiar e tway such inverses are usually
written, let us seD - 0 in (6.14), and let us assume flat spacetime sdeail/atives commute,
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[0,,0, | =0. With these assumptions, the inverses can btettes regular denominators. With
all this, we find embedded in (6.15), the very fiamniabelian A subscript) inverse |, — |

Auv *

0700 ,,0
+ KTV 2,0, kK, K
g'W 6"6” (6,6T + m2) _aaaraaar g,uv + r/;'lz i0 -k g,uv - ﬂITIZ +ie g//l/ - KJIT?
Lpw =~ > =- = = -.(6.16)
9,0" +m 0,0" +nt kK-m = kk- rh+ 4

With the first arrow, we convert to momentum spaieeid,, - k,. With the second arrow, we

then add therie prescription. Using the final term above wigq, = 1,,J", we may write:

Auv

k,k,
G, =1, 3" = G ™ P Gy 1 (6.17)
AT T K -+ e kK-m+ e kK- m+ad ~ '

wherek,J” =id,J" =0, which is just another version of the continuituation, is used for the

reduction after the third equal sign. If we set=0 in (6.16) we then obtain the clearly
indeterminate result:

K
9~ K,

| = 0 - 9w™® __, (6.18)
MO kK +ie kK +iEe '

But in contrast, doing the same in (6.17) simpBlds the finite:

1

Gy =13,
Mk K +ie

(6.19)

The infinite result in (6.18) is tamed in (6.18cause of the continuity imposed in (6.1[f)we
then put the boson on mass shkJk’ =0, we finally have:

G, =—J,. (6.20)

This only stays finite because of thés prescription. Equation (6.18) explicitly illustes why
g70,0" —d?0" has no inverse, or more precisely, why the abetimarse for a massless gauge

boson in flat spacetime is indeterminately-infinitequation (6.20) explicitly illustrates why this
inverse is also indeterminately-infinite for on-Blmsons, unless one uses thie prescription.

Now let us do the same in thwn-abelianinverse (6.14) to see whether the same
infinities are encountered. Settimg=0 in (6.14) we simply obtain:
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_ r\1 o AT AN 1
l,, =-(D,D7) [gw+D D°(DDD'D, -D°D'D’D;) DyDV] (6.21)

The term D“D’D'D, -D‘D'D’D, =D’| D’,D" |D, must be evaluated using tH2’D" and
D,D" of (5.16) and (5.17), that is, as a second ordedrptic rather than a fourth order linear

term. That is because these derivatives werergddgirior to inversion by operating @), and

because the explicit form of a gauge-covariantvagiie depends upon its operand. Thus, from
(5.16) and (5.17):

D*D’D'D, - D“D'D’D, =(D°D’)(D'D,)-(D“D")(D7D, )
= (979" -iG"9° -2G"G" + G"G" (979, - iIG9, - G G) . (6.22)
-(0°0" -iG"9" -26°G' + G'G")(9879, - IG’9, -2G' G + G G)

If it was possible to commut[eD", D’] =0, then this term would become zero and (6.21) would

-1
contain (D”[D”,DT}DT) =0* =0 and become indeterminate when the mass is zerthéor
same reason as (6.18). But the defining featuneoafabelian gauge theory is that the gauge
fields do not commute, i.e., th%G”,GT] =0. So the term (6.22) isot zero and thus (6.21)

does not become infiniteven when the mass is set to zelbis the non-commuting nature of
non-Abelian gauge theory that bears direct respditgifor maintaining a finite inverse (6.21)

for the configuration space operatgf’ D, D" — D’D" in (6.1) even when the gauge boson has
no mass As we see in (6.15), however, none of this mats all once we applp,J” =0

continuity, because that zeroes out the term @2(6entirely. Indeed, settingn=0 in the non-
abelian relation (6.15) fo&(J) simply yields

-1

G,=-(D,D')"3,=-(0,0"-iG -GG) " J,. (6.23)

Now let us examine what happens for on-shell be@somon-abelian gauge theory. The
relativistic energy relationship ig, p’ -nf=0. Via 7= :%(y"y’ +y’y") :%{y",y’} this
becomeq p-m) u=0 = (- m¢ =0 when operating on a free, non-interacting Diraop/
wavefunction. But for interaction via a gaugedi&’, p, p° - nf =0 becomesz, 77 —m’ =0
with 777 = p" + G" defining thekinetic momentunaz” in relation to the canonical momentuph
and the gauge field5". This means thafzr—m)u=( p+ G- n) u=0, or, with p - id and
u- ¢, (id+@-m)y =0 is Dirac’s equation for amteractingfermion. The key point of all

this — with p* and k? respectively used to denote fermion and boson mame vectors — is
that a free on-shell fermion is described pyp” - nf =0 and a free on-shell gauge boson by
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k,k?—nf=0. But for an interacting on-shell particle witli’ = p" +G" for fermions and

T =k" +G" for bosons, the exact form of the on-shell equatepends on wheth&s’ is an
abelian or a non-abelian gauge field. Let us deg w

Suppose thatz” is a U(1) photon / electromagnetic potentil. Here the on-shell
relationship, referring also to the perturbation7{éand noting thatz, 77° =k k” -V because

k,G" =0, is:

0= - =(k+A)( K+ K)-mi= KR+ kK A+ Ak+ AN ¥
=-V +k, k7 - nf |

(6.24)

This perturbation-V =k A+ AK+ A A is a 1x1 scalar number which can be added to the
numberk k’ - n7, so that (6.24) is a sensible equation. But ssppmw thatG" = A'G” is an

NxN object formed using the generatots of the simple gauge group SU(N). To be explicit,
showing Yang-Mills indexesA, B=1...N for the fundamental SU(N) representation, suppose

now thatG’,, =A' ,,G. Then, if carelessly generalized, (6.24) woulddme:

0=m - =(k +G)(K+T)-ri= KR+ k G+ G k+( £G, - ¥

6.25
= Vo= (M -k K) (=-V+ Kk K- 1) (6.25)

But this expression is not quite right. Tkgk” — nt is still a scalar number, and becag is
now taken to be an NxN object for SU(N), thek’ — nt will occupy thediagonal positions in
the overall expression (6.25), hence the explioiivéng of 5AB(m2 -k, K’). At the same time,

Vs =k, G st G 5K +( G G’)AB will now be an NxN Hermitian matrix with off-diagal

elements. The perturbation,, is a matrix, whilek_k’ — nf is a scalar number that we also

know is part of an inverse abelian propagator.thi&@oonly way to make sense out of (6.25) is to
use this as arigenvalue equatiom which m? - k K’ represents the scalar eigenvalues of the

perturbation-V,;.

Now, one way to write (6.25) as an eigenvalue aqnoait to have it operate on an N-
component column vectorg, and to rewrite the non-abelian on-shell conditias

[VAB—é'AB(mZ— Igjk’)]qﬁ:o. But because expressions such as (6.25) will shpwn the

context of equations such as (6.15), we want toabke to express the on-shell condition
independently of any. We can do so by taking the determin{aﬁt: detA of (6.25), in the
form of the eigenvalue equation:
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0=|m,7” | = =|Vyg = I, K = ) (=]-w k k- ). (6.26)

This is what specifies an on-shell gauge bosonadn-abelian gauge theory. On shell, the
eigenvalue solutions of the perturbatidg, are given by the scalar numberk? — nt.

In view of this, if we therefore write (6.15) withie and 77’ =k’ + G’ as

-1

G,=-(D,D +nt-ie) J,=-(0,0'-iGO' -GG + mi- &)

u

i;k(krkr+G,I<’+ GG-r+&)

k,G"=0 1 i ’ (6.27)
= (kk+kG+GK+ GG~ h+ 4d) J=(ma - h+ad) )
=(~v+kK-nt+E)"
we see by writing (6.17) in the form of an inverse:
-1
G, =(kK -nf+E)" 3, (6.28)

that thesole difference between the abelian and non-abeliantisok for GN(JN) is that the

canonical scalak k' of abelian gauge theory is replaced by the kinstalar 7z77° in non-

abelian gauge theory, or, alternatively and eqeiwly, that a perturbatiorV =-V,; is added
to the abelian (6.28) to arrive at the non-abeli@27), which then turns the usual inverse
propagatork k" — nf + i into -V, + k K — nf + & for which on-shell particles are described by

Vis =9 (K, K = 1) =0 in (6.26).

If the “careless”zz, 7 —m? =0 in (6.25) were to describe the on-shell conditionan
interacting particle in non-abelian gauge theoryhich it doesnot — then for an on-shell

particle, (6.27) in the fornG, = (nrnf -nt+ is)_l J, would reduce tcG, = (+i£)_1Jﬂ which is

exactly the same as the abelian (6.20). So ireeilelian or non-abelian gauge theory, we
would require the+ig prescription to avoid the poles for an on-shelftipee. However,
.’ —m* =0 is not the on-shell condition for non-abelian gauge tiieoRather, on-shell

bosons are specified by the eigenvalue equW—mz‘:O of (6.26). So even with
‘ﬂgﬂﬂ —mz‘ =0, the expressiorG, :(ﬂ,n’ -nr + ig)_1 J, will generally remain finite in non-
abelian gauge theory even if we u&, :(ﬂ,ﬂ’—mz)_l J, absent+ie. Because on shell

particles are described l*yyf’ —mz‘ =0 and notsz,777 -’ =0 in non-abelian gauge theory,
the non-abelian theory remains finite on shell ealegent+ic .
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Before studying massless gauge bosons using the foamal approach of Faddeev-
Popov, we also note that the continuity relatiyd” =0 which tamesG, (J,) in the massless

boson inverse (6.19) notwithstanding the infinitearse (6.18), plays a similar role in taming the
guantum field amplitude obtained from the QED patkegral. Specifically, the action

corresponding to the field equationJ” :(gw’(arawnf)—a”a“) G, which is the abelian
version of (6.3), for which the inverse was found6.16), is:

s(g)=[dx =] d %g g( & (0,0 + M-00") & 53‘3]. (6.29)

When the Gaussian integrﬁdxexp(—% AX - J>§ =(-2r 1 A° exd K} /24 is employed as the
template to use (6.29) id :I DGexp(iS( G)) = Cexy iW( J), the inverse inJ*/ 2A is based

on the abelian inversk, , in (6.16), and we obtain (see, e.g., [11], pa@e8DB):

Auv

kK
o1 dk o n, et 1, d'k

This too looks like it will become singular fan=0, just like (6.18). But there too, as in (6.17),
the continuity relationshigx,J” = id,J" =0 rescues the path integral from an indeterminate fa
and facilitates the reduction:

W)= [ P (e A (h g Ak Ga

(277) Kk —m+ig * 2 (2;7)4 kK+E
This also tells us that the electromagnetic forewvieen like-charges is repulsive.

But the key feature of interest in both (6.17) whis for a classical field and (6.31)
which is for a quantum field, is that even thoudie mathematicalabelian inverse (6.16)
becomes infinite ifm=0, when this inverse is placed into the context gghgsicalequation
such asG,, = 1,,,J" in (6.17) or..J**1, ,J" in (6.30), the seemingly-infinite result becomes
finite and well-behaved. This is because the mayscontext — in this case the continuity
relation k,J" =i0,J" =0 — causes the otherwise singular tekyk,/m- k k/0=o to be
zeroed oubefore it ever gets to wreak any havothis contextual finiteness is very important,
because even though the mathematical object —ntberse — becomes singular, the physical
result remains finite. In the discussion to nogvdeveloped, where we use the more formal

approach of Faddeev-Popov to develop the massivgegaosons, this will lead to what we shall
call “contextual gauge fixing.” In Faddeev-Popovhere a gauge numbef enables an

unlimited array of non-unique inverses, the coritintelation forces the physical results into a

Auv
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very definite and unique choice of gauge. Wheruge these same inversesg[i.,ﬁ\F (G(J)) to

show Why<ﬁ>F :—ijIIdGG looks very much like a baryon, this type of “cotiteal gauge
fixing” coupled with Fermi-Dirac-Pauli Exclusion Wvinot only result in unique solutions for
G(J), but will give mass to the fermions af* =yy*y and turn them into quarks, while
rendering the massive gauge bosons masslesskeigfilions.

7. Abelian and non-Abelian Massless Gauge Boson lenses for the
Electric Charge Density, Using the Faddeev-Popov Meod

In the last section we took the “pragmatic” ColerZaee approach of obtaining the
classical field equation inverse for a massive gabgson and then setting the mass to zero to
see what happens under a variety of circumstandésw, we take the more formal, direct
approach of using the Faddeev-Popov method to leddctihe inverse for a massless gauge boson
ab initio, without the intermediate stop for a massive boson

If we take the “non-pragmatic” route and start with amasslesgiauge boson for which
we apply Faddeev-Popov, and to open simplified udision revert (5.15) to its abelian limit
D - 0, then along the way theffectivefield equation becomes (see [11], after (111.4)8))

-J" =(g70,0"-(1-1/£)0%9") G,, (7.1)

where & is a gauge number. While for the moment we tiigatintroduction ofé simply as a
mathematical manipulation of the classical fieldiapn —J" =(gi’araT —aJaV) G, of (5.15) to
which (7.1) reduces fof =, we keep in mind thaf actually arises when we start with a path

integral Z = [ DGexp(iS( G)) and turn this intoZ = | DGexp(i[S( Q- (i/%)] d %o QZ})

through a change of the integration variable whiddintains the invariance of thunder the
abelian gauge transformatidd - G' = G+ dd. So by introducing in this way, and knowing

that this carries over to non-abelian gauge théoiyfor the further introduction of ghost fields
c',c with a path integral Z :IDGDchTexp( |[S( Q—(l/f)j d %o C)Z}+ $ 'c, )c)

containing a ghost actioS( c, (j , we have a “hook” by which this can eventuallyused to set

up a quantum path integration for non-abelian thedBut for now, as discussed at length in
section 4, we continue to develop the classicairhe

Once again using an inner-product definitidég, = 1,,J" for the abelian inverse, in flat

spacetime we may multiply through by, , and write (7.1) as (contrast (6.1)):
JV =~

| (9+70,0" -(1-1/£)0%0")G, = G, =", G, (7.2)

Auv Auv

from which we extract (contrast (6.2)):
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| (970,07 —(1-11£)8°0" ) =-07,. (7.3)

Then usingl ,,, =Ag,, + Bd 0, based on (6.9), this becomes (contrast (6.10)):
-0°,=(Ag,, + 8,9, )(9°0,0" - (1-1/£)0%9")

= Ag,, ¢0,0" - Ag, (1-1/£)0°0" + B0, §°0,0" - B0, (1- 1/§)a°0" . (7.4)
=AY ,0,0" - A(L-1/&)9°0,, + B 0°9,0" - B(1- 1/£)0,0,0°0"

From this we match up thé"ﬂ terms to find (contrast (6.11)):
A=-1/0.0". (7.5)
so that (cf. (6.12)):

(1-1/&)0%9,
0,0"

+B(0,079,0" —(1-1/£)0,0,0°9" ), (7.6)

or, commuting and cancelling derivatives freely (6f13)):

070 -
(-218) 3 Sea.0 (1-1/¢)0,0,0%" (11/15}9 2” =¢); z”
B=- Catihd s Lt =- a = a” (7.7)
9,0 3,0 3,0
Thus, using (7.5) and (7.7) i, =Ag,, + B0 0, we obtain (cf. (6.14) and (6.16)):
9,0, Kk
-0, +(1-6) 20 0,182 g (- Y
_ aaa i0 -k kak +ie KJk"
IA,uv - = =~ 7 = : . (78)
9,0 k k kK +i
We then use this i, , = 1,,,J" to write:
k
9w _(1_5) kﬂllj;
= V= 4 v 7.9
GA/I IA/II/J krkr + |£ J ( )

Now let us follow two different routes to reduce9). First, let us apply the continuity
relationk,J” =id,J" =0 as we did in (6.17). This causes (7.9) to become:
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kK,
gyv_(l_g) 8 a k, V=0 —(1- 0
G, = LSRR Wi Gl ) LR W S (7.10)

Alternatively, let us embark upon the differenttpaff selecting the Feynman gaudge=1 in
(7.9). Now we have:

k
9w _(1_5) ch/r go Qv T 0 5%
Gy, = LIS T AT VRN e (7.11)
Au T . . . . 7 "
kK +ie k kK + i k K+ i kK+E

which is the exact same result as in (7.10). Aot lof these are exactly the same as the result
in (6.19). These are three routes to the exacesasult. In (7.10), the expressi()]n—f)o

which emerges from requiring continuity vigJ” = i0,J" =0 hasforcedthis term to be zeroed

out. Just asin (6.17) (and analogously in the-aloglian (6.15)), there is no choice other than to
zero out the term containing the gauge numéerBut if we were unaware of continuity, we

could get to the sameffectiveinversel , , =g, /(kr k™ + ie) in general by the different route
of selecting the Feynman gaudge=1. Importantly, this means that after we find theerse and
then use it inG,,=1,,J", we are forced into an equation f@,, which could be
independently arrived at by selecting the Feynnmaugg & =1 for the standalone inverse.

Auv

The point here is that for masslesgauge boson, there is a complete freedom to select
any gauge numbero <& <o for the inversel, ,, which means that this inverseindinitely

non-uniguewhen regarded asmathematicakntity. This is because of the redundancy whereby
G, contains four degrees of freedom despite the &tsdcmassless physical field having only

two degrees of freedom. Nevertheless, once wehisenverse in ghysicalequation such as
G,, = 14,07 In (7.9) to (7.11), the continuity equation foraesto fix the gauge of the inverse
into £ =1, or more precisely, forces a result that can exjaitly be achieved by selectidg=1

for the standalone inverse before it is ever imgeimto G, , =1,,,J". This is a specific example

of the “contextual gauge fixing"’mentioned at the end of section 6, wherein a gaugeh is
completely non-unique and thus an associated iavevkich is also non-unique as a
mathematical matter, is forced to be unigueen placed into a physical conteit this case, the
context of a conserved current density enforceddntinuity. In this way, we may think of the
Feynman gauge as the “continuity gauge,” becausaduelyfixes the inverse in the exact same

manner as does the continuity equatigd” =id,J" =0.
With (7.1) to (7.11) as a backdrop, we returnhie field equation (5.15) witlb’D" and

D,D" defined as in (5.16) and (5.17) when the operar@,i, and introduce the gauge number
& exactly as we did in (7.1). Thus, we write:
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-J" =(g”D,D -(1-1/¢) D’ ') G,. (7.12)

As with (7.1), we treat the introduction gf simply as a mathematical manipulation of (5.15) to
which (7.12) will revert foré =, which allows us to solve this classical equafioi2) forG,
as a function of)”. SinceZ = [ DGDcDC exp( i[ S 9-(1/Z)[ ¢ %o c}z]+ $ )r) is the

path integral for non-abelian gauge theory, it $thdee clear that the inverse obtained from
(7.12) will be a useful item to have “on the sheiffien it comes time to try to calculate the non-
ghost portion of this path integral. But for nome are still working classically, so our imminent

goal is to solve the classical equation (7.12)gras a function ofl”.

As we have done previously, we ugg =1,J" to definel ,, and then multiply each
side of (7.12) by-1, to write:

,,3" =-1,,(9"D,D" -(1-1/§)D°D")G, =G, = 7,6, . (7.13)
From this we extract:
l,(9°°D,D" -(1-1/§)D°D") ==&7,,. (7.14)

Then we combine the above with (6.9) to write (6f10) and (7.4)):

-0°,=(Ag,, +BD,0)(¢" QD -(1-1/§) I’ D)
=Ag, ¢°D D - Ag, (1-1/§) DB+ B, Q ¢ DDB- BD D(1-1/£) B B. (7.15)
=Ad’,D,D'-A(1-1/§) D°D,+BD,’ DD - BD, Q (1-1/§) ' ¥

Here, the reductions used twice earlier (cf. (6tb1(6.13) and (7.5) to (7.7)) yield:

A=-(D,D7)", (7.16)
0=(1-1/¢)(D,D’) DD, +BD,D’D,D’ - B(1- 1/£) D,D, D’ D', (7.17)
B=-(1-1/¢)(D,D’)" D’D” (D’D’D,D’ -(1- 1/§) D'D’DD,) ", (7.18)

thus leading vid ,, = Ag,, + BD, D, from (6.9), to:

l, = —(DTD’)_l[gW +(1-1/¢)D“D? (D#DD’D, -(1- 1/£)D’D°DD, )" DyDV} . (7.19)
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Reducing (7.19) is a bit tricky because of theense. But if we momentarily put the
latter inverse into a “denominator” and use anarker to hold the commutation position of the

inverse, all just to aid in visualization, we mayluce this to:

- — anp
|,uv :_(DTDT) l|:g,uu+ (1 l/{)D D DD#DV :|

D’D’D’D, -D’D’DD, +(1/§)D’D’D“D,

- -(DTDT)'{QW - [£-1)7D%D,0, ] (720

¢(p’D“D°D, -D’D’D"D, )+ D’DD D,

= —(DTDT)_l[gW +(£-1) D"D/”(g(DﬁD”D”DJ -D’D°D’D, )+ D”D’D" D(,)_l DuDV}

where in the middle line we multiply each of theaufimerator” and “denominator” by, then in
the final line revert to the inverse formulation.

In this form, we see that the redundancy®f with four degrees of freedom to describe

a massless field that has two degrees of freedomifsean infinite non-uniqguenesso < <o
in the choice of the gauge number, just as it doetbelian gauge theory, see after (7.11). But
now, as before, let us insert this inverse (7.8®) G, = 1 ,J” to obtain:

G, = ‘(DrDr)_l[gw +(£-1) D' DF (¢(D'DF DY D, - DD P D, ) + PP D D, ) D, DV} ¥ .(7.21)

As in (7.10) and (7.11) we now take two routeseduce (7.21). For the first route, we
apply the non-abelian continuity relationstipJ” =0 deduced in (5.20) to obtain:

G, = —(D,Df)'l[gw +(é-1)D"D*(¢(D D' DD, - DD D' D, )+ DD D' D, )

D,J"=0

= —(D,DT)_l[gWJV +(£-1) DD (§(D' D' P D, - DD’ D B, )+ DA P DF D, ) Dﬂ(o)} (7.22)

1 12
DHDV}J

=-(p,07)"J

u

For the second route, we simply select the Feyngaaigeé =1 in (7.21). Now we obtain:

G, :‘(DrDr)_l[gw(f-l) DD (¢(D’ D' D’D, - DY DYDY D, )+ P DYDY D, ) DﬂDJ y
S‘(DrDr)_l[gw +(0)D*D? (¢(p/D?D’D, - D/D’DD, ) + DYD?D'D, ) " D,D }]V (7.23)

u v

=-(p,0")"J

u
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These two results (7.22) and (7.23) are exactlysdree. So just as in the abelian (7.10) and
(7.11), the Feynman gauge acts as a continuity egalbgcause when used in the standalone
inverse of (7.20), it leads us to the exact sarsaltr@s the non-abelian continuity relationship

D,J" =0. Additionally, if we now return to (6.15) in wiiove have also employed continuity,

and follow the Coleman-Zee approach of settinggdngge field massn=0, we also find just as
in (7.22) and (7.23) that:

-1

G,=-(D,D")"3,=-(0,0'-iGo -GG )" 4, (7.24)

which we have already seen in (6.23), withD’ =9,0" —-iG,0" —G,G" as found in (5.17), see
also (6.6) and (6.7) which make use®G” =0 for a massive gauge boson and so are able to
also provide a connection to the perturbatbn

So we see that in contextual setting of the caityrelationshipD,J” =0, theunique
solution to the massless non-abelian field equatidfi :(g“" D, D" - D° D“)GU of (5.15) is

alwaysgoing to beG, = —( D, Dr)_1 J,. Whether we arrive at (6.23) / (7.24) by startwith a

massivegauge field, obtaining the inverse, applying comtly, and then settingn=0 via
Coleman-Zee; whether we start withmaasslesggauge field, use Faddeev-Popov to find the
inverse, and then apply continuity; or whether vegtsvith amasslesgauge field, use Faddeev-
Popov to find the inverse, and thelmoosethe Feynman/continuity gauge=1; we will always

end up with the samaniquesolution (7.22) to (7.24).

The point is that even for non-abelian gauge thewshile themathematicainverse for a
massless gauge field gives us the freedom to sahgyauge numbero < £ <, thephysical
continuity condition D,J" =0 forces us to put the inverse into the Feynman g@aughis
contextual gauge fixingemoves the arbitrariness of the mathematicalrgeseand forces us into
the specific gaugé =1 the moment we use the inverseGy = IWJV and then applyp,J” =0.

Before concluding this section, let us comparentie-abelian results (7.22) to (7.24) all
of which are equivalent to one another, with thelian results (7.10) and (7.11) both of which
are also equivalent to one another. The chiekgifice at this point is that we have not yet
introduced the+ie prescription into the non-abelian inverses. Camnga(7.22) to (7.24) with
(7.10) and (7.11), we see that the way to introdtieeis to amend (7.24) as such:

i0 -k

G,=-(D,D -ie) 3, =-(0,0'-iG,0" -GG - i) J, = (kK+E+GK+GG) J.(7.25

u

Above, we have also gone over into momentum spiac®\— k. This is just the second line of
(6.27) with m=0. In the k,G' =0 gauge, which for a massless boson is a choicenah@
requirement, this becomes:
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-1 -1

Gﬂ:(k{kf+ kG+Gk+ GG+ 5)‘1 g:(ﬂr”f“L g) 9:(_ W kk+ ,9') ) (7.26)
In contrast, if we write (7.10) / (7.11) in the fioof an inverse relation, these become:

G,, =(k K +ie)" J

7

(7.27)

which is just (6.28) withm=0. Of course, the abelia(lkrkr+i£)_l can be written as an

ordinary denominator, while the non-abeliaéh,kr+i£+Gr K+ G,G’)_1 cannot because the

G, m =Gk + GG term in general will have a matrix form which mbst inverted rather than
placed in a denominator.

Insofar as on-shell bosons are concerned, as mo{&R8) and the discussion following,
an on-shell boson in non-abelian gauge theory kdlldescribed by the eigenvalue equation

(6.26), which form=0 and using (6.7) and,77° =k, k° -V in thek,G' =0 gauge becomes:
0=|7,7| = Ve =B, K| (=]-V+ K K|=| Kk K+ kG+ Gk+ G 8. (7.28)

Note again that whiléd, G" =k, G" =0 is arequiredrelation for anassivegauge boson as found
in (6.5) and the ensuing discussion, it isoptional gauge conditiofor amasslesgauge boson.

So the relationG, =(k k +GK+ GG)" J=(kk- J  J without mass, whenever it is
used,assumeshe gauge conditiok, G" =0. With this gauge condition this can also be entt
in terms of the kinetic momentum &, =(7.7')" 3, =(k K = V)" J, and it will not become
singular even on-shell becaqsngn"‘ =0 above, and notz,77° =0, is the on-shell condition for

a massless gauge boson in non-abelian theory ichtb&en, not requirek, G =0 gauge. This
does introduce a degree of non-uniqueness intantrexrse relationship for a massless gauge
boson even with continuity which, unlike the resitgauge conditionD,D'6=0 a.k.a.

9,0"6-i9,[G",0]=0 discussed after (6.5Jpesaffect the form of the equations whenever one

wishes to write them with the perturbatidh As such, we will wish to find ways to avoid
situations in whichio ,G" =k.G" =0 is an optional gauge condition, in favor of alwégving it
be a required relationship.

8. The Recursive Nature of Non-Abelian Gauge Theonand what it may
Teach about Quantizing Yang-Mills Gauge Theory

Now we look for the first time at a very importartursivefeature of non-abelian gauge
theory. If we write the massive boson solutionGs= (k,kf -nf+E+GK+ G G)_l J from
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the second line of (6.27) and recognize that théugmtionV =-k G -G K - G G in (6.7)

may also be written 8¢ = -G k' — G G because, G’ =0 is arequiredcondition for a massive
gauge boson, see (6.5) et seq., then a preferrgdowerite and use (6.27) will be the following:

G,=(kK-nf+E+GK+GG) J=(kk- fwa- § (8.1)

Again, it bears emphasis, this uses the fact kh@t =0 is required, bubnly for a massive, not
massless, gauge boson. Now, although (8.1) appeatse surface to solve f@ﬂ(Jﬂ), this is

not aclosedsolution. Rather, it is really gecursivesolution for G, (G,, J.) which can be
recursed into itseld infinitum Let us see exactly how this is done.

To do recursion, one generally needs two inputst, fa recursive kernel; second, a
terminal condition. A quintessential example is tecursive definition of the factorial function:

The recursive kernel says thatt= nx(n-1)!. The terminal condition says that=1. We shall
pursue a similar approach to underst&)din (8.1).

To keep track of things, let us develop some rmmtat We shall generally use the
double-nested symb(« )) to denote a recursion. If we recuiGg into itselfn times, we shall

denote this aﬁﬂ(( ))n If after n recursions we leave the perturbatMin the equation, then
we shall write this a$3, ((V))n If, however, aften recursive iterations we s&t =0, then we
shall write this asG,, ((0)) =G, ((V=0)) . So, at the zeroth order of recursion, we sinselty
-V =G K + GG =0 in (8.1) which removes all of the terms containfBgand reduces (8.1) to

G,((0), = (kK - nt+ )" 3

-

(8.2)

This is simply the abelian solution (6.28).

But now, let us perform the first order of recarsi Here, we substitute (8.1) back into
itself one time and then s€t=-G k' - G G =0. This exercise yields:
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G,((V)),=(kK-nt+E+GR+ Ga) )
[k =nfrier(kK- i+ E+r GR+ GG Jk ,
+(k k=t + ig+qK+GG)_1 I kk- b+ Gk QQ_l J

-1

(8.3)

u’

kK -nf+i
V;)Gﬂ((o))l: +(kk-nt+E) 1K J,
+(kk -nf+i)” 3 (kK- i+ &) I

In leading order, this solution of course still tains (8.2) which is(krk’ -nf+ ig)_l J, . But
inside the overall inverse we now also have a 3eki (J*) and a newd, J’ (J?) term. This is
now an expression strictly fcIB#(J#) not G, (G,, J.), because we have cut off the recursion at

YT

the first iteration by setting the perturbatigr= -G k' — G G =0 in the final line.

Now, let us go to the second order of recursibtere, we start with the middle line of
(8.3), do a second substitution of (8.1) to aravéhe second order recursion, and then cut things
off by setting the perturbatiof =0. Now we obtain:

6, (V). = kK -nt+ie+(kK-ni+ &+ Gk+ GG) Jk _lJ
SN +(krkf—mz+i,9+(;‘;l{+CﬁG‘)_l I kk= e d+ Gk Qg_l o

kK =t + i
+KW—ﬁ+E4KK—ﬁ+s+QW+g®*gk ﬂjw
sk -nf+E+GK+GG)" J( kk- Awa+ gk 6Q°37) (8.4)
:_FKW—M+E%KK—ﬁ+£+QK+GGr'gk ﬂJ J,
+(krkf—rrf+ig+G[I{+QG‘)_l I kk=- g+ Gk gq_l S

kK =nf+ig+(kK-ni+ &+ GK+ GG)_l Jk
X JZ’

+(k k=t + E‘+G;K+GG)_1 I kk=- g+ Gkt ge’)_lJf

which, upon settiny =-G, k' - G G =0 reduces to:
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kK —nf+i
-1
. J K JJ
+ kK —nf+ig+—F —+ L J K
kK —nf+i (kk-nt+i)
b 8.5
G,((0)) = r r J,, :
,((0)), N rJrk L, JJ |y p (8.5)
kK =+ (kK -nf+ i)
-1
x| k K =ntf+ig+ T‘]Tk —+ 5 = J
kK —nf+i (k,kr—nf+i£)

It will be appreciated this second recursive iferatontain terms id, J*, J* and J*. A third
iteration would be expected to produce terms upJfo and in generaln iterations should
produce terms over the entire gamut bf..J*". As with (8.3),Gy((0))2 IS an expression

strictly for G, (J,) (really, G, (J,. k,)), not G, (G,, J,) because we have cut off the recursion

YT
at the second iteration by setting the perturbation0. But, having done two iterations rather
than one, we have some new terms that we did n@ athe first iteration.  So in general the
technique is to iterate as many times as one wjisiresd then seV =0 to end the recursion.
Each iteration will add new terms of yet highererahJ, and the result will be an expression for

Gy(Jy) with terms of orderd*...J*". And, of course, mathematically, theoreticaltyobtain an
exact, closedexpression forGy(Jy) not GT(GT, JT), one would iterate amfinite number of
times and then s& =0. But, of course, the real method we now needutsye is not to iterate
to infinity, but to figure out the pattern.

To discern the overall pattern, we do one morenson to then=3 level by substituting
(8.1) into the each and eveg, in (8.4). The expression fag, ((V)), takes up over a page,

and is not shown here. But upon settMg 0 to arrive atG#((O))3, this reduces to the still
very large expression:
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kK —nf + i

kK —nf+ie+(kK-ni+ &) Jk

+(kk -nf+ie)” 3 (kK- i+ ) I
Kk =t +ie+(k K-+ &) JK _:
+(kk —nt+ )" 3 (kK- i+ &) 3

kK —nf+ie+(k K-+ &) K _:f
+(kk =nP+ig) " 3 (kK- i+ )" J

(ki —nf+ie+) 3 (kK- i+ &

Kk =t +ie+(k K-+ &) JK _:
(ki —nt+ )", (kK -ni+E) J

Kk =t +ie+(k K-+ &) K _1T
(kK =nf+ie) 3 (kK- m+ &) J

kK —nf+ie+(kK-ni+ &) Jk

+(kk = nf+ie)” 3 (kK- mi+ig) Jr
Kk =t +ie+(k K-+ &) JK _:
+(kk -nt+ i) 3 (kK- ri+ &) 3

kK =t +ie+(k K-+ &) K _:T
+(kk =nf+ie) 3 (kK- m+ &) J

-1
] ¥

kK —nf+ie+r(kK-ni+ &) JK N ,
" 3K

-1
J ¥

J K

JT

. (8.6)

Even this is rather formidable, but now we haveugmoinformation to establish a definite
pattern that can be generalized to any order efrsgan.

Recognizing that the abelian boson propagatanay be denotedr™ =k k — nf + ig up
to a factor of, we rewrite the abelian (8.2) simply as:
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We also use this to write (8.3) as:
- -1 T -1
G,((0),=(r"+m, K +m3m¥)" 4, (8.8)

and to write (8.5) as:

-1
(e m K+ I ) 3K

G,((0)), = e +ﬂrﬂ_l) ’ L (8.9)
+(IT_1+ZTJTKT+ZTJTITJT) \][(ZT_1+ITJ[ K+7T;I7TJ) J

Now we see that(71‘1+7TJ,kr+7TJT7TJ’)_1 from (8.8) appears three times in (8.9).

Given this, let us next defin@™ = 777+ 773, k" + 73 1 . This allows us to rewrite (8.8) as:

G,((0),=n4,, (8.10)
and (8.9) as:
G,((0), =(7*+n3k+nan )" 3, (8.11)

Now we see that (8.11) looks just like (8.8), exdbat eachsr which is in a term withl has
advanced to d1. So now let's go to that rather large (8.6) tdl dawn the pattern. Using
Tt =k k' - nt + ie we first reduce (8.6) to:

- -1
ﬂ_l+(7T_1+7TJrkT +77J,ﬂJ’) T1K
T+ . J K

+(rt+m K +77J,7TJ’)_1 I +my R+ I d) 3

-1
(K i) 1K
G,((0)),=|+ ( )y Lol 3,.(8.12)

(e m K +77Jr7'rJT)_1 It +md R+ ) 3

- -1
7T_1+(ﬂ_1+ZTJTkT +7TJ,77JT) ' J K
X . J?

+(77‘1+7'r\],kf+7'[J,77JT)_l I(Wrt+m ) k+emJr3) D

Now, usingn™ = (n‘l +71J K + nJ,nJT) , we may further reduce (8.12) to:
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-1
rri+(rt+ndk+nan ) 1K
G,((0)),= | ) J,. (8.13)

-1 U

Hrtenak+nan ) 3 (mten Jk+n g0 3)7 3

But now, we see tha(n‘1+I'IJ,k’+I'I J 1M J’)_l from (8.11) appears three times in

(8.13). So now, we define yet anothar =7 '+MJ K +MNJMNJ and use this to rewrite
(8.11) as:

G,((0),=n3, (8.14)
and (8.13) as:
G,((0), =(m*+A3k+Mam )" 3,=0 J. (8.15)

This now has the form of (8.11) but with - n. Seeing the pattern, we further define

N =7"+NJ K +NJNJ. Itis clear that this is the pattern which vdbntinue for higher
recursive order. Now, let us systematize thisgpatt

Pulling together the various results from (8.8,10), (8.14), (8.15) and the various
notational definitions made along the way, we have:

G,((0)), =3, =(kK -+ k) J,

G,((0),=n3, =(7*+mI K+ I)*], | 6.16)
G,((0),=M3,=(r+nak+nan J)" J

G,((0),=n3,=(r +A3 K+ an I)" 4

Of course, for notational economy we do not want to have to keépgalars or primes or any
other qualifier to each of the “propagators.” So let us denote“pampagator” with a subscript

that simply declares its recursive order, thoss 77,, N =7, I =7, N =77, etcetera. Then,
we can inductively compact (8.16) into a fully recursive solutigst Jike the recursive kernel
n!:n><(n—1)! and the terminal conditiorD!=1 for factorial. Specifically, starting with

G, ((0))3 and working down, the recursive kernel and the terminal conditieinduced to be:

(776_1+7Tn—1‘Jr K +7Tn—1‘]fnn‘1j)_1 4
(k[kf— nt + E)_l J,

®
=
—
—~

o
~—-
~—
=]

1
N

(]
=

1

(8.17)

9]
=
—
—~

o
~—
S—
(=)

]

7,

a7



Jay R. Yablon

If we wish to separate the propagators from theggdields in (8.17), the recursive kernel and
the abelian terminal condition may be written aso

7= (" + 7,3 K+ 7, 3, F)

' 'n-1

4 (8.18)
7, = (kK = nf + i)

So with all of this in mind, let us now return(®21) which is an expression fG(G, J) .

But at any recursive order, we now know how to tims into G(J) without any gauge field

residual: Just zero out the perturbation. Of seunature will not stop at some order and then
zero out perturbations. She will recurse ad infim and the physics we observe will be for an
infinite-order recursion. So in the natural wonlee expect that the observed non-linear solution

for G(J) will be the one which recurses to infinity, thumitains terms up to infinite order in J

and ink (really, 2xo in J), and then sets the perturbatignto zero. That is, we expect that
nature’sphysicalsolution (8.1) will be:

G, =(kK-nt+E+GK+GG) J=(kk- fma- ¥
=-(D,D"+n? i) J,=-(0,0+nf--iGO'-GG) (8.19)
=G,((0)). =m.J,= (no’l+nw_lJ, K +71°°_1J,nm_lj)‘l J

Above, for future use in doing an analytical pattegral in section 11, we have also included the
earlier solution (6.27) to the field equatield” =(g“"( DD + nf)— g U) G, of (5.15) with a

Proca massive boson and D?D" =070"-iG?0" -2G’G"+ GG from (5.16) and
D,D" =0,0" -iG,0" -G,G" from (5.17). We especially wish to take noteh# torrespondence

T, o —(DTDT +n’ - ig)_l. And we also note the embedded corresponde@ges~ ., J K

and GG - m_Jm_J, which both contain the elemental correspondence
G o m_J UmJd.

Very importantly, written as:

0,60, =2 (s Ak a9 -
7% = (k k= nf + i)

we have an expression f@&(J, k) rather thanG(G, J, k), with all gauge fields removed. What

is left of the gauge field is its momentum veckolinteracting with the current density in the
terms J, k" and contracted with itself in the linear teri” .
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Why is this all so very important? First, it ptsrout that although (8.1) appears on the
surface to solve foG, (J, ), this is not alosedsolution. Rather, it is reallyracursivesolution

for G,(G.J)=G(G(G.J).J)= G( c/RcENcTN I ) which can be iteratively
recursedhd infinitum but at any order can be cut off and turned '@Lc( J#) notG, (G, J,) by

settingV =0, i.e., by ceasing any further perturbations. sTimiakes the non-linear nature of
Yang-Mills theory very apparent from a differenewi thanF*,, =9,G*, + f™*G',G, of (1.9)

or F=dG+ GOG of (1.11) which are the usual expressions useligblight the non-linear
nature of Yang-Mills theory.

Secondly, and of very deep importance, this recnrsay well point the way toward
being able tanalytically and exactlguantize Yang-Mills theory. Specifically, we noeturn
to Jaffe and Witten who on page 7 of [6], state:

“Since the inception of quantum field theory, twentral methods have
emerged to show the existence of quantum fieldes@mcompact configuration
space (such as Minkowski space). These known methogl (i) Find an exact
solution in closed form; (i) Solve a sequence ppraximate problems, and
establish convergence of these solutions to thieedielemit.”

The foregoing suggests a third method which islyemlhybrid of (i) and (ii): find an exact
recursive kernelin closed form (which isG, :(k,kr -nf+E+GK+ G G)_l J) and then

expand that kernel in successive iterations to lsme the recursion behaves in the limit of
infinite recursive nesting. That is exactly wha thave done in (8.17), (8.18) and (8.20).

Specifically, regardingG, :(k,kr -nf+E+GK+ G G)_l J as the zefd order

solution for G, (G,, J,), with each iteration of5, (G, J,) from then™ to the +1)" recursive
order we are effectively replacing all gauge fietglsat then™ order with current densitie3, up
to the 2(n+1Y order, and at the same time injecting a new sefaafje fieldsG, at the a+1)"

order. But at any time we can stop introducing ngawuge fields by simply setting the
perturbation to zero. So at each order, wheneeedeeide to do so, we may effectively strip out
the gauge fields and replace them with currentileas This means that in the limit - o we
may effectively replace all gauge fields with catrdensities by stopping perturbationmat o .

Very similarly, when we take a path integrm:jDGexpiS( G =¢ expiw( J,
becauseG is the integration variable, we effectively stgff the G and obtain a quantum
amplitudeW(J) expressed in terms of the current denditySo the infinite recursion has the

same effect as a path integral in terms of tradinfpr J. But as pointed out at the start of
section 6, the mathematical exercise of analyfcediiculating a path integral revolves around

clever extrapolations of the Gaussian integfdlxexp(—% AX - J)) :(—ZT/ A)'s ex;( 3 /2/)
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into Z:_[DGexpiS( G =¢expiW( J. The calculation impediment we run into is that
J'dxexp(—% AX — J>§ is integrable because it is quadratic, but becoguite intractable once

this integral involves a polynomial of® and higher order, which is exactly what happens in
Yang-Mills theory and indeed, any non-linear intdi@n theory. Why is this intractable?
Because nobody knows how to calculate such integredctly and analytically!

The usual and best workaround is to employ what[Z&kin Appendix A refers to as the
“central identity of quantum field theory”:

_[anexp(—%w]( -V (p)+J []p) =@ exy:(—v(d /5J)) ex;é% JOK™ DJ) : (8.25)

This method uses the functional variatidhﬂ -~ 0103 to remove all terms which are

polynomial (greater than second order) in the galigld G,, and replace them with terms

"
5/48J# that contain only the current density. This atioexp(V (& /5J)) to be removed from
inside the integral, so that the only terms letide the integral are quadratic @),. Then, the
integral is performed to obtaiexp(%\] [K‘1DJ), and the operation oéxp(-V (4 /3J)) on
exp(%J K™ DJ) is thereafter used to extract order-by-order temnmfie quantum amplitude to

reveal various Green’s and Wick’s coefficientshistamplitude.

The very important point is that an infinitely+i#give application of the recursive kernel
G, :(k,kr -m+E+GK+ G GE)_1 Jof (8.1) serves a purpose totally analogous to
G, ~d/33. But G, - (m*+m I K+m Jm, ,J)"J, from (8.20) is now the
replacement we use in lieu 6f, - 0/0J”. In the limit of infinite recursion, this will aw us

in section 11 to do an analytically-exact calcaiatof the path integral by turning, into J,

on an order-by-order basis such that in the lirhin@nite nesting, all of the gauge fields have
been replaced by current densities which then pmsgroblem to carrying out a Gaussian

integration which is simply of quadratic for!ﬁnlxexp(—% AX — J>§ in the gauge fields.

Now, let us return to the Yang-Mills monopol@ﬁF = —i”_[dGG# 0 of (3.3) and (5.9),
and particularly the identity’ = d[G, G] = dGC of (2.11) upon which this is based. It will be
our goal to use one or more of the inver@e(s]) that we have developed here to replace &ch

in this monopole with its source currehtthen to replace eachwith fermions viaJ* =gy y
then to apply exclusion to the fermions, and thenshow that this faux magnetic charge
P'= d[G, G] = dGC - at least in the classical theory — has the ezaote chromodynamic

symmetries as a baryon.
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9. Populating the Composite Yang-Mills Magnetic Moopoles with
Chromodynamically-Colored Fermions

Let us start the present discussion with the ijet[ G, G| = dGG uncovered in (2.11),
which we combine with (3.3) and then expand inteste component expressions (see also (2.8)
and (2.9)) while also including the faux magnetiage P' = -idGG=-id[ G d, as such:

fpr =[P =-i[lface=-ifdc d=-ij[& g

=fp4F,d¢ Od¥ =[[[4 B, d O d4 O dk
=-i[[[4(8,,6,G, +8,,6,G, +9, G, G) dX 0 d& 0 ok . (CRY

[o=4]

=-i[[[4(0,[G,.G,]+3,[G,.G]+0,[ GG ]) d¥ O dx O ok
=-ifp4[G,.G, Jd¥' Ddx #0

Let us now further develop (9.1) using the inversssewed in sections 6 and 7.

For amasslesgauge boson in non-abelian gauge theory, we foladthe relationship
G,=-(D,D7)"J

H u
(5.15) with D°D” and D,D" given by (5.16) and (5.17), in the circumstancessgtthe current
density is conserved according bpl” =0 as found in (5.20), because this continuity

contextually fixes the gauge to the Feynman / catly gaugeé =1, see (7.22) and (7.23). We
further found in (7.24) that by setting the mams-0 in (6.15) for amassivegauge boson, we

is theuniquesolution to the field equation-J" = ( g”D,D' - D7 D“) G, of

arrive at exactly the same soluti@), = —( D, D’)_l J,. And, we found that in (7.25), in order to
include the +ig prescription in the non-Abelian theory, we neednmy migrate
D,D" = D,D" —ie. So as shown in (6.27), the non-abelian soluilora massive gauge boson

is G, = (nrn’ -m+ ig)_1 J,, while as shown in (6.28), the corresponding alpetiolution for a

massive gauge boson G, :(k,kf - m+ is)_l J,. So again, we are reminded that the non-

abelian solution is identical in form to the abeli@lation for a massive gauge boson, but for the
replacement of the canonicklk’ with the kinetic 7z777 momentum scalar, which replacement

can be made in the massive theory becay& =0 is a requirement, and which replacement

maybe made in the massless theory if one chodg85 =0 although one does not have to. So
the massive solution is more unique in this waytthee massless solution.

Now we wish to replace ead®, in (9.1) with its unique continuity solution, i.evith

the gauge contextually fixed t§ =1 because of requiring continuity, eithérJ’ =0 for
abelian theory, or D_,J° =0 for non-abelian theory, and to have the resultabeuniquely-
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determined as possible. Based on the developmesgctions 6 and 7, we have four choices of
solution: a) the massive non-abelian solut'@p:(—v+ k K- nf+ E)_l J, of (6.27); b) the

massive abelian solutio, = (k k' - nf + Lo)'l J, of (6.28) which is simply solution (a) with

V =0; c) the massless non-abelian solut®n= (—V+ k K + is)_1 J, of (7.26) in thek G" =0
gauge which is simply solution (a) wittm=0; and d) the massless abelian solution
G, :(k,kf + ig)_l J, of (7.27) which is simply solution (b) witn=0 or solution (c) with

V =0. Because one can follow Coleman-Zee as showadtiosis 6 and 7 to include a massive
boson solutionm#0 and then arrive at the massless solution simplsétying m=0, and
because the massless solution is uniquely forcabetd =1 gauge to preserve continuity and

thus we arrive at the exact same point whethertare with a massive or a massless solution, it
makes more sense to first include the mass0. This is a more general approach, and as we
have seen, this mass can always be zeroed out datdre appropriate time, whereby the

requirement for continuity will contextually fix ¢hgauge into the Feynman / continuity gauge

é=1.

But there is also another more specific reason starting with mz0 beyond its
generality, and that has specifically to do witle tiniquenesf the massive solutions. Even

though the continuity relationshig3,J° =0 andd_ J° =0 do zero out the terms containing the
gauge numbeg from the massless bosons and contextually fixgénege toé =1, see (7.22)
and (7.23), the conditiolk, G" =0 is required for a massive boson but is simply a covariant
choice of gauge condition for a massless gaugerboSw if we start with massive solution (a)
whichisG, = (—V+ k K= nf+ ia')_l J,, we know that the gauge conditiénG" =0 mustbe in

place because that is a requirement to ensurencitytifor the massive solution, and that the
perturbationV appears in simple form in this solution precidedgausek, G" =0, see (6.6) and
(6.7), and (6.24). On the other hand, if we staith massless solution (c) which is

G, =(—V+ k K+ is)_1 J,, we know even though the gauge number is contixtéized to
¢ =1 by continuity, again, (7.22) and (7.23), thaG" =0 is merely achoiceof gauge, and that

the manner in which the perturbativrappears inG, = (—V +k K+ ls)_l J, is itself dependent

upon this choice ok G' =0 gauge. If we choos& G" #0, thenG, = (—V+ k K + is)_1 J,
will have to include thik G" # 0, and so its very form will change. So solutia i§ uniquely
determined in all respects up to the covariant gaumpndition D,D'8=0 ak.a.
0,0"6-i0, [G“,H] =0 developed after (6.5), while solution (c) is comttelly fixed to theé =1
gauge by continuity buD,G" =0,G’ remains a free scalar object whichnist required to be
zeroand so renders the massless solutions weakerless:unique than the massive solutions.

Again, this solution will only beG, :(—V+ k K+ 'E)_l J, if we choosek,G" =0 and will
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change in formin the event we chooselaG’ # 0 whereby we will explicitly have to include a
k,G" term.

So to preserve generality and maximize uniquenessshall now use solution (a),
namely Gﬂ:(—v+k,k’— nt + 's)_l J, of (6.27) to replace each occurrence Gf, with

(—V +k K = nf+ E)_l J, in (9.1). This has eequiredgauge relatiork, G" =0, and a selected
gauge conditionD,D"8 =0 which does not change the form of the solutiorthie event one
choosesD,D"8 # 0, see (6.5) and thereafter. As noted, this beccsoksion (b) if we seV=0,
this becomes solution (c) if we set=0 and choosek,G" =0 as a gauge conditigrand it
becomes solution (d) if we s&=0 andm=0 and again choos& G =0. Thus, inserting

G,=(-V+kK-ni+ &) J into(9.1) we obtain:

fiF =fif7 =-[feee=-{fa 4=~ fla q
=fp4F, ¢ OdX =[[[4 B, dX 0 dx O dk

a[g((—v+k,kf— nf+ ) Jﬂ])(—v+ kK- h+ &) )

=-i[[4 +a[ﬂ((—V+krkf—m?+ e)* %)(-V+ kK- h+ )" ] |d¢ Ddx 0y

+a[v((—v+k,kf— nt+ )" Jg])(—v+ kK- th+ &) ]

60[(—V+k[kr— nt + ie‘)_1 Jﬂ,(—V+ k K- m+ é'r) DJ}

=-i[[[4 +aﬂ[(—V+kar—rrf+ £)" 3,(-v+ kK- e+ &) g} dk0 dkO dx

+0, [(—V +kK-nt+E)" 3,(-Vv+ kk- b+ &) g} (9.2)

:—i@%[(—vmw— nt + 'E)_l 3.(-V+ kK- i+ g)_l g} O dxz 0

This is the complete expression for tetflux <ﬁ> F of the non-abelian magnetic field over a

closedtwo-dimensional surface, and as we just learneskettion 8, it is highly nonlinear, and
indeed, contains an infinite recursion 6f (G,, J,) which is ultimately made int6, (J,) by

recursing to infinity then settingy =0 as shown in (8.20). Indeed, we could also have
employedG, =, J, in from (8.20) in (9.1) to alternatively and eqaiiently obtain:
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§pF((0)), =[[]P'((9)), =-if[]dec((0) md[ee] =-ifp[&.4((9

=¢p4F,, ((0), d DdxX =m§ >, ((0). d€ O d& O d

=—im%a ,3,7,3, +0,,7, 3,7, 3, +8,7, 3,7, J,) dX O d& O dk (9.3)
—|m'3.( m,d,.m3,]+0,[m 3, 3]+, m, 3,71, ])dx"DdX’Dd%

=-ifp4[ anﬂ,anv]dﬁDd“o

We will eventually return at the end of sectiontd@iscuss (9.3) above in more detail. But at
the moment, (9.2) is in a form that better fa@btunderstanding the connection betw&erand
a baryon density, because we can\éetO at any orden of recursion we choose and thereby

obtain SEJS F

Before trying to tackle the highly-nonlinear (9.Xee the section 8 discussion of
recursion that is inherent in the above because?) (ontains the perturbation

V=kG +GK+ GG of (6.7) throughout, let us now do what is comnyoibne in many
other situations in particle physics: consider thero-perturbation limit by setting/=0
throughout (9.2) right away. That is, we obtaim arxplorecﬂSF ((O))O . This will of course

remove the non-linear physics occurring in (9.2)f i will readily reveal why these faux
magnetic monopoles have the symmetries that onecexgo see in a baryon. Moreover,

surprisingly enough, when we u@ F ((O))O to calculate the energies associated with the flux

equationjﬂ P = —i<ﬁ>[G,G] after some development of the baryon into protams neutrons,

we find a surprising, very tight concurrence witle tbinding energies that are experimentally-
observed in nuclear physics, which suggests thatnibclear binding energies are in fact
expressive of the behaviors of (9.2) in this zeeoyrbation limit, i.e., in the linear / abelian

approximation (see [15] sections 6 through 12 dhaf §16]).

Once we seV=0 in each of the(—v +k K = nf + E‘)_l in (9.2), these each become the
ordinary denominator 1/(krkf -nf+ E‘) because as developed in (6.26), it is

=k, G 5t G 5K +( G G’)AB which is responsible for our having to write (9\&jth

inverses rather than denominators. Thus, seMn@ and rearranging somewhat, (9.2) for
@ F ((O))0 and P’((O))O becomes:
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fpF (), =[[P((9), =~if]facc((9), =~ 1[[] d[ & ]((9), =~ fp &.d((9),

=¢p+F,. ((0),dx Odx =[[[4 B, ((0)), d¥ D dx O d&

=-i||lL a[”‘]f’l‘]v alﬂ‘]vl % a[v‘]o]‘L N X! X
e s R s N LT

/LA L) N G L AL ) B WPV
(kk -n?+ig)” (kK -nf+E) (kK- m+4)

ifea [Jed]
= I#Zl!(krkr—nfﬂf)zd)(ﬁlmd)( #0

Although the complete non-linear physics <§f>F # 0 is described by (9.2) and alternatively

(9.3), the simplified (9.4) enables us to reveataie key symmetries forﬁﬁ F #0 which will

support the view that the faux magnetic monopolesig P’ is in fact a baryon density, which
symmetries carry over fully to the more-completighty-perturbed (9.2), (9.3). We shall refer
to (9.4) as the “ground state” monopole equatiogcabise the perturbations are zeroed out
immediately before any levels of recursion areiedrout.

Of particular interest, let us now focus on thei”jd [G.G]((0)), term in (9.4), which
we restructure into:

@F((o))ozg[jsz, (O)dx”Dd%
=[[[P((0)), = [[[ 4 R ((0)), o Dax O dk=~[[[ 4 G ((9), . (9.5)

=—im%( a”[J”’J“] LI CALY %% 3,] zjdx‘fmdﬁmd%

(kK -nf+i) (kK-m+&) (kk- m+d)

From this we extract the faux magnetic monopolesitgmaised to contravariant indexes:

07 34,3 . NN i |7, ] | ©6)
(kk-nf+i) (kK-ni+&) (kk- A+ 4)

0]

Now we take the crucial step of developing theenirsources densitie¥” in terms of
the underlying fermion wavefunctiong which arise in Dirac theory. Specifically, in #ba

gauge theory, Dirac’s equation says t(iazt”a# —m)(// =0. For the adjoint spinay =¢")° the
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field equation isiaﬂtZy“ +my =0. Adding yields a, (tZy"t//)=0 as is well known. And
because the conserved current is expressed By =0, we identify the current density with

J¥ =ywy*y , where each Dirac wavefunctign in a U(1) theory is of course a four-component
column vector.

In non-abelian gauge theory, for the compact stngduge group SU(N) (or for the
product group SU(N)xU(1) with a U(1) factor thatrsquired for magnetic monopoles to be
topological stability as will be reviewed in secti@0), the generalized wavefunctish=W¥ ,,

A=1..N is an Nx4 column vector of 4-component Dirac wawetions ¢ . This non-abelian

wavefunction W may then subsist in any one Nfdistinct eigenstates. For example, for the
SU(3)x group of chromodynamic strong interactions, theed¢h(3) eigenstates are generally
denoted (R)ed, (G)reen, (B)lue, and these distagenstates are used to enable a baryon
containing three quarks to satisfy the Fermi-DiPaasli Exclusion Principle. Explicitly defined,

using the SU(N) group generatosk =A,,, i =1..N*-1, the current density generalizes to
I = A4 = N, WA "W =Wy W, with Yang-Mills adjointi and fundamentah,B,C,D
indexes explicitly shown for illustration, and whels already stated¥ =¥, is an N-

component column vector of N fermion eigenstatés has been reviewed at length earlier
staring at (5.20), this current density satisfieg tcontinuity relationshipD,J” =0. For

SU(N)xU(1), we may for simplicity usel,; with i =0..N*-1, where we denote the U(1)
generator as A, with the “0” index. If we suppress thé&,B,C,D indexes, then
JH= AT = PN =Py

So now, into (9.6), we first substitutd* = A'J#, then J* =WA'y*W¥, and then use
[/]HA'](G/]W”W)(@/PV’W) :[Gyﬂw,mva] (ust a variant of A', A’ |A*B¥ =[ A, B'] )
in (9.6) to “populate” the faux Yang-Mills magnetimonopole with fermions. The result is:
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| 6”([/1i,/lj]J‘”Jj”)+6”([/1i ,Ai]J“J“)+a“([/1 A 975
(kk-nf+i)  (kK-rm+&)  (kk- e+ &)

7 (). =-

9° ([/v AT (P4 ) (wa va))
(kK - nf+ i)
. o (pi,m](ww)(ww)) o
(kK = nf+ i) |
K ([/1‘ A (P4 yew) (wa y"LIJ))
(kK - nf+ i)’
. 07| Wyrw, Wy W] . o[ Wyw, Wy i Eaiiad
(kk-mt+ie)  (kK-m+ &) (kK- rh+ d)’

We could just as readily have just insert&ti= Wy*W into (9.6) to arrive directly at the bottom
line of (9.7), but it is helpful to see the intemiie calculations which explicitly contain the
group generators. Given th#F :”j P', and referring back to the discussion at the end o

section 3, we now see for the first time the mannewhich Cﬂ)F(G(J(l[/))), that is, the

manner in which theompositefaux magnetic monopolﬁ F arising from the faux magnetic

sourceP' =-idGG= —id[ G G] does indeed contain fermion wavefunctioHs Now, we shall

show how these fermion wavefunction in fact possdk®f the key symmetries required to
gualify them as colored quarks, and h&#" possesses all of the key symmetries of a baryon.

The first thing we observe is th&t"”‘”((o))0 contains three additive terms. And, as

discussed moments ago, for SU(N) or for SU(N)xU@ach W =¥, is an N-component
column vector of 4-component Dirac wavefunctiags which may subsist in any one bf

distinct eigenstates. So if we regaFd"‘”((O))0 as a composite system of more than one

fermion, then each fermion in this system must laequ into a distinct eigenstate in order to
satisfy the Fermion Exclusion Principle. The thageditive terms in (9.7) advise us that there are

a total of three such fermion eigenstates whichstire P""‘”((O))O, and so we label these
eigenstates among the three additive termsbagb,,W,. With this we now rewrite (9.7),
including a restructurin@ﬁy"w,my’w] :GV[”WEV’“P of the commutators in the bottom line
below, as:
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7 (o),

A e s AR A I AN AT A 09
=i 4+ —= 44 = 2|, .
(kK =nf+ ) (kK- ni+ &) (kK- rh+ &)
0° (P By Iw) o (WY W v ) o (Wyw @y )
= + 7 T 2
(kK - mz+i£) (kK- i+ &) (k&= rh+ 4)

Because we must be able to place the fermionsanéoof three distinct eigenstates in
order to satisfy Exclusion for the composite grostate faux monopolé " ((O))0 we must

now chose a rank-3 gauge group in order to enfthieexclusion. There are two apparent
choices. First is the simple group SU(3). Sedsnthe product group SU(3)xU(1). But as we
shall see in the next section, there really is aothoice and we actually must choose
SU(3)xU(1). But to start simply, let @ssumehe simpler choice of SU(3) until contradicted,
and then see why we are later compelled by comtiiadito amend this choice to SU(3)xU(1).
Choosing SU(3), we first label eigenstates. Beedhs labels are arbitrary, we use the names of

some colors, say, (R)ed, (G)reen, (B)lue. Thusguthe SU(3) generatord' normalized to
Tr()li )2 =1 we define:

/8 0 0
WP =40°=0)=] 0 (W, 5|42 A% =d) = g W, =[A°= - A%= 1) =) 0].(9.9)
0 0 ¢,

Now, all of a sudden, in a very consequential stepsee how these'*” ((O))0 ground
state magnetic monopole densities contain thremides in one of three eigenstates R, G, B, and
how SU(3)(or really, SU(3)xU(1) as we shall see in the nexttion) emerges asraquired
gauge group in order to force exclusion upon thmi@ns that comprisd® *” ((O))0 In other
words, we have never had postulateSU(3) per sein order to force exclusion on the quarks

within experimentallyobserved baryons. Rathere have been forced to introduce SU(@) at
least a rank-3 gauge group) in order to ensure gor@xclusion for the fermions of the

theoreticallymotivated P'*" which first emerged back in (3.3) when we founaitkﬁ) F#£0in
a non-abelian gauge theory, and when we foundhleatinderlying magnetic charge density was
the composite?’' = -idGG= —id[ G G] which is faux-assembled from the gauge fi€kdsAt the

same time, because we aeguiredto select a rank-3 gauge group which for now i$33and
because we have labelled the eigenstates withatres of colors, there are now eight gauge
bosonsG', in G, =A'G , associated with (9.8), and each of these wilbbeolored, just as are
the gluons of chromodynamic theory. This meansweamay be able to obviate the need for a

separate postulation of classical or quantum chdymamics, such thathromodynamics no
longer a fundamental theory, but rather is a camoli secondary theoryhat emerges in the
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process of enforcing fermion Exclusion upon themniens contained in the non-abelian faux
magnetic monopole density (9.8).

Now we focus on the terms of the fo¥ which appear in the bottom line of (9.8).
These terms have a column vector to the left obva vector, and using (9.9), these may be
explicitly written in 3x3 matrix form as:

We 0 0 0 0 O 00 O
YW= 0 0 0]; WW,=|0 ¢y O; W, ¥.=|0 0 0 | (9.10)
0 00 0 0 0 00 Y,
We may then use this to rewrite (9.8) in expliciB3natrix form:
07 (P w W) . .
(kK = nf+ i)
o (W yey
P ((0)), = - 0 L.rvcw 2 ) 0 (©.11)
(k Kk =t + )
. . 0 (Wl wothoy'V,)
(kK = nt+i)

Next, we focus in or!//R(//_R:uRu_R, (//Ggl/_G:uGu_G and wBQTB:uBu_B which involve
ordinary, four-component Dirac wavefunctiogs and spinorss, and we focus especially on the
uu which contain a column spinor to the left of a repinor. Often, the Dirac spin sum
relationship is normalized tdl* = E+ m and so is written a§_spinsuﬁ =( p+ m). Butif we wish

to be more general and defer a decision on norataliz, we may employ in (9.11) the spin sum
prior to normalization which is (see, e.g., [14] exercise 5.9):

_ 2

N
ZSpinsuu = E+ m( p+ rn) (912)

So, if we now take the sum over all spikg, P"*" ((O))O of the faux monopole (9.11), and if

we apply (9.12) in the fornZ,,, u.u. = N*(p. + m)/( E+ m) to each coloiC = R G, B of
fermion, we may use (9.12) to rewrite (9.11), foee moment without-i¢ , as:
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> P ((0)), =
NZ O (W (et my) I, . .
Ee+ My (kK - nf) .(9.13)
; . N2 O (W (P mu)y,) .
B+ (kK -nf)
. . Nz 0 (W (pe +m) W)

Ea+my (kK =n?)

Next we next turn our attention to the expressipps+ ”‘t)/( k K- M) which appear
in each diagonal entry above. We simultaneouske taote of the fact that the fermion
propagatoti (p - m)_1 sans+i¢ is related by a constant facido:

p+tm _ p+t m B 1
= =(p- . 9.14
p'p -t (pr (/- o (p-m) ©19

So we are motivated to see if there is a basis wiich we may set thép, + rrb)/( kK- rﬁ)

terms in (9.13) to(p— m)_l and thereby introduce the propagator for eachhe$d¢ fermions
directly into (9.13). For this, we return to thisalission of sections 6 and 7 during which we
developed inverse solutions to the electric chageation—-J" = ( 9” DD -D7 D“) G, in both

massive and massless form, and where we also redi¢le degrees of freedom of various
solutions and related questions of uniqueness.

Each term in equation (9.13) contaihE(k,kT - mz)z, that isl/(krk’ - n?) times itself.
As noted in the mass shell discussion prior to4%.%e are usingp’ and k? respectively to
denote fermion and boson momentum vectors. And;oofrse, eacrl/(krk’— nf) entered
(9.13) back at (9.2) when we inserted the massivesom inverse solution
G, :(—V+ k K —nf+ E)_l J, of (6.27) into (9.1). As reviewed in sections 6da7, this
solution, in view of the continuity requiremer®,J” =0 of (5.20) and the consequently-
mandated covariant gauge,G” =0 of (6.5) isuniqueup to the gauge conditio®,D"8 =0
aka.9,0'0-id,[G",6]=0. And this solution is unchanged in form under an-abelian
gauge transformation because nowhere does the sicphyparameteil@ appear in any of the
covariant physics equations. So in trying to maipt( p. + rrh)/( kK- rﬁ) which appears in
(9.13) with (p+ m)/( PR- rﬁ) in the fermion propagator-related (9.14), we deat the

numerators match up perfectly but there is a mismat the denominators. Particularly, each
k k" —nf in (9.13) is the propagator denominator for a rivesgauge boson which hésree
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degrees of freedom, while@’ p, - nf in (9.14) is the propagator denominator for a nvass
fermion which hagour degrees of freedom. So, how do we match thesangowhat impact, if

any, might this have on the uniqueness of the isoiuG, :(—V+ k K- nf+ E)_l J, upon
which (9.13) is based?

Because each of the boson propagator denomin]at()k;s,k’ - nf) in (9.13) represents a

massive boson with three degrees of freedom, t’malé(kr k' - rr12)2 which is a product of two
boson propagator denominators thus representsegjreds of freedom. So we now take each
1/(k k" = nt)( k K - m) and shift one degree of freedom from the firstk k' - nt) into the
secondl/(kr K" — nf). That is, keeping in mind thgd” and k? respectively denote fermion and

boson momentum vectors and that the former hasdegrees of freedom (particle / antiparticle
in each of spin up and spin down states) and ttierlavhen massive has three degrees of

. . .. . 2
freedom (two transverse polarizations, one longaildl, we rewritel/ (k, K" — mz) as:

! = L = ! (9.15)

(kk -nt) (kk -nf)(kKk-ni) Kkk( pb- A

What we have effectively done is to take the 6=3+@ees of freedom represented in the first
term, and redistribute them into 6=2+4 degrees of freedpresented in the final term. In the
final term, therefore, we have turned one originally-nvassgauge boson propagator

denominatorl/(k, K" — nf) into a massless gauge boson propagator denomihéitgk” . But at

the same time, we have turned the other originallysimasggauge boson propagator denominator
1/(k.k" = nf) into a massive fermion propagator denominatéfp, p’ - nf). This is very
analogous to the Goldstone mechanism used to gags mo massless gauge bosons by shifting a

degree of freedom from a scalar field into a boson fieldre, we are simply shifting a degree of
freedom from a boson field into a fermion field.

Now we saw of course in sections 6 and 7 that thgiso for a massless gauge boson
was less-unique than that for a massive boson, predisebuse the massless gauge boson has
one less degree of freedom. But we also saw howexbmatters, and how the context of a

conserved currenD,J” =0 contextually fixed the massless boson into the Feyn/ continuity
gaugeé =1. The onlycontextualloss of uniqueness in the massless solution, thexefas that
D,G" =0 was no longer a mandatory constraint but insteas welegated to a mere choice of

gauge, which meant that,G” =0 was also demoted from a requirement of continuity to an
optional gauge condition. And all of the non-unigess of the massless solution, even before
the application of continuityD,J” =0 fixed the gauge number td =1, emanated from

removinga degree of freedom when going from a massive to alesasgauge boson. But in
(9.15) we are natemovingany degrees of freedom as we did in going from se@itmsection
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7. We are merely shifting them around in the oNe@ntext of (9.13) according to the recipe of
(9.15). So after we apply (9.15) to (9.13), wel wdt in any way alter the uniqueness of (9.13).
It will remain just as uniquely-specified after 19), as before (9.15). Effectively, we
contextually dodge the additional non-uniqueness that emengegoing from the massive
solutions of section 6 to the massless solutionseafion 7, bynovingrather tharremovinga
degree of freedom, in th@ntextof (9.13).

So let us now do exactly what we just said. We mge (9.15) in (9.13) to shift around
the six degrees of freedom in each diagonal elerfment a 3+3 to a 2+4 configuration, and at
the same time we label thp, and them in relation to the color of the fermion in eaclhnte

Thus, without any loss of uniqueness, simply bytisig a degree of freedom, (9.13) becomes:

2 ns? ™ ((0), =

Nz 07 (W (Pt my) W) . .
ExtMe kK (pe By - m?) .(9.16)
N 04 (W (ps +my) W)
Ec+m kK (p, R - m?)

i 0 0
Nz O (P (pe ) W)

0 0
E,+m, k,kr(pB, per—mBz)

Importantly, in the process of shifting degrees fidedom, the remaining boson
propagator denominator in each term has becbhikek” which is the propagator forraassless
gauge boson. So now, the eight bi-colored gaugerms of the required SU@Eproup have
become massless, at the same time the fermionsdeguered mass since they have four degrees
of freedom following application of (9.15). Becaute eight bi-colored gluons of QCD are also
massless, this means that the gauge bosons assouidh (9.16) have now have three very
important symmetries that match up with the gluoh®CD: 1) there are eight of them, 2) they
are bi-colored, and 3) they are massless. Yegusecof using a Goldstone-like method for what
is a variant of the contextual gauge shifting désad in section 7o uniqueness has been lost

Now we return to the normalization which we deddrback at (9.12). Often, as noted,
the chosen normalization 81> =E+m. Let us instead, however, for each term in (9.16)
choose tdnclude thek k" massless boson term in the normalizatidrhat is, for each term in
(9.16) let us now normalize to:

N?=(E.+m) kK. (9.17)

So, applying the normalization (9.17), and propagakpression (9.14) for each fermion color
C =R G, B, we reduce (9.16) to:
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L (), =
07 (Wt (b -my) ™ W) 0 0
- 0 o (W (s = my) "W, ) 0

0 0 0" (Wt (e~ my)" 1w,

.(9.18)

Next we look closely at one of the terms abovg, e termW ) (p, —m.)" !W, on
the upper left. Making explicit use of (9.9), thesm, is:

Yr

W (=) W= (e O O (pemm) V| O (=g (o m) Py - (9.19)
0

A similar result obtains for the other two termsiieh now allows us to rewrite (9.18) as:

2P ™ ((0)), =
07 (¢l (P me) " ' ) 0 0
- 0 0 (weh” (Pa=ms) ™ Vo) 0
0 0 0" (Weh (ps—me) " 1)

.(9.20)

Any time we wish to calculate with the propagatmtsi (p - m)_l and also includeie, we set
these toi (p—m) " =i( p+ m)/( pP- M+ Jf).

Finally, in another important step that will lead 1o topological stability, we take the
trace of the above. This yields the fully-develdpspin-summed trace of the faux monopole

density P' =-idGG= —id[ G G] in the zero-recursion, zero-perturbation Iirﬁi@))o, namely:

TP ™ ((0)),

=i (07 (war (Pe=ma) " P ) + 04 (0 & (P M v J+ 0" (0 47 (e MY Py )

We shall now show how this has the identical symiee®s a baryon, how this leads directly to
meson mediators of interactions between monopbt®s,this requires us to choose SU(3)xU(1)
rather than SU(3) as our rank-3 gauge group, hasMeads to topological stability, and how the
above becomes flavored into protons and neutrons.

63



Jay R. Yablon

10. Why the Composite Faux Magnetic Monopoles of Ya-Mills Gauge
Theory have all of the Required Chromodynamic Symmeies of Baryons, and
how these are Flavored into being Topologically-Stde Protons and Neutrons

In the trace form of (9.21), we see clearly that_, P"*" ((O))O is a third rank

antisymmetric tensor in spacetime which will reeessgn under the interchange of any two
adjacent indexes.  From here, we simplify by jusiting =, -~ 2. Let us denote this

fundamental antisymmetry, which is an inherentdieabf any magnetic monopole in spacetime,
using the wedge-product notatienJx Llv . If we now associate each color wavefunction with

the spacetime index in the relatéd operator in (9.21), ie.g~R, u~G andv~B, and
keeping in mind thafTr=P'** ((0)) is antisymmetric in all spacetime indexes, we roag
ocOuOv~ROGOB=H G B+ ¢ B R+ B R to express this antisymmetryBut this is

the exact colorless wavefunction that is expected daryon. Indeed,the antisymmetric
character of the spacetime indexes in a magneticapole should have been a good tipoff that
magnetic monopoles would naturally make good bay®o, we now may assert that the non-

abelian composite faux monopole densitgP'*" ((O))O in the ground state (9.21) has the exact
same antisymmetric colorless chromodynamic symnasrgoes a baryon!

Now, let us lower the indexes in (9.21) and wititis as the differential form relation:

TrzP'((0)), =Tr4 R, ((0)), d¥ O dx O dx
0, (¢t (Pamme) v
==—3i| 0, (t/f_eyv (Ps—me)” yg]t/le) A 0 d¥ 0 dk. (10.1)
+0, (Walt (Pa=me) " v, 004)
Wbt (Pa=Me) " Vol
=—2i0, | *Wel, (Pe —Ma)” Vs [ O dx' O dX

3!
- -1
'Hﬂsy[y(ps_ms) yv]wB
In the bottom expression, @, with the sameo index has been factored out of the entire

expression. So now we can apply Gauss’ / Stolas¢im to (10.1), and can use the forms in the
top line of (9.1) to help us out.

Specifically, by expanding some of the forms intitye line of (9.1), we may write:
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fpr=[[P=¢psF, d¢Dax=[[4 B, df0 DO dx

:—i”jd[G,G]=—|jH§( ,[6.G]+0,[G.G]+0,[ G, G]) dk O oD dx. (10.2)
=-i{p[G.G]=-ifp4[G,.G | dx O dx

Therefore, taking the zero perturbation lindit= 0, summing all spins, taking the trace, and then
injecting in the final expression from (10.1), waynwrite this as:

fprrsF((0 :cj;EiTrZF ((0)),dx Dax = [[[ Tz P((0), = [[[+ T= B, ((0), 02D kO dk
=-i[[[Trzd[G,G]((0 |m1Trz( G,.G]+3,[G. q,]+a [G.G])((9), d%0 oD dx L0
=-ifpTrz[G,G]((0 :—@Wrz 1((9)), dx O dx -(10.3)

=-i[[f 30, (¢, (P -my)” Vvlwwwem(Pe— M)t o+ o, (P M) yyw ) KD oD o
:_i#%(ﬁy[y(pR_mR)_lyv]wR-'-Jd/[y(pG_ mc)_lyu]w G+¢Tp§f/,(/ps_ ma_lyql// ; dkO dx

From this we extract several integrands with arralenultiplication byi:

TrZiFy , ((0))0 = TI‘Z[GN ’G"]((O))O

_ o . o _ . . (10.4)
:wR}/[,u(pR_mR) yv]‘//R+wd/[y(pG_ mc) Vo ty dgf,/(/pB_ ma va¥

This includes defining an “effectiveTriF , ((O))0 This is because while (1.5) tells us that
F, =0,G,-i[G,,G ] so thatTr[G,,G, | = TrZiF,, - TrZid;,G,, as found in (3.5) the total

(2]
net flux <ﬁ> F is invariant under the transformati¢it” — F*''=F* -9“G*. This means that
the gauge field isot observablevith respect to net flux across closed surfaceh®imonopole
precisely because of the abelian subset expreagﬂiG:O which is responsible for there
being no net flux of magnetic fields all across a closed surface in abelian gauge theBoy.
while #TrZF ((0))0 :—i.m Ter[G,G]((O))O in the integral formation of (10.3) by virtue of
the symmetry principle (3.5), when the integrandsseparately extracted as in (10.4), the actual

relationship is,, =9,,G,, - [G ,G, ] But theeffectiverelationship in terms of what actually

becomeset observable flux across closed surfaces; , = -l [Gﬂ,GV} . That is the basis for
the definition of F in (10.4).

eff uv

By inspection,Trz[G,,G, ]((0)), in (10.4) has the color wavefunctid®R + GG + BB
of a meson. But look at the context in which tmeson wavefunction has appeared in (10.3):
Using selected terms from (10.3), especi@ijrZF ((O))0 , We see that:
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fpreeF ((0)), =-igp 1r=[G.6]((0)), = -ifp 2 T=[6, .G, ]((9)), dx O ¥

K (105)
:_i#%(‘/lRV[p pR_mR) yv]wR+wcy[,u(pG_ mc) Vo st d{y(/ps_ ma o ; dx 0 dx

So we see that the Yang-Mills magnetic fields whigt-flow across closed surfaces of the
composite, faux magnetic monopole densky= —idGG:—id[G G] of non-abelian gauge

theory in the form oq'jﬁTrZF ((O))0 , have theRR + GG + BB color symmetry of mesons!

This is a very important findingBack at (3.3) we identified a puzzle: We fouhdLttin
non-abelian Yang-Mills gauge theory there is a mere net flow of magnetic fields across

closed surfacesﬁ F #£0, yet at the same time the magnetic charge deosityletely vanished

P=DF = DDG =0 just like in abelian gauge theory. To recondis,twe determined that the
magnetic charge density in non-abelian gauge thisongt the elementari? = DF = DDG =0,

but rather is a compositaux magnetic charge densit?’:—id[G, G] =-idGC constructed
from gauge fields, and particularly, that the ndéixfof magnetic field is given by

@ F= —i<ﬁ>[G,G] #0 in (3.3).

Ever since then, we have known that non-abeliarggadhbeory gives rise to a non-zero
<ﬂ>F #0, but beyond a few vague hints pointing in the pgmesdirection of baryons and

confinement, it has not been known what the physic¢his <ﬁ> F #0 might be. Now, we see in

(10.5) thatdp TrzF (0) =~ifp Trz[G,G](0) ~RR+ GG+ BE. In other words, the composite
faux magnetic fields which net flow across closeuffaces in non-abelian gauge theory are
simply colorless mesons with the symmetr§R+EG+_BE wavefunction.  Colorless
RR+ GG+ BE mesons — which, once flavored, include such thimgyghe pions that mediate
nuclear interactions — are simply tkﬁF # 0 faux magnetic monopole fields of Yang-Mills

=Trz|G,,G, | objects in (10.4) — which are the

only objects which flow in and out of the monopolesnust be the mediators of interactions
between the monopoles So if those monopoles are baryons as suggestedhéir

R[G B+ d B R+ B R ¢ wavefunctions, and if these baryons can be tuim@dprotons and
=Trz[G,,G, ] fields
are also the mediators of the nuclear interactidmd this also means that we should look to
TrZiF,,, =TrZ[G,,G, |when studying anything that might pass in and dut groton or

gauge theory. That means that th@sEiF

eff uv

neutrons as well shall show how to do momentattilgn theseTriF, ,
eff uv
neutron through a closecﬁ> surface including energies released during nudesion and
fission which of course are intimately related txlear binding energies.

Related to this, to ensure Exclusion for the femaim (9.8), we were forced to introduce
a rank-3 gauge group which we assumed to be U3 pointed out after (9.16), after shifting
the degrees of freedom using a Goldstone-like nmeshm this yielded eight associated gauge
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fields, which are bi-colored and massless, just tike strong interaction gluons. As had been
earlier shown at (3.5), the abelian propertieshef differential geometry viald =0 which is
responsible in electrodynamics for the absence afymatic monopoles entirely, prevents
individual gauge fields — now these eight bi-cotbreassless gauge fields — from net flowing
across any closed surface of the faux magnetic pwao P' because of

gﬁf)dG :J'J:[ R, G dX dX dk=0. So in this way, these eight bi-colored masstgagye fields

appeared to beonfined What we now see more explicitly and deeply i0.%) is that the only
thing which does net flow across these closed surfaces, are mesbitch possess a color

wavefunction RR+GG + BB. And finally we saw at the start of this sectithat the faux
magnetic monopoles themselves possess the totalgymmetric color wavefunction of a

baryon, namely, R[G, B+ B R+ B R ¢  While one may think of this as color
“confinement,” what it really says is that is ththe non-abelian faux magnetic monopole's
and the meson@G,G] which net flow across closed surfaces of theseapoles, respectively,
are antisymmetrically and symmetricadlglor neutral and that nothing is permitted to net-flow

across a closed monopole surfacdessit has aRR + GG + BB neutral color configuration. So
individual gauge fields, because they are bi-cal@ed not color neutral, are confined.

With all of this, we see multiple symmetries whiahe highly reminiscent of hadron
physics: We are forced to introduce three fernamenstates which can be arbitrarily named as
three “colors” just like the quark fields which misform non-trivially under SU(3) in the
chromodynamic theory of strong interactions. Wisatrbitrary are the namewhat is not
arbitrary is that we require three such names$his simultaneously produces eight bi-colored
gauge fields, also transforming non-trivially undg@d(3), just as is the case for the strong
interaction gluons, and sterivesthe chromodynamic requirement for a theory witle¢hcolors
of fermion and eight bi-colors of gluon, and shomisy baryons contain three quarks. These
gluons after using the Goldstone-like mechanisn®ii6) must become massless just like the
strong interaction gluons. The faux magnetic matep (9.21) have the antisymmetric, color-
neutral symmetry of a baryon, and so are SU(3)riamé No gauge fields are allowed to net
flow across any closed surface of this monopolejcivimeans that the gauge fields are
“confined” within the closed monopole surface, jlike individual gluons. Yet thers a net
flux of a non-abelian magnetic field across thesetb monopole surfaces, as we found all the
way back in section 3. Now, we see that thesdloeing magnetic fields have the symmetric,
color-neutral symmetry of a meson, which means thay too are SU(3)-invariant, and that
interactions between the faux monopoles will talee@ via colorless meson exchange, exactly
as occurs in strong hadronic interactions betwespdns.

Or, as Jaffe and Witten make clear at page 3 qf“ffiJark confinement” is evidenced
when:

“even though the theory is described in terms eh@ntary fields, such as the

quark fields, that transform non-trivially under @) the physical particle
states—such as the proton, neutron, and pion—a(8)Stariant.”
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This is exactly what transpires if one regardsam@posite faux magnetic monopole of (9.21) as
a zero-perturbation, ground state baryon denstdyen all of these symmetries, from here we

shall regard the monoporérZP’((O))O as a ground state baryon. And this means thay, @nd
specifically Tr=P'((0))_, which containszz, = (7, + 7, ,J k" +7, 3,7, ,3 )™ which can be

expanded using (8.18) to reveal an exceptionallyHhwear system with perturbations up to
infinite order in current densityand gauge field momentuknis thephysicalbaryonwith all of
its non-linear quark and gluon field behaviors.

Proceeding forward, we now expand the differenttams relationship for the faux
magnetic charge densit?’ =-id[G, G| (=-idGG) uncovered after (3.3) into tensor form,

expandG, =A'G ,
group relation[ A', A’ | =if * 4. This yields:

and then, having extracted the group generafmally apply the SU(3)

P =-i(0,[6,,6.]+0,[G.G]+a,[ 6. G)
DA (0,[6,61)42,(6,.6. ) #2, (6,16, )) @oo
= %10, (6,6, )+9,(G,.6,)+3,(¢,. 6,))

Let us nowassumeas we have since after (9.9) that our gauge greupe simplesulgroup
SU(3) with the eight traceless generatots, k=1...8 often referred to as the Gell-Mann
matrices. If we now take the trace of the aboweergthat the eighl® of thesulgroup SU(3)
are all tracelessTrA* =0, (10.6) tells us thaTrP,,, =0.

But (9.21) has a non-zero trace, and so it is hvantle understanding how it is that even

when we assume an SU(3) subgroup wiittd* =0, we can still end up with a non-zero trace
equation (9.21). The key is to closely examin&)(Qwhich is why we chose to display the
intermediate terms even though we could have gmeetly from (9.6) to the bottom line (9.7)

using J¥ = Wy*WY without showing generators or internal symmetryeies. The key is that
(9.6) contains commutatorEJ”,J“], and so contains a very specific type of secormidor

expression for the currenty”. Although the generators are traceless, whengamerator is

squared and then traced, the result in the cusiom@amalization is the non-zerﬁr(/li)2 =1.

In the intermediate terms (9.7), we see multiplesu'A' of a generator with itself. When all
of the anti-symmetries in these intermediate temnesaccounted for, the result is the bottom line
of (9.7) which, by the time it is worked into (9)21eflects in a deeper way of the general result

\2 .
that Tr(A') =5 is not zero.

Nonetheless, (10.6) appears to contradict this zevo-trace result obtained in (9.21)
wherein Tr=P'*” (0)# 0. This is another puzzle. But think about thisrenolosely: In (9.9)
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we were compelled to introduce a rank-3 gauge grtoupnforce exclusion for each of the
fermion wavefunctions in (9.8). But all we reakyew is that we needed three mutually-
exclusive eigenstates and therefore required a3agsuge group. Although we could have just
as readily chosen SU(3)xU(1), wwesumedhat the gauge group could be SU(3) unless and unt
contradicted. But now this assumptiesrcontradicted. Specifically, based on the develapm
up to (9.8), the choice of a gauge group appearéea non-unique. Any rank-3 group would do.
But by the time we reached (9.21), it became dlearwe had a'rP,,  #0, i.e., thatP, must

auv auv
have a non-vanishing trace. If one tries to Wi@1) in the same way as (10.6) to extract out
an overall f A% | it cannot be done, other than by backtrackin(ptd). The development from

(9.7) (where this still could be done) to (9.21hoed the ability to do so, and in particular, that
started to happen once we used (9.12) in (9.13sanmuned spins to remove two wavefunctions
using the fermion spin sum.

Now, (10.6) informs us that if the gauge group &3 then the trace will vanish. So
now, what appeared at (9.9) to be a non-uniquecehof SU(3) or SU(3)xU(1) is forced by
(9.21) in view of (10.6) to be aniquechoice of SU(3)xU(1), withA° used to denote the new
U(1) generator, which now also adds one more degfdeeedom to the (9.21) system. Of
course, we will now need to determine what thisitamithl U(1) generator represents, and as we
shall see, it represents the baryon numBer1/3 for each of the three colored fermions
appearing in (9.21) and may be used to more foyntath the faux magnetic monopole density
(10.6) into a baryon density. As we shall also, sdaile the gauge group SU(3) by itself is
simply the usual color group SUEpf strong interaction chromodynamic theory, onbis t
group gets crossed with U(1) it becomes a “modifemor group which mixes color arfthvor
because the introduction of baryon number alsolif@gs the introduction of the flavor-
distinguishing electric charge genera€@r But before we discuss this, there is a more ig¢ne
point that must be made, and this has to do wjibltmgical stability.

Cheng and Li point out at 472-473 of [17] thatpdogical considerations lead to the
general result that stable monopole solutions ofoulany gauge theories in whichsanple
gauge groups is broken down to a smaller groltp = h x U(1) containing an explicit U(1)
factor.” Further, “the stable grand unified monlgpo. . is expected to have both the ‘ordinary’
and the colour magnetic charges.” So, while SUfR)ne is incapable of supporting a
topologically-stable colored magnetic monopole,dhaup SU(3)xU(1) — when understood to be
the residual group following symmetry breaking ofaeger simple grand unified gauge group
G OSUB)xU(1) — will support topologically stable configurations This is an essential
requirement if the faux monopole (10.6) can everdgarded as a physically-stable entity like a
baryon, and especially a distinctively-stable pnotand a neutron which is comparatively stable
when free, and very stable when part of many ligatemic nuclei.

Weinberg makes a similar point to Cheng and Lhishdefinitive treatise [18] at 442:
“The Georgi-Glashow model was ruled out as a theafryweak and
electromagnetic interactions by the discovery afitred currents, but magnetic

monopoles are expected to occur in other theovid®re a simply connected
gauge groupG is spontaneously broken not to U(1), but to sombkgsoup
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H’xU(1), whereH’ is simply connected. . .. There are no monopateduced in
the spontaneous breaking of the gauge gr&@Wf2)xU(1) of the standard
electroweak theory, which is not simply connected. . But we do find
monopoles when the simply connected gauge gi@upf theories of unified
strong and electroweak interactions, suclBE)xSU4) or SU5) or Spin10), is
spontaneously broken to the gauge gr@&l3)xSU2)xU(1) of the standard
model. . . .”

Consequently, not only does (9.8) force us to uslygselect a rank-3 gauge group to
enforce Exclusion on the faux magnetic monopolesiigrof (9.8), but the non-vanishing trace
of (9.21) forces us into thspecific, unique selectioof SU(3)xU(1) over SU(3). This then
ensures that these faux monopoles will be topoddigicstable so long as we arrive at this
product group following the spontaneous symmetmgaking of a larger simple gauge group
G =SU(N=4) 0 SU(3)xU(1), as yet undetermined. Topologically speakinggmréig again to
Weinberg’s [18] at 442, the homotopy groups assediwvith this symmetry breaking would be:

7, (G/ SURB)x UQ)) = 5, ( SU3)x UQ) =7, SU3)xm( Ul)=m( Ud)= = (10.7)

So there are really two questions raised by thevamishing trace in (9.21). First, as already
stated, what is the physical meaning of the new) géherator? Second, what is the larger group
G =SU(N=4)0SU(3)xU(1) from which we arrive at SU(3)xU(1) following syming
breaking so as to achieve topological stabilityRer€ is also a third question, not yet apparent,
but linked to the first question, which is this: aths the meaning of th8U(3) group which is

multiplied by the new U(1) gauge group as parSaf(3)x U(1), and how does this relate to the
usual color group SU(3?

For the new U(1) group which provides topologistbility, the generatod® must be a
constant multiple of the 3x3 identity (unit) matrix,. If we normalize this toTr(/]O)2 =3 just

like all the other generators, then we must hd@@%lm. Taken together with the two

remaining diagonalized generators of SU(3) nornadlito Tr(/li )2 =1, we have:

1100 1200 1ooo
A°=—10 1 0|; A®*=——|0 -1 O0f|; A*°==] 0 1 0. (10.8)
J6 ' 2J3 ’ 2
0 01 0 0 - 0 0-

But that is only the mathematics: now we negahgsicalinterpretation forA°. Because
each of the three fermion eigenstates in (9.9) haVe identicalA® eigenvalues, because the
monopole in (9.21) exhibits many of symmetries dfaayon and the fermions exhibit many of
the symmetries of quarks, it would appear fruittubssign the U(1) generator to baryon number
B according to:
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o O

B=2£A"=1l,,= (10.9)

o owha
O wk O

Wl

This is our first explicit introduction dfavor into the color eigenstates that were introduced at
(9.9). Following (10.9), the monopole (9.21) wilbw haveB =1 and each of the R, G, B
fermions will now haveB =3, which brings these even a step closer to beiagtiiable with

baryons and quarks.

Next, if these monopoles (9.21) are to be barymaistlae fermions are to be quarks, let us
see if there is some way to identify takectric chargeQ of these baryons, and specifically to
produce a proton witlQ =+1 which has a duu configuration of qudtavors and a neutron

with Q =0 which has a udd configuration of quark flavors evdin the up (u) quark ha3=+2
and the down (d) quark h&3=—3.

For the proton, we may form the combination:

, 100)(2 0 0) (-1 00
QPEB—ﬁAS: 01 0/-|0-1 0|z 0 2 0, (10.10)
0020 0o -1 (0 02

Following (10.9), each of the R, G, B colored fesns in (9.9) has a flavored baryon number
B=1. Now, with (10.10), the redolor of fermion is assigne@ = -3 and so is a dowflavor

of fermion in addition to its red color assignmdhg green and bluslors of quark are assigned
Q=+2 and so are uflavors of fermion in addition to their green and bluearchssignments.

So the SU(3)xU(1) quark triplet is nO\(/dR,uG,/JB). Further, the entire faux monopole

Trzp'*” ((O))O of (9.21) which comprises all of these fermions hebaryon numbeB =1 and
an electric charg® = +1 and so is a proton-flavored baryon with the caoleutral wavefunction
R[G B+d B R+ B RE To use a parlance familiar from electroweak tiigave see in

(10.10) that the electric charge generator forpgtaon and for the quarks within the protsih

acrossbaryon numbeB and theA® color generator, that is, they sit across SU(3)3Ur{ anon-
compactmanner. In similar fashion, in electroweak theay(1), generator is crossed with the

three SU(2), isospin generators' , i =1, 2,3 to form SU(2)xU(1)y with the (left-chiral) quark
doublets having the U(1)2x2 weak hypercharge matrix generator 31,,,, the (left-chiral)
lepton doublets having the 2x2 weak hyperchargerixngeneratorY =-11,,,, and anon-

compactembedding of the electromagnetic group with chaggeeratorQ=Y/2+1° sitting
acrossSU(2wxU(1)y.

For the neutron it is even simpler. We simply m#tkecompactassignment:
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X 2 0 0
Q, 5—3/18: 0 -1 0 (10.11)
0 0 -4

Here, all of the fermions still have baryon numliigex 3. But now the red fermion is assigned
Q=+2£ thus is an up flavored-fermion, the green and Busions are assigne@ = -+ and so
are down flavored. So the quark triplet is ntﬁuﬁ,dG,dB). The overall faux monopole of

(9.21) now has baryon numb&=1 and electric charg&® =0 and so is a neutron-flavored
baryon. So the electric charge generator for theéron and its quarks is compactly-embedded in

A% which now serves the dual role of one of two SUY(@¢neratorsand the electric charge
generator.

Of course, the fact that we must employ a differgmrge assignment (10.10) for the
proton than (10.11) for the neutron is symptomtiet there is a larger yet-to-be-found gauge
group which encompasses the SU(3)xU(1) group dpeelon (10.8) through (10.11). That is

Q= B—%Ag and Q, :%/18 is not invariant whereby one relationship, not twefines the

relationship between the electric charge and tlhemigenerators. This disconnection between
the proton and neutron electric charges is anagothiow in electroweak theory, the =3 for

the quark (q) doublets is disconnected from ¥e -1 lepton (I) doubles which there too,

signifies the need for a larger unifying group. t8e question is now raised: what is the nature
of the gauge group that provides a unified basigte proton and neutron electric chargzs
and can this same grogbso provide the basis for unifying the separateharges as between
qguarks and leptons while also dealing with chiyghmetry (breaking) issues?

While we shall not explore this here, the auth® $stadied these exact questions in [19]
and shown how a simple SU(8) group with the fundaade fermion multiplet

(v,Ug,dg, dg, & ok, Us, W) provides a complete unification which breaks dawtow energies to

the phenomenological SUERSU(2)yxU(1)y with protons and neutrons, and at the same time —
because two of the diagonalized SU(8) generatammsklves become “fractured” apart from the
other five diagonalized generators during symmbteaking — leads to an explanation of why
the known fermions appear to exist in exactly thgeeerations, which answers Isador Rabi’s
famous quip about the muon “who ordered this?” tTisabecause these two “fractured”
generators provide the precise freedom needed domanodate three horizontal generational
eigenstates.

But what we now know from the development withrstpaper and specifically (10.10)
and (10.11) is that the SUEYroup which we introduced at (9.9) to enforce Hgimn actually
becomes modified into &aybrid color and flavor groupn view of the requirement to use
SU(3)xU(1) because of the non-vanishing trace ia1(p We shall thus refer to this as a “flavor-
enhanced color group” which we denote generallySh)(3):. When we use this group to

represent a proton (P) quark tripl@dR,uG,/JB) with the charge assignments (10.10) we shall
further denote this by SU(@), while when we use this to represent a neutrongiNirk triplet
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(ug, dg, dg) with the charge assignments (10.11) we shall detios by SU(Qc. Finally, in

all cases, the U(1) factor is associated with banyomberB, so we shall denote this as W{1)
So to summarize, once the U(1) factor is in pléoe group developed thus far is SW8YJ(1)s.
For protons it is specialized via (10.10) to SYRU(1)s. For neutrons it is specialized via
(10.11) to SU(cxU(L)s.

Next, keeping in mind (10.7), it also becomes intgair to find a larger simple gauge
group G = SU( N=4) [0 SU(3). xU(1), which breaks down spontaneously to SG¢3)(1)g.
As the author details in section 7 of [15], there @vo disconnecte®& = SU(4) groups, but we
are able to us&8-L = —\/%/115 as the generator of baryon minus lepton numbebddin. This
follows Volovok from [20] Section 12.2.2 who alseas theA™ of SU(4) for aB - L generator,

but in the context of a preon model. The firstugrodenoted SU(4) places the proton’s quarks
and the electron into ée ds, Us, qa) quadruplet in the fundamental representation. Sédwnd

group, denoted SU(4) places the neutron’s quarks and the neutrino m(v,uR,dG,dB)
guadruplet in the fundamental representation. Thath of these disconnected proton and
neutron groups gets broken at GUT energies&rmSU(4),_, — SU(3). xU(1), to produce the
stable magnetic monopole baryons via:

7, (SU@)s- / SUB)ex UL)g) = 77, ( SUB)x UL)g) =, ( SUBL)x7m( UL)y)=rm( ULy = .(10.7)

Then, as the author details throughout [19], tleeatinected SU(4)and SU(4) groups
become unified together in th@,u,,d;, dg, € ok, U, 4) of SU(8) mentioned moments ago,

such that two of the seven generatoAd®(and A1*°) become fractured from the remaining
generators between the Planck and the GUT enerjgssto provide the “horizontal” degrees of
freedom needed to accommodate replication of timaidas into three generations, and there is
also just enough freedom provided to also supgorakcsymmetry breaking. Additionally, all of
the observed features of left-chiral Cabbibbo / CKiNking naturally emerge. The overall
sequence of symmetry breaking is:

SU®) - SUB)x SU2) — SUBLX SW2),x W., — S@x W@, (10.12)

Simultaneously with and as part of tisJ(8) - SU(6), x SU2), symmetry breaking, the two
isospin-differing SU(4);_, — SU(3). xU(1), symmetry breaks also take place to form the
topologically-stable proton and neutron. There @so an earlier breaking of
SU(8) - SUY(7)x U(1) at or near Planck energies which separates theimeérom all the other
fermions right at the very start and causes therimeuto behave very differently from all the
other fermions as it clearly does at observablege® The symmetry breaking sequences
found in [19] are then utilized in [21] to explathe observed proton and neutron masses
themselves in relation to the current up and dowarkjmasses and the CKM mixing matrices
based on [16)within all experimental errors
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Next, let us return to (9.4) where we set the ybdtion toV =0 in (9.2). Because
everything that has been developed since (9.2)t masbly theTrZP"”’”((O))0 monopole /

baryon of (9.21) was developed fdr=0, the question may be asked whether all of thexdtse
carry through when we no longer 3£t 0 but allow all of the perturbations to occur. $a&ti3
answers this question. What we learn in sectios tBat including perturbations really means

recursingG, :(k,kr -m+E+GK+ G GE)_1 J as many times as one chooses, then cutting
off the recursion by settiny =-G k' - G G =0 at some chosen recursive order. Of course,
recursing to some order and then settiny=0 as in (8.17) and (8.18) to arrive at((a()))n

expression is a calculation technique. But itoidoé expected that nature does not cut off the
recursion at all, but rather, recurses to infirbgfore settingv =0, so thatG, =7,J, as in

(8.20). So if the monopol@rzP'* ((0))_ of (9.21) is the ground state of the baryon, it e

the infinite recursion of (8.20), not some arbityatruncated recursion, which will drive what
nature herself does in physical reality. This nsetimat (9.3) in the formTrZP"’““((O))m, is

really the equation for thphysicalbaryon, with a teeming non-linear mix of quarksl gauge
fields in a “sea” perturbating through all finiteders up to infinite order, which is exactly what
one observes in the complex composite systemdraproton or a neutron or any other baryon.

Finally, although (9.21), if it represents a baryonly does so in the zero-perturbation,
no-recursion limit, it is important to ask whethirere is anything about this limit that is
observed in nature. Put differently, while cuttioff the perturbations at the zeroth recursive
order may see arbitrary, it is the only order besidinite order that would seem to have some
distinctive claim to not being arbitrary. And s waise the question whether there are any
phenomena observed in nuclear or particle phystishvmanifest the linear, non-perturbative

behavior of theTr=P'*" ((0)) baryon (9.21)? To use an analogy, although gtwit is a

highly non-linear theory, we do observe certaineasp of the linear behavior of gravitation
theory in the real world, namely, whenever we obsevhat was first discovered by Keppler and
Newton. So while we would most certainly need ésatibe the complete proton and neutron
and other baryons without removing the perturbatimom (9.2) a.k.a. (9.3), we should also look
to see if certain aspects of nuclear behavior thigiht be very-definitively described by the
“linear approximation” (9.21).

In this regard, Fy , ((0))0 in (10.4) is very important for pursuing experirtan
validation, because it does describe what “effetyiv net flows in and out of the closed
monopole surfaces in the ground state linear the@pyecifically, it is well-known that one can
calculate electrodynamic energies from the pureggdield £,,,.=—3 F,.F? by using this in

auge

E:—mﬁgauge&x. So one should do a similar exercise using whahan-abelian theory

becomes the Lagrangian densify, .= ~+Tr(F,F”), using F,,, ((0)),. If we compare

uge
(10.4) which is a trace equation to (9.21) whictamother trace equation from which it was
derived, then by backtracking to (9.20), we seeé (h& have now removed thE spin sum
designation, which now is taken to be implied):
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w_Ry[,u(pR_mR)_l Vv]wR 0 0
Fett i ((0))0 =i 0 ¥, (Ps = mG)_1 Voo 0 .(10.13)
0 0 I/IBy[,u(pB_rnB)_lyv][//B

This is now a 3x3 matrix expression with all diagbalements. From this, there are two trace
expressions that can be formed. Oné’riéFmF‘”)which is what is usually found in the Yang-

Mills Lagrangian density. The other8F, TrF” .

It turns out as the author has detailed in sectidnand 12 of [15], and greatly expanded
upon throughout [16], that the expression (10.13env used inE:—_ms d®x with a

gauge
combination ofTr(FUTF"T) and TrF,_ TrF“" inner and outer products, can be used to retrodict

nuclear binding energiesncluding the heretofore unexplained binding gre= of the lightest
nuclides®H, 3H, *He and*He, as well as th&Fe binding energy, with parts per’ldr even 16
AMU precision, and the neutron minus proton mastemince tounder one part per million
AMU. Note that in general, the trace of a produciwaf square matrices it the product of
traces. The only circumstance in which “trace @raduct” equals “product of traces” is when

one forms a tensor outer product usifig{ AQ B)=Tr( A Tr(B), and as shown in [16] the

observed binding energies contain both inner andrquoducts. This line of development in
sections 11 and 12 of [15] and throughout [16] &splains why the per-nucleon binding energy
seems to be limited for any nucleus to a maximunatmfut 8.75 MeV for°Fe, and yields a
dynamical, energy-based understanding of confinémen

While all of the formal understandings of the cabyrmmetries of baryons and mesons
and quarks are important, direct experimental a#loh is even more important. It is the
experimental concurrences that can be confirmetirgjawvith (10.13) to perform various energy

calculations E = ~[[[ .,,,d*x with Tr(F,F”) and TrF, TrF", that leads to the direct

phenomenological confirmation that the faux magnatonopoles of non-abelian gauge theory
really are baryons including protons and neutrons.

11. Quantum Yang-Mills Theory: Exact Analytical Path Integration

Finally, let us make use of the recursion develope section 8, and particularly the
substitution G, - (770'1+77m_1JT K +7T°o_l\],77m_13’)'1 J, from (8.20) in lieu of the usual
G, - d/0J%, to perform arexact analyticadeduction of the quantum path integral associated
with the classical field equatiorJ” :(gv" DD -D7 D”) G, of (5.15) in order to “prove that

for any compact simple gauge group G, a non-trigigntum Yang—Mills theory exists dg’,”
see page 6 of Jaffe and Witten’s [6].
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In abelian gauge theory, the classical electriargé field equation is of course
*J = d* dG which is an abelian subset equation embedded 12).1 When fully expanded for a

massive boson this becomes the abeliaif =(g””(6rar+rr?)—6”0“) G of (5.15). The
related action after integration-by-parts is tf8(sG) = q,( g" (600” + rﬁ)—a”av) G+ 4 G
and this is what is used in the path intega [ DGexpi[ d*xS( @ = expiW( J to deduce the
quantum amplitude W ( J) =%j( d* k/(277)4) ‘],( k K- m+ (s'r)_l J with +i¢ using the
contextual reduction that also occurs from the iowiitt relation k, J* =0 as reviewed at length

in section 6 and 7. If we use the terminal cooditirz, :(krkr—nf+ is)_l of the (8.20)

recursion, then this simplifies W ( J) :%j( d k/(27T)4) I J .

In non-abelian gauge theory the classical fieldagign is the entirety of (1.12), that is
*J = D* DG which as shown expands tQ)” :(gV”( D D"+ mz) - U) G, derived in (5.15).
Without going through a detailed exposition of htawderive the associated Lagrangian and

conduct the integration-by-parts to obtain theaaxtit will be appreciated that as the result of
this exercise the non-abelian action will foundbéo

S(6)=G(¢"(pD+m)- B D) G236

. (11.1)
=G,J(g”“((a,af—ie,af—e,ca’)+ nt)-(0%0" - G0’ -2G G+ & G)) G+2 9 ¢

where we have also included (5.16) and (5.17).

When we now take the next step of using this aciioZ = [ DGexpi[ d*xS( G, there

are now two new issues that come into play thahateresent in the abelian gauge theory. The
first is that the non-abelian gauge transformat®h - G" =G +0"6 - i[GVﬂ]gives rise to

ghost fields due to the introduction of the additibterm —i [GV,H] into the integration measure

DG in order to ensure thaf — Z' = Z remains invariant under this gauge transformataom)

so we need to emploPGDcDc' not just DG as the integration measure. But the second issue
is that even before we get to worrying about ghitelds, it is simply not known, as a
mathematical matter, how to use an expression(likel) in a path integral to calculate:

Z:J'DGexpiJ'd“x{Gﬂ(g"”( DO+ ni)- 0 D) G+2 ga}

g (0,0 ~iG,0" -G G )+ nf) (11.2)

- [DGexpi[d*x| G 27G|
Jocexifdx G, ~(040" -iG*0" -26"G' + G @) G2l
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This is because, as will be apparent from studyireglower expression, this is a fourth-order
polynomial inG, but known mathematical techniques for calculatimggrals of this form use

the second ordelfdxexp(—% AX - J%:(—ZT/ A’5 exp( K} /24. Why? Put plainly and
simply, it is known how to calculatﬁdxexp(—% AX — J>§, butnot how to calculate the higher
orderjdxexp( BX + CX-1 AX- J)<. Normally, of course, the approach is to turnrg\gauge
field inside the configuration space operatgf‘“(DrD’+mz)— DD’ into a current term
G, ~ d/0J* and then use (8.25) to appékp(-V (3 /6J)) to exp(%J [K‘1DJ) the latter of
which is obtained in the usual way frofxexp(~3 A% ~ 3)=(-27/ A" exq § /2.

But now the recursion developed in section 8 giwesa newmathematicalapproach.
Now, we are able to use (8.20) to turn every oange ofG inside g** ( D, D" + mz)— D

into a function solely oG(J,k) via G, =7, J, =(7 " + 71, , 3, K +7,, a7, J)™ J, with the

abelian terminal conditionz, :(krkr - nt + is)_l. None of these contaiG,! So, making this
replacement in (11.2), we now have

Z:J.DGexpiJ.d“x[Gﬂ(g"“( DO+ n)- 0 D) G+2J G}

g ((0,0"-iG,0" -GG )+ nf)
= [DGexpi[d*x| G, G+2FG
~(0#0" ~iG*0" -26*G" + &' @)

0" (0,07 ~im, 3,0 -7, 3,7, ) + ) . (11.3)

= [DGexpi[d*x G G, +2J°G

~(0#0" ~im, 349" — 21,9, 3" + 7, ¥'7, ¥

I;k'[DGeXpi'[d“X{Gy[_gw((krkT +m, JK+m, I, J)— Fﬁ) JGV"'Z‘JTGT}
+kHK A+, K +2m, Y, Y -m, Y, I

Lo and behold, we have removed all the gauge diéidm the configuration space
operator except forGﬂ(..f’“)GV and J'G,. This leaves us with the usual quadratic form

jdxexp(—% AX - J>§:(—2rr/ A exd K} /24. So we can integrate this analytically and

exactly, so long as we know the inverse (fof‘”) =g ( D, D" + n12)— DD’ or any of its other
variants in (11.3). But this, of course, was atr@riocus of what we studied in section 6 and 7.
Particularly, for the field equatiorJ” :(gV”( D D+ mz)— g U) G,, as seen in (8.19), with

the context afforded by the continuity relatiab,J’ =0, the inverse solution is simply
G, =m,J,. Sowe recognize immediately that the exact dicalysolution to (11.3) is:
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Z=J'DGexpiJ'd4x{Gﬂ( g"”( DD+ rﬁ)— o D) G+2 J G}

focentefsf

=expiw (3)=if(d*k /(2)") 477, 7

—gﬂ“((k,k’ +m, K+, I, J)_ rﬁ)

G, +2J°G |. (11.4)
+k“K +m, VK +2m, Y, Y -m, ¥, 3

This, again, is amxactanalytical solution Expressed directly in terms of the amplitude and
using (8.18), this means that:

(2m)'W(3)=[dkym I =] d kJ(m +m, J&¢m, Jr, P T
(kK =t + i) '

(11.5)

If it is desired to see explicitly how this givas the non-linear propagator and current
and momentum terms that we expect to find in a ¥ty path integral, it suffices, just for

illustration, to examine the amplitudd( J), for a second-order recursion, using the terminal

condition 77, = (k k' - nt + i) . This is (cf. (8.5)):

(2m)'W(3),=[dkym I =[ d k) (m +m Jk+m, Jr, 9 2

o+ (ﬂo‘l +71,J K + ﬂOJ,ﬂOJT)’l J K

:jd4k4, 130
+(7TO’1+ﬂoJrk’ +7TOJTITOJT)_1J,(ITO_1+ m,J R+, Jm, J)’l J
kK -t + i
+ kK =nf+ig+ T‘]fk — + 3 J - 7K
kK =nf+E (K - nf +ie)
= [d*kJ ‘ ‘ 130
I 1+ kK =nf+ i+ J.K —+ - AR 11.6
KK —nf+i (k,k’—nf+i£) - (11.6)
x| KK —nf + g+ rLk 4 3, J | r
kK =nf+ (kK - nf+ i)

With this being only the second-order recursionwill be appreciated how this will expand
rapidly in a highly-nonlinear way to include allders ofJ, k, m and +ig, right through infinity.
For doing practical calculations, including thoséhwomputers, one can use expressions with a
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few more orders of recursion to obtain resultslyaitose to those that would be obtained upon
an infinite recursion, assuming convergence. Sodaow look at that.

We can ascertain the general trend toward coneeger divergence simply using the
n=1 recursive order, because as we have seen, the fesern for higher orders is already

established at first order. Fv J)1 we have:

(2n)'W(3),=[dkym I =[ & k) (m +7, ) kb, Jr, Y7 2

I K 1T
+

_ Ty . (11.7)
kK -+ (kk-nf+i)

=[d*kJ,| kK- i+ i+

(k k=t + i£)3+(k,l{— M+ &) Jk+ JJ o
(kK =nf+ i)

= [d*kJ,

Given J#=A',,J0*=J, for SUE@)xU(l) has rank 3 at the same time that
(krk’— nt + i,s)3 :JAB( kK- ni+ &‘)3 sits on the third rank diagonal, a naive look Ht.7)
tells us that the dominant term in the numeratorll whe (krk’ -nt+ i.s)3 for

J K <(Kk’ -nf+ E)Z and J.J° <(k[ K - nf+ E)s. But when considering the matrix
eguations, a more precise statement would say(lqaf -nf+ 'E)s represents eigenvalues of

0= (k, K" = nf + is) J K+ J J, and will dominate when these eigenvalues arestar@her than

smaller. In the case wherk” and J,J" are small and substantially neglectable in refatm

(krk’ -nt+ i,s)2 and (kr K - nf+ i$)3, the overall expression (11.7) will be:

. 1
JTDJ(ijE]Fi7?77E 3, (11.8)

(kK —nf+ i) +o
(kK = nt+ i)’

(2m)'W(3), = o'k}

which is of the same form as the abelian propaga&w the solution (11.6) would appear to be
fully convergent (or, at least no more divergetrtithe abelian path integral) fdrk” and J,J°

which are small in comparison to eigenvalues whighspecific powers df k' - nf + k..
Finally, because (11.5) is an exact analyticatwation using a closed recursive kernel,

this “prove(s) that for any compact simple gaugeugr G, a non-trivial quantum Yang—Mills
theory exists oR*.”
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12.  Summary and Conclusion

This concludes the formal development of this pape let us summarize what we have
learned: In non-abelian gauge theory with gaugeldiG, although the magnetic charge density
P=DF =DDG=0 by a Jacobian identity (2.4) just as the abelieagmetic charge density
P =dF = ddG=0 because of the differential forms geometry, thisrestill a non-vanishing

magnetic field flux <ﬁ>F :—icﬁ')[G,G]:—iJ'“dGGiO (3.3) across closed surfaces which

contrasts to the zero net fluﬁ F =0 that one has in abelian gauge theory. These apibar

conflicting features of non-abelian theory — namalynon-zero magnetic flux over closed
surfaces but no magnetic sources — are reconcyleddizing that the magnetic field flux is not

sourcedﬁ) F (P) by any elementary magnetic charge density whicR #sDF = DDG =0, but
rather is sourcea@ F (G) by a “faux” magnetic sourc®' = —id[G, G] =-idGC which arises

totally from the gauge fieIdsP'(G). But real gauge fields do not arise spontaneouslyey

must be sourced by an electric charge dedsignd in non-abelian gauge theory, the differential
equation which governs thistd = D* F = D* DG. Further, we also know that in Dirac theory,
electric charge densities are in turn sourced hbynifen wavefunctionsy via Dirac’s

JY=ywy*y. Thus, we now need to set upon obtaining the réevesolution to
*J=D* F=D* DG for G(J) to enable us to findp F (G(3)) andffF (G(3(¢))).

So in section 5 we develop the electric sourdd fguation*J = D* F = D* DG, and in
sections 6 and 7 respectively, we carefully devétapinverse squtionéi(J) for massive and

massless gauge bosons respectively, paying vesg @tention to issues involving uniqueness
and gauge-invariance and gauge fixing and “conxgauge fixing” wherein anathematical
inverse which is non-unique becomes unique whemeplanto thephysical context of a

conserved current density. And in section 8 wehmeG(J) is not really a solution involving
J alone, but is a highly-non-linear, recursive fumetG (G, J) which can be recursed as often as

desired, and then turned fro@(G, J) into G(J) by setting the perturbatiol’ =0 at any
desired order. We also noted how the physicalrsezeught not to depend on an arbitrary cutoff
of the recursion, but rather, ought rather to beeldaon the series (8.20) that results from
recursing an infinite number of times before zegdime perturbation.

So starting in section 9 we made use of the natiaab solution for a massive gauge
boson, namelyG, :(—V+ k K —nt+ E)_l J, of (6.27) to write outﬁ)F (G(G.J)) in (9.2).
Then to keep the initial development simple andettgy the “ground state” symmetries, we
immediately seV =0 in (9.4) to write<ﬂ> F(G(J)) in the zeroth recursive ordéfo))o, which

is the same thing as having used the abelian neassiutionG, :(k,kr -nt+ E‘)_l J, (6.17)
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a.k.a. (6.28). After then using” = Wy*¥ to replace currents with fermions and thus arse
4;5 F (G(J(w))) in (9.7), we turned to the fermion Exclusion Piihe of Fermi-Dirac-Pauli.

It is the Exclusion Principle that drives the attuction of a rank-3 gauge group to ensure
that all of the fermions within thg‘jSF(G(J(t//))) system are in three distinct eigenstates,

turning this now into<ﬂ> F (G(J(t/lR,t/IG,wB))) which reaches the goal established at the end of

section 3. The reason for there being three cdlgtearks in the ground state of a baryon is then
seen to be very simple: because there are thragvad@rms in the covariant tensor expression
(9.7) for a magnetic monopole. This also bringghvit, eight bi-colored gauge fields. After
applying a Goldstone-like mechanism (9.15) to ceate degrees of freedom and force the
gauge fields to be massless and give mass to thaofes while contextually-preserving the

unigueness of the underlying solution f(ﬁ(J)) we arrive at the ground state monopole

density of (9.21). This monopole has the antisymmeR[G, B+ d B R+ B R ¢ color-

neutral wavefunction of a baryon although it doéso acontain fermions in three colored
eigenstates, and as we had already found in (Bf&grmits no net flux of individual gauge fields
across its closed surfaces. But then we find @4(land (10.5) that this monopole does permit a

net flux only of color-neutraRR + GG + BB mesons, which further cements the confinement of

gauge fields first suspected in section 3 becawsking other thancolorless RR + GG + BB
fields are permitted to net flow in across closadaces. And we further find from (10.6) that
the rank-3 gauge group must be SU(3)xU(1), notPf3), and that this provides the magnetic
monopoles with topological stability so long asstl8U(3)xU(1) group emerges following the
spontaneous symmetry breaking of a larger simpemG O SU(3)xU(1). We learn at (10.9)

that the U(1) generator provides a natural platféomequipping each fermion with a baryon
numberB =1 and the overall monopole witB =1, which now introducefiavor to these color-

neutral monopoles and mesons and their coloredidesrand gauge bosons. And we see in
(10.10) and (10.11) that one can thereafter amivsuitable generator assignments which give
rise to the correct electric charg€s=+1 for the proton and by a disconnected assignment

(which then requires a larger unifying grou@)=0 for the neutron, as well as tiig=+% for
the up andQ = -1 for the down flavors of quark.

Although nuclear and particle physics are oftercwbsed as if they are one and the same
discipline, in fact, they are very distinct basedpsesent understandings of each. This fault line
which separates nuclear and hadron physics fromiclgaphysics is concisely captured by Jaffe
and Witten when they state at page 3 of the “YankisMnd Mass Gap” problem [6] that:

“. .. for QCD to describe the strong force suctidhs. . . It must have ‘quark

confinement,” that is, even though the theory isctibed in terms of elementary
fields, such as the quark fields, that transfornm-trovially under SU(3), the

physical particle states—such as the proton, neutemd pion—are SU(3)-
invariant.”
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It is this difference between “elementary fields¢ls as the quark [and the gluon] fields,
that transform non-trivially under SU(3)” and “tiplysical particle states—such as the proton,
neutron, and pion—[which] are SU(3)-invariant,” @ell as the need to give flavor to color-
neutral baryons and understand the origins of pleeiic baryon flavors which are protons and
neutrons, which separates the elementary partiglsips of colored quarks and gluons, from the
hadron physics of the colorless baryons and mesom$,the nuclear physics of proton- and
neutron-flavored baryons.

As detailed in the discussion following (10.5),oifie advances the thesis that the non-
abelian faux magnetic monopole of (9.21) is in f®gtonymous with a baryon, then the results
reviewed in detail in section 10 would appear ttvesdhis confinement leg of the mass gap
problem at least in the classical context. Moreover,rdseilts presented here take a critical step
forward toward unifying elementary particle physrash hadron physics and nuclear physics. It
is equation (9.21) which operates as a “bridge'ween the elementary particle physics of
colored quarks and gluons and the hadron physitiseo€olorless baryons and mesons. This is
because (9.21), together with its related consemp€l0.5), demonstrates how quark and gluon
fields that transform non-trivially under SU(3) aswle together into theolorless, SU(3)-
invariant particle stateswhich are baryons and mesons, that is, hadronken,Tthe non-
vanishing trace of (9.21) forces us to employ SK(RL). This ensures topological stability
which is required if (9.21) is to be associatedhvgtable physical particles such as the neutron
and especially the proton. Further, via the new)denerator, this introduces flavor which then
allows these baryons to be flavored into the pretmmd neutrons at the heart of nuclear physics.

Of course, as discussed in section 4 there are measons to believe confinement is
related to the running of the coupling constantalths an inherently quantum effect. But as also
argued in section 4, one might take the perspethiatthecausefor confinement and baryon
compositeness is the classical field equation (8B)a Yang-Mills monopole which has the
symmetry (3.5), and that one of th#ectsof this is that in a quantum field treatment oésh
baryon monopoles, the strong coupling will weaken dltraviolet and strengthen for infrared
probes. Without more, however, one could fairlynaade that the connections suggested
between some identities of the classical Yang-Miigiation and confinement in the quantum
theory are simply still too speculative or weaklypported to constitute a viable theory of
hadronic physics, especially since quarks are atlud but not shown to be required.

But sections 9 and 10 overcome any such conclusldrese sections deepen support for
the argument made in sections 3 and 4 by demoimgfrittat a furthecausefor confinement is
the color-neutral SU(3)-invariance of both the muaole (9.21) and the meson (10.5), which
might then be expected in a quantum field treatnb@neveal theeffectof a running coupling
constant which is consistent with these root catisaisarealready seen in the classical theory
It is certainly true that an important view of comment is the quantum view of a running
coupling. But so too is Jaffe and Witten’s compdetary symmetry view of confinement as
utilized here, in which “even though [a] theorydisscribed in terms of elementary fields, such as
the quark fields, that transform non-trivially und&U(3), the physical particle states—such as
the proton, neutron, and pion—are SU(3)-invariangéctions 9 and 10 here make clear that
Yang-Mills monopoles manifest these required carfient symmetries. And, this underscores
the value as argued in section 4, of finding ardHing out, the right classical theory to quantize,
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before trying to leap unarmed into quantizationoll@juially speaking, classical theory is the
“horse” which must one must precede the “cart” @wduggization.

As to the “cart” of quantization, two further pantay now be made in light of the
development after section 4, to supplement thosady made in section 4. First, as noted in
section 4, the chiral anomaly provides an objextde that not every symmetry which appears in
a classical theory carries through to the assatiqtentum theory. As pointed out in section 7,
any divergence there may be between classical aadtgm symmetries emanates from the
measureD¢g which is the integration variable in the path gred. A classical symmetry exists if

some transformation leaves the act@(‘¢) invariant. A quantum symmetry exists (and inlserit

the classical symmetry) if the same transformalémves the path integra :j D¢ expiS(9)

invariant. So, for example, although the classioahopole (9.21) has the color-neutral baryon
wavefunction R[G, B+ d B B+ B R ¢ and the classical net-flowing magnetic field (30.5

has the color-neutral meson wavefunctieR + GG + BB, i.e., are classically invariant under an
SU(3) gauge transformation, it is valid to ask vileetthese symmetries will carry through to the
related quantum objects. This cannot be answeidd absolute certainty until one has the
complete quantum theory corresponding to the faregalassical development, but it is
encouraging to note that the observed baryons laadrtesons ofjluantumphysics are also

known to be color-neutral with the same respecti®@G B+ J B R+ B R ¢ and

RR + GG + BB wavefunctions. Thus for example, when Jaffe antleWw state on page 3 of [6]
that “the physical particle states—such as thegprobeutron, and pion—are SU(3)-invariant,”
they are not qualifying or restricting this statemé classical particlesQCD is a quantum
theory, and the invariance of baryons and mesaes, hadrons, under SU(3) is a well-known
feature not only of classical, but of quantum, choalynamics. That these symmetries appear to
emerge very naturally and inexorably from classi¥anhg-Mills theory without having to make
any separate postulates about SU(3) being a thebsyrong interactions, is highly compelling.

Second, the most important result pertaining tangmation in this paper, is the finding in
section 8 and its application in section 11 thatitiverse squtiorG(J) is actually a recursive
solution for G(G, J), but that this can be turned into@(J) solution by recursing to any

desired order and then setting the perturbatfon0. This is important because, referring to
page 6 of [6], the difficulty of being able to:

“Prove that for any compact simple gauge group @omxtrivial quantum Yang—
Mills theory exists onR*. . .”

is not a physics problem, it ismmathematicproblem, and more particularly, it iscalculation
problem of not knowing how to perform an exact gtiehl calculation of the quantum path
integral for Yang-Mills theory in particular, andrfnon-linear physics theories in general.

Specifically, as discussed in section 8, the tephen of analytically calculating a path
integral Z:IDGexpiS( G)=¢ expiW( J revolves around clever extrapolations of the
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Gaussian integraj dxexp(—% AX - J)) = (—ZT/ A)'s ex;( 3 /2/) which only containg and x*

and no higher order in the integration variaklePut anx® or an x* into this integral, or even
worse, put any higher-order polynomial into thigegral, and it is simply not known
mathematically how to calculate this integral &t &o thephysicsrecipe for quantizing Yang-
Mills is very clear: find the action, and use itarpath integral. But the mathematical technique
for how to calculate this is not known. The bestlaody had been able to do thus far is to make

use of (8.25) to replace gauge fields wi#l) — d/J* and then removexp(V(J /5J)) from

the integral so all that remains behind to integrad the simplejdxexp(—% AX — J>§.

Generally speaking, we need to replace the gawlgsic with current densitied, and leave
behind the simple quadratic for[frdxexp(—% AX — J>§. What we find in section 8 is a new and

different way to make aG - J substitution in lieu of the usual, - d/5J": recurse
G, :(k,kr -m+E+GK+ G GE)_1 J to any desired order, then s&t=-Gk' -GG

(becausek,G" =0) to zero so that all gauge fields are removed. ré&yrsing to infinite order
and removing these gauge fields, we can arrivenaxression foiG(J) with all the gauge

fields removed, and be left with only having toeigltate.[dxexp(—% AX — J>§. In short, the

recursion preliminarily developed in section 8 pdas the needethathematicatools to carry
out exact analytical calculations of what are neermsingly-intractable path integrations for non-
linearphysicalfield theories.

In section 11, we then show how to apply theserseee results to calculate the non-
linear Yang-Mills path integral over the gauge diglortion DG of the path integral measure
analytically and exactly, thereby proving the existe of a non-trivial relativistic quantum
Yang—Mills theory exists onR* for any compact simple gauge group G by solving a
mathematical challenge for which the solution has previously been known. Having used
recursive technique to prove a quantum field thdoryYang-Mills, the question now arises
whether recursive technique may be similarly apblie other non-linear field theories, most
notably, gravitation.

A next important step is to see if this can bensmted to numerically-precise empirical
observations relating to protons and neutrons. @gnihe important unexplained data that we
already know about for protons and neutrons arie thasses, as well as their binding energies in
a wide variety of nuclei. Thus, it becomes import calculate energies and as pointed out at

(10.13), the way to do so is to use (10.13) ingleeral energy formulatiok = —J'”Sgauged:“x,

using a combination oTr(FUTF"T) inner andTrF, TrF”" outer product terms. While we do not

do so in this paper, the author has done so bedoiek published these results in [15], [16] and
[21]. Beyond the clear symmetry concurrences dgpesl in section 10, these empirical
concurrences provide compelling experimental supjoorthe concluding that the non-zero faux

magnetic source densitid? = —id[G, G] =-idGG are baryon densities, thﬁj P' is a baryon,
that F,,,, ==i[G,.G,] in (10.4) is a meson field, and that t@F 20 which originally

eff uv
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actuated this whole line of development represtrgsnteraction of these baryons via mesons,
and indeed the nuclear interaction protons androesitat classical level. As discussed, although
these symmetries were all developed using theickgbeory, there is no apparent reason why

these symmetries would be lost in tH@GDcDc' measure of the complete path integral
Z :j DGDcDc exp( |[S( q—(ll?f)j d %o C}2J+ $ 'c, )4) and would not carry over to the
guantum field theory.

In fact, it is well known that the same color syntnes which have been classically

developed in the present treatment solely emeryent classical Yang-Mills theory, do carry
over to Quantum Chromodynamics.
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