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Abstract: We develop in detail, the classical magnetic monopoles of non-abelian Yang-Mills 
gauge theory, and show how these classical monopoles, when analyzed using Gauss’ / Stokes’ 
theorem, appear to confine their gauge fields, and also, appear to be composite objects.  Of 
course, baryons, which include the protons and neutrons at the heart of nuclear physics, also 
confine their gauge fields and are similarly-composite objects.  This raises the question whether 
the magnetic monopoles of Yang-Mills theory are in some fashion related to the observed 
physical baryons.  After developing inverse solutions for the non-abelian electric charge 
densities while carefully examining uniqueness and gauge fixing, we use these solutions together 
with Dirac theory to “populate” these classical monopoles with fermions.  Applying the Fermi-
Dirac-Pauli Exclusion Principle to these fermions forces the selection of a rank-3 gauge group 
initially chosen to be SU(3).  We then find that these non-abelian magnetic monopoles have the 
exact chromodynamic symmetries of baryons and interact via colored magnetic fields with the 
exact chromodynamic symmetries of mesons.  We show that these monopoles are also 
topologically stable, and that a required U(1) factor which ensures this stability also “flavors”  
these monopole as protons and neutrons.   Because this exposition is classical, we also discuss 
the extent to which classical field theory can be used to effectively analyze baryons and 
confinement.  We finally point out how a recursive aspect of the non-abelian electric charge 
solution may be used to perform an analytically-exact quantum path integration for Yang-Mills 
theory, proving the existence of a non-trivial quantum Yang–Mills theory on R4 for any simple 
gauge group G. 
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1. Introduction:  The Field Strength Curvature Tensor in Gauge Theory, 
and a Review of Gauge-Covariant Derivatives 
 
 In 1918, [1], [2] Hermann Weyl first conceived the idea that electrodynamics might be 
unified with Einstein’s recently-developed geometric theory of gravitation [3], by analyzing a 
“twisting” of vectors under parallel transport to measure the geometric curvature of a gauge 
space.  While Weyl first conceived of this as a local “gauge” symmetry, in 1929 [4] he corrected 
his original misconception into the modern view of a local “phase” symmetry.  Notwithstanding, 
the original misnomer “gauge” is still used to name Weyl’s theory, perhaps as a reminder to 
posterity that even the most foundational physical theories are sometimes properly-conceived in 
the abstract but misconceived in some details that need to be worked out over time. 
 
 In gravitational theory the Riemann curvature tensor Rσ

αµν  may of course be defined as a 

measure of the degree to which the gravitationally-covariant derivative ;µ∂  is non-commuting 

when it operates on an arbitrary vector Aσ , that is, as  ; ;,R A Aσ
αµν σ µ ν α ≡ ∂ ∂  .  What Weyl 

essentially found is that the antisymmetric, second rank, field strength tensor / bivector Fµν  

which appears in electromagnetic theory may be defined as a measure of the extent to which the 
gauge-covariant derivative Dµ  is not self-commuting when it operates on an arbitrary scalar 

field ϕ .  That is, Fµν  may be defined analogously to Rσ
αµν , as a type of curvature in “gauge 

space,” by: 
 

( ) ( ),F i D D iD D iD Dµν µ ν µ ν ν µϕ ϕ ϕ ϕ ≡ = −  . (1.1) 

 
It is instructive to review how the explicit relationship between the field strength Fµν  and a 

gauge / vector potential Gµ  then arises from this definition (1.1). 

 
Gauge-covariant derivatives, like covariant derivatives in Riemannian geometry, take a 

form that depends on the representation of the object they act upon.  Taking the gauge field as 
the defining (fundamental) representation, the form of the gauge-covariant derivatives in (1.1) is 
D iGµ µ µ= ∂ − .  But in other situations to be reviewed, it is a bit more complicated than this.  (In 

general, for compactness, we scale the interaction charge strength g into the gauge field via 
gG Gµ µ→ .  This g can always be extracted back out when explicitly needed.)   So, applying 

D iGµ µ µ= ∂ −  in (1.1), we may write: 

 

( ) ( ) ( )( ) ( ) ( )iD D i iG iG i iG G iG

i G G G iG G

µ ν µ µ ν ν µ ν ν µ ν ν

µ ν µ ν ν µ µ ν µ ν

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

= ∂ − ∂ − = ∂ ∂ − + ∂ −

= ∂ ∂ + ∂ + ∂ + ∂ −
, (1.2) 

 
as well as the reverse-signed, transposed-indexed: 
 

( )iD D i G G G iG Gν µ ν µ ν µ µ ν ν µ ν µϕ ϕ ϕ ϕ ϕ ϕ− = − ∂ ∂ − ∂ − ∂ − ∂ + . (1.3) 
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Using (1.2) and (1.3) in (1.1) then yields: 
 

( ) ( ) [ ], , ,F i D D iD D iD D i G i G Gµν µ ν µ ν ν µ µ ν µ ν µ νϕ ϕ ϕ ϕ ϕ ϕ ϕ     ≡ = − = ∂ ∂ + ∂ −      . (1.4) 

 
In flat spacetime where ; ;, , 0R A A Aσ

αµν σ µ ν α µ ν α   ≡ ∂ ∂ = ∂ ∂ =     and removing the arbitrary 

operand field ϕ , the above becomes the more familiar: 
 

( )[ ] [ [ ] [ ],F G i G G iG G D Gµν µ ν µ ν µ µ ν µ ν = ∂ − = ∂ − =  . (1.5) 

 
Again, D iGµ µ µ≡ ∂ −  above is the gauge-covariant derivative when it acts upon gauge field 

objects Gν  in the fundamental representation, but in general, when operating on other 

representations, it is a bit more complicated as we shall now see.   
 

If the gauge fields commute, i.e., if , 0G Gµ ν  =  , then (1.5) reduces to 

[ ]F G G Gµν µ ν µ ν ν µ= ∂ = ∂ − ∂  and the gauge theory is known as an abelian gauge theory.  If the 

gauge fields do not commute, , 0G Gµ ν  ≠  , then (1.5) becomes the field strength for a non-

abelian gauge theory, often also referred to as Yang-Mills [5] gauge theory. 
 
 Using differential forms, we may write the abelian field strength as: 
 

1 1
[ ]2! 2!F F dx dx G dx dx G dx dx dGµ ν µ ν µ ν

µν µ ν µ ν= ∧ = ∂ ∧ = ∂ ∧ = . (1.6) 

 
In general, the wedge product ,dx dx dx dx dx dx dx dxµ ν µ ν ν µ µ ν ∧ = − =    is antisymmetric under 

adjacent index interchange, and the differential elements are anticommuting, dx dx dx dxµ ν ν µ= − .  
So, by inspection from (1.5) in view of (1.6), the non-abelian field strength is: 
 

( ) [ ]1 1
[ ]2! 2! , ,F F dx dx G i G G dx dx dG i G G DGµ ν µ ν

µν µ ν µ ν = ∧ = ∂ − ∧ = − ≡  . (1.7) 

 
Here, compacted into differential forms, the gauge-covariant derivative is not separable from its 
operand as was D iGµ µ µ= ∂ − when operating on Gν  in (1.1) to (1.5), but rather involves the 

commutator of G with the operand which, in this case, just so happens to also be G.  That is, it 
involves [ ],G G .  This in fact reveals the more-general form of the gauge-covariant derivative as 

we shall review next. 
 
  Now, focusing on non-abelian gauge theories, we introduce a set of traceless Hermitian 
generators †i it t=  which form a closed group under multiplication via ,i j ijk kt t if t  =  , where 

ijkf  are the group structure constants and are antisymmetric under the transposition of any two 
adjacent indexes.  For any simple group SU(N), the internal symmetry indexes of the adjoint 
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representation 2, , 1... 1i j k N= − .  We may then define k kF t Fµν µν≡  and i iG t Gµ µ≡  and use 

these in (1.5) to expand: 
 

[ ] [ ] [ ], ,k k k k i j i j k k ijk k i jF t F G i G G t G i t t G G t G f t G Gµν µν µ ν µ ν µ ν µ ν µ ν µ ν  = = ∂ − = ∂ − = ∂ +    . (1.8) 

 
Factoring out kt  this simplifies to the recognizable: 
 

[ ]
k k ijk i jF G f G Gµν µ ν µ ν= ∂ + . (1.9) 

 
 Now, for illustration, let us momentarily consider the situation where the it  are one half 
(½) times the three (3) Pauli spin matrix generators of SU(2), 1

2
i it σ= , so that ijkf  simply 

becomes the rank-3 Levi-Civita tensor, ijk ijkf ε→ , which again, is antisymmetric in all indexes.  

In spacetime, if we were to write ijk i jA Bε  for any two vectors iA  and jB  and were to regard 
, ,i j k  as indexes for the space dimensions x, y, z, then, for example, 

( )33 1 2 2 1ij i jA B A B A Bε = − = ×A B  is the z-component of the cross product ×A B , and more 

generally, ( )kijk i jA Bε = ×A B .  But of course, the , ,i j k  indexes in (1.9) are not space indexes, 

but are internal symmetry indexes.  So rather than using the cross-product symbol “× ” which is 
used for vectors in physical space, and because we still wish to be able compactly represent the 
fundamentally-antisymmetric character of ijkf  in the form of a “cross-like product” in internal 

symmetry space, we instead employ the wedge symbol “ ∧ .”  Although iG µ  and jG ν  in (1.9) 

both are gauge fields G, they have different spacetime indexes µ  and ν , so we may still think of 

them as two different vectors just like iA  and jB  above.  So analogously to ( )kijk i jA Bε = ×A B  

in the three space dimensions of spacetime, we write ( )kijk i jf G G G Gµ ν µ ν= ∧  in internal 

symmetry space.  Then, we use this in (1.9) to write ( )[ ]

kk kF G G Gµν µ ν µ ν= ∂ + ∧ .  Because the 

general form of this equation holds in SU(N) for each of the indexes 21... 1k N= − , we may 
suppress the k index throughout to write: 
 

[ ]F G G Gµν µ ν µ ν= ∂ + ∧ . (1.10) 

 
Then, compacting (1.10) to differential forms as in (1.6), we have: 
 

( ) ( )1 1
[ ]2! 2!F F dx dx G G G dx dx dG G G d G G DGµ ν µ ν

µν µ ν µ ν= ∧ = ∂ + ∧ ∧ = + ∧ = + ∧ ≡ . (1.11) 

 
Now, Jaffe and Witten point out at pages 1 and 2 of [6], that: 

 
“If A denotes the U(1) gauge connection, locally a one-form on space-time, then 
the curvature or electromagnetic field tensor is the two-form F dA=  [see (1.6) 
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above], and Maxwell’s equations in the absence of charges and currents read 
0 *dF d F= = .” 

 
They then proceed to explain that in “non-abelian gauge theory”: 
 

“at the classical level one replaces the gauge group U(1) of electromagnetism by a 
compact gauge group G.  The definition of the curvature arising from the 
connection must be modified to F dA A A= + ∧  and Maxwell’s equations are 
replaced by the Yang–Mills equations, 0 *A Ad F d F= = , where Ad  is the gauge-

covariant extension of the exterior derivative.”  
 
Equation (1.11) is precisely F dA A A= + ∧  with the gauge field simply renamed from A to G, 
and what Jaffe and Witten write above is a condensed explanation for what we have laid out 
above in equations (1.1) through (1.11).  When we use the generalized one-form G and two-form 
F without any particular generator set it , then the differential forms equation is written as 

[ ],F dG i G G= −  in (1.7).  But when one does introduce a set of group generators it   and the 

antisymmetric structure contestants ijkf → ∧ , the differential forms equation is F dG G G= + ∧  

in (1.11).  To display the particular 21... 1i N= −  field components for a compact simple gauge 

group SU(N), this equation is ( )ii iF dG G G= + ∧ .  So [ ],F dG i G G= −  (commutator form) 

and F dG G G= + ∧  (wedge form) are just alternative ways of saying the same thing.  But a 
benefit of the wedge form is that we may write ( )F d G G DG= + ∧ ≡  so as to define a gauge-

covariant derivative ( ) ( )AD d G d≡ + ∧ =  in a form which is fully-separable from its operand, 

and which is generally applicable to any and all operands.  We will find it useful in general to 
develop both these forms. 
 
 Indeed, the reason we have gone through the exercise of (1.8) through (1.11), is to 
explore the question of how one generally performs Ad D= , independently of its operand, 

“where Ad  is the gauge-covariant extension of the exterior derivative.”  That is, we want to be 

able to generalize the taking of these derivatives, and especially, to ascertain the correct way to 
derive the equations * * *AJ d F D F= =  and AP d F DF= =  in the presence of the electric and 

magnetic three-form charge densities *J  and P . 
 

Specifically, as already stated, if we write equation (1.11) as ( )F d G G DG= + ∧ ≡  with 

( )D d G≡ + ∧ , we find that ( )D d G≡ + ∧  is in fact the generalized definition of the gauge-

covariant derivative which tells us how to take higher-rank gauge derivatives, independent of the 
representation of the operand.  Thus, the Maxwell equations for Yang-Mills theory, in 
differential forms, where it  and ijkf  are specified, with index i suppressed, for SU(N), where we 

use the duality operator *, and with F dG G G= + ∧ , are merely the 21... 1i N= −  equations: 
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( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

* * * * * * * *

* * * *

J D F D DG d G F d F G F d dG G G G dG G G

d dG d G G G dG G G G

P DF DDG d G F dF G F d dG G G G dG G G

ddG d G G G dG G G G

= = = + ∧ = + ∧ = + ∧ + ∧ + ∧

= + ∧ + ∧ + ∧ ∧

= = = + ∧ = + ∧ = + ∧ + ∧ + ∧

= + ∧ + ∧ + ∧ ∧

.(1.12) 

 
The duality operator * was first developed by Reinich [7] later elaborated by Wheeler [8], and it 
makes integral use of the Levi-Civita tensor as laid out in [9] at pages 87-89. 

 
In this paper, we shall develop the classical Yang-Mills magnetic monopole density P 

and a related “faux” magnetic charge density P′  in detail, and shall show how the related 
monopole density P′ , when analyzed using Gauss’ / Stokes’ theorem, appears to confine its 
gauge fields.  Of course, baryons, which include the protons and neutrons at the heart of nuclear 
physics, also confine their gauge fields.  So this raises the question which we thereafter explore 
in detail, whether the magnetic monopoles of Yang-Mills theory are in some fashion related to 
baryons. 
 
2. Classical Field Equations for the Yang-Mills Magnetic Monopole 
 
 To further develop the monopole density P, first, akin to the derivation (1.1) through 
(1.5), we calculate the commutator: 
 

( ) ( )( ) ( ),

,

D F D F F D iG F F iG

F F iG F F iF G F i G F

σ µν σ µν µν σ σ σ µν µν σ σ

σ µν µν σ σ µν µν σ µν σ σ µν σ µν

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

  = − = ∂ − − ∂ − 

 = ∂ + ∂ − − ∂ + = ∂ −  

. (2.1) 

 
We can use FD D iGσ σ σ σ= = ∂ −  in the above, precisely because this is a commutator, and so 

the gauge field will be commuted with the operand Fµν  as in [ ],F dG i G G= −  a.k.a. 

F dG G G= + ∧ .  Removing ϕ  we see that (2.1) contains the useful identity: 
 

, ,D F F i G F D Fσ µν σ µν σ µν σ µν   = ∂ − =    , (2.2) 

 
with the commutator included in the gauge-covariant derivative.  Then, combining (2.2) with 

(1.1) in the form ,F i D Dµν µ ν =   first yields: 

 

, , ,D F D F i D D Dσ µν σ µν σ µ ν    = =      (2.3) 

 
containing an anticommuting succession of gauge-covariant derivatives.  This in turn means that 
the index-cyclical combination: 
 

[ ]( ), , , , , , 0P D F D F D F i D D D D D D D D Dσµν σ µν µ νσ ν σµ σ µ ν µ ν σ ν σ µ        = + + = + + =         , (2.4) 
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by the Jacobian identity [ ] [ ] [ ], , , , , , 0a b c b c a c a b     + + =      .  So we see that the Yang-Mills 

magnetic monopole densities vanish, just like those of abelian gauge theory.  Consequently, we 
can append 0P =  from (2.4) to (1.12), and so write  0P DF DDG= = = , which is the non-
abelian analog to the abelian 0ddG= . 
 
 But there is another zero in the monopole P of (1.12), and that is the zero which comes 
from this very same abelian 0ddG= .  This is rooted in the geometric relationship dd = 0  of 
exterior calculus in spacetime: “the exterior derivative of an exterior derivative is zero.”  In 
general in this paper, we shall highlight the zero of dd = 0  to distinguish it from the (not 
highlighted) zero of the Jacobian identity 0DDG =  which is established by the combination of 
(1.12) and (2.4).  The highlighted zero in dd = 0  is a “subset” identity contained within (1.12), 
which we may now rewrite as: 
 

( )
( )

0 P DF DDG ddG d G G G dG G G G

d G G G dG G G G

= = = = + ∧ + ∧ + ∧ ∧

= + ∧ + ∧ + ∧ ∧0
. (2.5) 

 
Of course, in an abelian gauge theory such as Maxwell’s electrodynamics where , 0G Gµ ν  =   so 

that [ ]F Gµν µ ν= ∂  in (1.5) thus F dG= , the Magnetic monopole densities are themselves 

specified by  abelianP dF ddG= = = 0 .  This means that the Yang-Mills monopole density in (2.5), 

although it too is equal to zero, contains a number of non-zero terms embedded within, as well as 
the term ddG= 0  which we associate with the vanishing monopoles of electrodynamics.  This 
will be very important to keep in mind as we develop this monopole, because this “abelian 
subset” embedding of ddG= 0  within (2.5) will be directly responsible for confining the gauge 
fields within the Yang-Mills monopole, and will lead us to consider whether there is some 
connection between Yang-Mills monopoles and baryons. 
 
 Next let us ascertain the commutator form for the monopole (2.5).  Via the exact same 
type of calculation we used to turn (1.5) a.k.a. (1.7) into (1.11), one may demonstrate that 

[ ],P DF dF i G F= = −  is equivalent to ( )P DF d G F= = + ∧ .  So, combining the former, 

[ ],P DF dF i G F= = − , with [ ],F DG dG i G G= = −  from (1.7) a.k.a. ( )F DG d G G= = + ∧  

from (1.11) , we may translate (2.5) into the commutator expression:   
 

[ ] [ ]( ) [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

, , , ,

, , , ,

, , , , 0

P DF DDG dF i G F d dG i G G i G dG i G G

ddG id G G i G dG G G G

id G G i G dG G G G

 = = = − = − − − 

 = − − −  

 = − − − = 0

. (2.6) 

 
 Let us now expand (2.6) above into tensor components term-by-term, and then do some 
additional reductions.  For P and [ ],id G G−  we have: 
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1
3!P P dx dx dx P dx dx dxσ µ ν σ µ ν

σµν σµν= ∧ ∧ = , (2.7) 

 

[ ] [ ]( )
( )

( ) ( )

1
3!

1
2!

, , , ,

,

id G G i G G G G G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G G G dx dx dx i G G iG G dx dx dx

idGG iGdG

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν σ µ ν
σ µ ν σ µ ν

σ µ ν σ µ ν
σ µ ν µ σ ν σ µ ν σ µ ν

   − = − ∂ + ∂ + ∂ ∧ ∧   

 = − ∂ ∧ ∧ = − ∂ ∧ ∧ 

= − ∂ + ∂ ∧ ∧ = − ∂ + ∂ ∧ ∧

= − +

. (2.8) 

 
The sign reversal in the third line of (2.8) reveals the identity [ ],d G G dGG GdG= − , in contrast 

to scalar product rule ( )d a b da b a db⋅ = ⋅ + ⋅ .  For [ ],i G dG−  in (2.6) we further have: 

 

[ ] ( )

( )( )
( )

( )

1
[ ] [ ] [ ]3!

1
[ ]2!

, , , ,

, ,

2

i G dG i G G G G G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G G G dx dx dx

i G G G G G G dx dx dx

iG G i G G dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν σ µ ν
σ µ ν σ µ ν

σ µ ν
σ µ ν µ ν σ

σ µ ν
σ µ ν ν µ σ µ ν σ

σ µ ν σ µ ν

     − = − ∂ + ∂ + ∂ ∧ ∧     

   = − ∂ ∧ ∧ = − ∂ ∧ ∧   

= − ∂ − ∂ ∧ ∧

= − ∂ − ∂ − ∂ ∧ ∧

= − ∂ + ∂

2

dx dx

iGdG idGG

σ µ ν∧ ∧

= − +

 (2.9) 

 
in which the GdG doubles by a similar sign reversal in the fifth line.  Finally, by the Jacobian 
identity [ ] [ ] [ ], , , , , , 0a b c b c a c a b     + + =      , for [ ], ,G G G    in (2.6), we find (cf. (2.4)) that: 

 

[ ] [ ]( )1
3!, , , , , , , , 0G G G G G G G G G G G G dx dx dxσ µ ν

σ µ ν µ ν σ ν σ µ         − = − + + ∧ ∧ =           , (2.10) 

 
In (2.6), we then use [ ],id G G idGG iGdG− = − +  and [ ], 2i G dG iGdG idGG− = − +  and 

[ ], , 0G G G − =   from (2.8) to (2.10) in (2.6) to restructure and consolidate the monopole 

density as much as possible while retaining an Gauss / Stokes integrable [ ],d G G  term, into: 

 
[ ] [ ]

[ ]

, ,

2

, 0

P id G G i G dG

idGG iGdG iGdG idGG

iGdG

id G G idGG

= − −
= − + − +
= −
= − + − =

0

0

0

0

. (2.11) 

 
This in turn reveals the additional identities [ ],d G G dGG=  and 0GdG= . 

 



Jay R. Yablon 

10 
 

Now, of central interest in the discussion to follow, the monopole density in the final line 
above contains a Gauss/Stokes-integrable term [ ],d G G  (and the ddG=0  ) together with the 

non-integrable term dGG.  Applying Gauss’ / Stokes Theorem dX X=∫∫ ∫�  for any differential 

form X to the final line above, we may ascertain the classical surface flux associated with this 
non-abelian magnetic monopole, namely: 
 

[ ]( ) [ ]( )
[ ] [ ]

, ,

, , 0

P ddG id G G idGG id G G idGG

dG i G G i dGG i G G i dGG

= − + − = − + −

= − + − = − + − =

∫∫∫ ∫∫∫ ∫∫∫

∫∫ ∫∫ ∫∫∫ ∫∫ ∫∫∫

0

0� � �

. (2.12) 

 
By then writing (2.12) using the not-highlighted 0 of the Jacobian identity (2.4) as: 
 

[ ]
[ ]

,

,

dG i G G i dGG

i G G i dGG

− + =

− + =

∫∫ ∫∫ ∫∫∫

∫∫ ∫∫∫0

� �

�

, (2.13) 

 
we clearly see the relationship between what is contained within the three-dimensional volume 

∫∫∫ and what net flows through the closed two-dimensional surface ∫∫� enclosing that volume.  

Now, we wish to interpret what is being taught by (2.13). 
 
3. Confinement of Gauge fields within, and the Composite Nature of, 
Yang-Mills Magnetic Monopoles 
 
 We start with the term dG =∫∫ 0�  which is embedded in (2.13).  In electrodynamics, 

Gauss’ law for magnetism and Faraday’s law are both contained within: 
 

P dF ddG F F dx dx dGµν
µ ν= = = = = =∫∫∫ ∫∫∫ ∫∫∫ ∫∫ ∫∫ ∫∫ 0� � � . (3.1) 

 
At rest, this tells us that while magnetic fields may flow across some surfaces, there is never a 
net flux of a magnetic field through any closed two dimensional surface.  In the form 
P dF ddG= = = 0, this simply says there are no observed magnetic charges.  So how might we 

interpret the presence of dG =∫∫ 0�  as one of the terms among a number of non-vanishing terms 

in equations (2.12) and (2.13) for the Yang-Mills magnetic monopoles? 
 
 To find out, let us return to the non-abelian, Yang-Mills field strength (1.5), namely 

[ ] ,F G i G Gµν µ ν µ ν = ∂ −   , and rewrite this using the differential forms equation: 

 

[ ] [ ]

1 1
2! 2! ,

, ,

F F dx dx G dx dx i G G dx dx

dG i G G i G G

µ ν µ ν µ ν
µν µ ν µ ν = ∧ = ∂ ∧ − ∧ 

= − = −

∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫ ∫∫0

� � � �

� � �

. (3.2) 
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We may then use (3.2) to rewrite (2.13) with a sign reversal as: 
 

[ ]
[ ]( )

( )
1
3!

1
[ ] [ ] [ ]3!

,

, , ,

0

F i G G i dGG

i G G G G G G dx dx dx

i G G G G G G dx dx dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

= − = −

   = − ∂ + ∂ + ∂ ∧ ∧   

= − ∂ + ∂ + ∂ ∧ ∧ ≠

∫∫ ∫∫ ∫∫∫

∫∫∫

∫∫∫

� �

. (3.3) 

 
So, while (3.1) tells us that there is no net magnetic field flux over of any closed surface in 
abelian electrodynamics, (3.3) tells us that in non-Abelian, Yang-Mills gauge theory, there is 
indeed a non-vanishing net flux across closed surfaces, 0F ≠∫∫� , of whatever the Yang-Mills 

analog is to an ordinary abelian magnetic field.   
 

Now, we have a puzzle: any time we see a term F∫∫� , we know that we are talking about 

a magnetic monopole, and that whatever is contained within the associated volume integral is a 
magnetic charge.  Indeed, (3.3) may be thought of as the very definition of a magnetic charge, 
which in (3.3) is not zero.  At the same time, we found in (2.4) a.k.a. (2.6) that 

0P DF DDG= = = , which is to say, that the magnetic charge density is zero, just as it is in 
electrodynamics.  So if 0P DF DDG= = =  but 0F ≠∫∫� , how do we reconcile the former 

equation which says the magnetic charge density is zero with the latter equation which says there 
is a non-zero magnetic charge? 

 
One way to think this through, is take the Yang-Mills electric charge field equation 

(1.12), * *J D F= , revert this (merely for pedagogic simplicity) to its abelian form * *J d F=  
which contains Gauss’ law for electricity, and then apply Gauss’ / Stokes’ Theorem to obtain 

( )* * *F J d F= =∫∫ ∫∫∫ ∫∫∫� .  Just as F∫∫�  in the rest frame represents a net flux of magnetic 

field through a closed surface, *F∫∫�  in the rest frame represents a net flux of electric field 

through a closed surface.  And this *F∫∫�  then becomes the very definition of the electric 

charge.  But here, electric charge density is defined by *J  inside *J∫∫∫ , while in (3.3) magnetic 

charge density is defined by idGG−  inside i dGG− ∫∫∫ .  That is, we have a magnetic charge 

density idGG−  which we need to think about in comparison to an electric charge density *J . 
 
The answer to this puzzle is that the magnetic charge density in (3.3) is not the P of 

0P DF DDG= = = , it is the P idGG′ ≡ −  which, via (2.11) can be extended to 

[ ],P id G G idGG′ = − = − .  The magnetic charge as defined by the enclosure surface F∫∫�  is a 

three-form just like *J  and P, but it is not an elementary three-form source.  Rather, it is a three-
form constructed from idGG−  which includes some dynamical behavior of the gauge fields 
inside the volume integral.  That is, the magnetic charge [ ],P id G G idGG′ = − = −  is a composite 

three-form built out of gauge fields, rather than an elementary three form like the abelian electric 
charge source *J .  Indeed, we may take this a step further: 
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In electrodynamics, the three-form *J  which in tensor language is related to the electric 

source current density vector Jα  by ( ).5
*J g Jα

σµν ασµνε= − , is a true electric source which then 

gives rise to gauge fields in abelian gauge theory via * * *J d F d dG= = , and per (1.12), via 
* * *J D F D DG= =  in Yang-Mills gauge theory.  On the other hand, the P idGG′ = −  in (3.3), 
written in tensor form as ( )[ ] [ ] [ ]P i G G G G G Gσµν σ µ ν µ ν σ ν σ µ′ = − ∂ + ∂ + ∂  and converted over to a one 

form via the related general identities ( ) .51
3!*P g Pα σµνα

σµνε−′ ′= −  and 

( ) .5[ ] 1
[ ]2* G g Gν α σµνα
σ µε−∂ = − ∂ ,  will result in a faux magnetic source: 

 

( ) ( ) ( )
( ) ( )

( )

.5 .51 1
[ ] [ ] [ ]3! 3!

.5 1 1 1 1
[ ] [ ] [ ]3 2 2 2

[ ] [ ] [ ]1
3

[ ]

*

* * *

*

P g P g i G G G G G G

g i G G G G G G

i G G G G G G

i G G

α σµνα σµνα
σµν σ µ ν µ ν σ ν σ µ

σµνα σµνα σµνα
σ µ ν µ ν σ ν σ µ

ν α σ α µ α
ν σ µ

σ α
σ

ε ε

ε ε ε

− −

−

′ ′= − = − − ∂ + ∂ + ∂

= − − ∂ + ∂ + ∂

= − ∂ + ∂ + ∂

= − ∂

. (3.4) 

 
which is constructed solely out of gauge fields G which themselves are sourced by 
* * *J D F D DG= = .  So, there is only one elementary source J, not two sources J and P.  From 
this one source J, gauge fields G are emitted from interaction vertices.  From these gauge fields 
G, a faux magnetic source P idGG′ = −  is assembled.  And finally, from this faux magnetic 
source, 0F ≠∫∫�  flows across closed surfaces as in (3.3).  The electric source Jα , whether in 

abelian or non-abelian gauge theory, has its own independent existence, and it is the source of 
any and all gauge fields.  But the faux magnetic source charge in (3.3) has no independent 
existence apart from the gauge fields G.  Rather, it is built out of the gauge fields.  So the Yang-
Mills monopoles are composite, not elementary, objects.  And, by the way, so too are baryons. 
 
 Having resolved the puzzle of how to reconcile 0P DF DDG= = =  with 0F ≠∫∫� , we 

next pose the following question:  what happens to the total flux F∫∫�  in (3.2) under the local 

gauge-like transformation [ ]'F F F Gµν µν µν ν µ→ = − ∂ ?  In differential forms, this transformation 
is dGFFF −=′→ , which means, precisely because dG =∫∫ 0� , that: 

 

( )F F F dG F′→ = − =∫∫ ∫∫ ∫∫ ∫∫� � � � , (3.5) 

 
So, the net surface flux in the monopole equation (3.3) is invariant under the transformation 

[ ]'F F F Gµν µν µν ν µ→ = − ∂ , which means that the gauge field is not observable with respect to 
net flux across closed surfaces of the monopole.  The abelian expression dG =∫∫ 0� , expanded to 

show the Riemann tensor, may be written as F dG R G dx dx dxτ σ µ ν
νσµ τ= = =∫∫ ∫∫ ∫∫∫ 0� � , and 

explicitly shows how individual gauge fields Gτ  couple with spacetime geometry as represented 
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by Rτ
νσµ .  This represents an absence of monopoles in electrodynamics, and yields the symmetry 

principle (3.5) for the behavior of magnetic monopoles in Yang-Mills theory generally. 
 
 But if the non-zero flux in the Yang-Mills monopole equation (3.3) is invariant under the 
gauge-like transformation [ ]'F F F Gµν µν µν ν µ→ = − ∂  which means that the gauge fields Gµ  are 
not net observables over a closed monopole surface, this would seem to suggest that the Yang-
Mills monopole inherently confine their gauge fields.  This is another hint that the monopole 
equation (3.3) could be the classical field equation for a baryon, in integral form. 
 
 The final point is that because the faux magnetic source P idGG′ = −  is constructed out of 
gauge fields, and because the gauge fields are in turn sourced by * * *J D F D DG= = , and 
because electric sources may be represented in vector form in terms of Dirac fermion 
wavefunctions ψ   via J µ µψγ ψ= , it should be possible in principle, and would certainly be 
desirable in practice, to rewrite the faux magnetic source idGG−  in terms of the true source 
currents J µ  from which they arise, and then to rewrite the J µ µψγ ψ=  in terms of their fermion 

wavefunctions ψ .   The upshot of all this, is that while F∫∫�  in (3.3) is presently expressed in 

terms of gauge fields as ( )F G∫∫� , once we obtain the gauge fields ( )G J  in terms of sources 

and the sources ( )J ψ  in terms of fermions, we will end up with ( )( )( )F G J ψ∫∫� .  Then, if we 

happen to find more than one fermion (maybe even three fermions) within the enclosed F∫∫�  

“system” in its “ground” state, we would need to apply the Exclusion Principle of Fermi-Dirac-
Pauli statistics to maintain the ψ  in distinct quantum eigenstates, which would give us the 
opportunity, for example, to introduce a color degree of freedom to do so and thus make a 

connection to SU(3)C Chromodynamics, with ( )( )( ), ,R G BF G J ψ ψ ψ∫∫� .  So this means that the 

Yang-Mills monopoles are not only composite objects, but are composite objects which contain 
fermions and gauge fields, and that these fermions will need to obey some form of quantum 
exclusion which may include SU(3)C.  And, by the way, all of the same the same is true of 
baryons, and as to fermion exclusion, quarks. 
 
 It is for these reasons, that it may be fruitful to entertain the prospect that (3.3) is not only 
the classical field equation for a Yang-Mills magnetic monopole, but may be synonymous with 
the classical field equation for a baryon.  All of the development in sections 5 through 10 serves 
the singular purpose of proving that this is true.  But first, we need to discuss whether a classical 
analysis along the lines of (3.3) can really teach us anything useful about baryons and 
confinement. 
 
4. Can a Classical Field Equation Really Teach us Anything Useful about 
Baryons and Confinement? 

 
Given that (3.3) is a classical field equation, we must pose the question whether such a 

classical equation can really have anything of interest to say about baryons and confinement, 
which have many features that arise only out of quantum field theory.  For example, it might be 
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observed that a classical analysis which seeks to understand baryons and confinement in no way 
takes account of quantum field theory with operator-valued fields.  This, it might be argued, is 
despite the fact that there are many reasons to believe confinement and the existence of a mass 
gap are related to the running of the coupling constant, which is an inherently quantum effect. 
 

Certainly, (3.3) above is a completely classical field equation, not yet taking into account 
any aspects (or the need to prove existence) of a non-trivial relativistic quantum Yang–Mills 
theory on R4 [6].  And, of course, there are many reasons to believe that confinement is related to 
the running of the strong coupling constant, which is an inherently quantum effect, and which 
manifests in asymptotic freedom at “ultraviolet” energy and infrared slavery at low energy [10].  
However, just like electrodynamics, Yang-Mills gauge theory has a classical formulation and (is 
expected once quantum Yang-Mills existence is proven, to have) a quantum field formulation.  
This means that (3.3) may reveal inherently-confining attributes for the magnetic monopoles of 
Yang-Mills gauge theory which appear at the classical level and which are rooted in the 
relationship dd = 0  of Riemannian spacetime exterior geometry, as well as inherently-composite 

attributes expressed by ( )( )( )F G J ψ∫∫� .  That opens up the question how these same attributes 

translate through to quantum Yang-Mills theory.   
 

Specifically, if in fact (3.3) for F∫∫�  is an equation for baryon-like gauge field 

confinement properties of Yang-Mills magnetic monopoles based upon their abelian-subset 
behaviors rooted in the classical equation ddG= 0  and its integral form dG =∫∫ 0�  and the 

consequent symmetry (3.5), and if the composite faux magnetic charge P idGG′ = −  in (3.3) in 
some way represents a baryon charge, then the classical baryons that would be represented by 
(3.3) would not suddenly become “not baryons” in quantum field theory.  Rather, there would 
two sets of behaviors that need to be studied: a) how these monopoles behave in a classical 
formulation, which includes (3.3) and (3.5) above, and b) how these monopoles additionally 
behave in quantum field theory.  So if we can demonstrate that the classical behaviors appear to 
be confining and appear to involve a non-elementary, composite charge that includes some 
amalgam of fermions and gauge fields, one should expect that this will “bleed” through to yield 
quantum amplitudes and running couplings and color symmetries that buttress, not defy, these 
classical behaviors, just as abelian magnetic monopoles do not suddenly appear and ordinary 
magnetic fields do not suddenly net flow through closed surfaces, once one goes from classical 
to quantum electrodynamics. 
 

  Further, one might take the perspective that the cause for confinement and baryon 
compositeness is the classical field equation (3.3) for a Yang-Mills monopole which has the 
symmetry (3.5), and that one of the effects of this is that in a quantum field treatment of these 
baryon monopoles, the strong coupling will weaken for ultraviolet and strengthen for infrared 
probes.  And, it can be argued that this is a more natural approach than simply trying to figure 
out how to “glue” together disparate quarks into baryons without knowing to begin with what 
sorts of covariant objects baryons actually are in spacetime.  Indeed, if the hints of baryons and 
confinement that arise in (3.3) and (3.5) are correct, then we would need to start thinking of 
baryons as third-rank antisymmetric tensors and related three-forms in spacetime governed by 
the classical equation (3.3) with the symmetry (3.5), and then see how that connects to 
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everything else we know about baryons.  The “let’s glue together the quarks” approach, 
notwithstanding many opportunities to do so, has thus far failed to explain why QCD “must have 
‘quark confinement, that is, even though the theory is described in terms of elementary fields, 
such as the quark fields, that transform non-trivially under SU(3), the physical particle states—
such as the proton, neutron, and pion—are SU(3)-invariant,” see [6] at page 3.  This SU(3)-
invariance of physical particle states is a symmetry principle, and while not every classical 
symmetry carries through to quantum field theory, for example, the chiral anomaly (e.g., [11], 
section IV.7), there is no apparent a priori reason to believe that whatever classical symmetries 
are found for these monopoles (such as (3.5)) will only manifest in the classical but not the 
quantum field theory.  At the very least, the question for study becomes: do these symmetries 
carry over from classical to quantum field theory, and if not, why not, and in what manner are 
they altered?  Further, if the baryon charge really is P idGG′ = − , then as we turn 

( ) ( )( )( )F G F G J ψ→∫∫ ∫∫� � , so too would we turn ( ) ( )( )( )P G P G J ψ′ ′→ .  This may reveal 

that the inherently-composite nature of this P idGG′ = −  charge is in fact the long-sought “glue” 
to aggregate quarks and gluons together into a single charge system, ab initio. 
 

Additionally, approaching confinement starting from a classical treatment of baryons has 
validating precedent in the MIT Bag Model reviewed in, e.g., [12], section 18.  Irrespective of 
the specifics of any particular bag-type model of confinement, the MIT Bag Model very 
correctly makes one very important point: focus carefully on what flows and does not flow across 
any closed two-dimensional surface.  And it does so using the classical formulation of Gauss’ / 
Stokes’ theorem.  This is why the integral form of Maxwell’s equations in classical field theory 
may well be a very sensible starting point studying confinement, because from the Bag Model 
viewpoint, confinement is all about what passes and does not pass through closed surfaces 
containing the extended field configuration within the baryon volume. 

 
Further, by talking about the “classical level” of “non-abelian gauge theory” right on 

page 1 of [6], Jaffe and Witten themselves recognize that Yang-Mills theory has a classical 
level, and that a reasonable starting point for developing quantum Yang-Mills theory, is to first 
fully and properly develop and understand Yang-Mills gauge theory at this classical level. 
 

Finally, it is certainly unrealistic to expect that a classical-only treatment of baryons 
based on Yang-Mills magnetic monopoles will explain all of the observed phenomenology of 
baryons.  It cannot and will not.  Only a proper quantum field treatment may be expected to do 
so.  Yet, at the same time, there are some important physics insights to be gained even from a 
classical treatment of the Yang-Mills monopole equation (3.3).  And we know, if we can fully 
develop a classical theory on its own terms, and then obtain its Lagrangian density ( )φL  and 

action ( )S φ  in terms of its fields φ , that we can then convert over to a quantum field theory via 

the path integration 4exp expZ D i d x D iSφ φ= =∫ ∫ ∫L .  While carrying out the path integration 

of a non-linear theory such as Yang-Mills gauge theory (and especially gravitational theory) is 
still an exceptionally challenging problem, that does not mean one ought not make the effort to 
find the correct road for doing so, which road is revealed in section 8 and used to carry out an 
analytically-exact path integration in section 11.  But this all this begins by finding and fleshing 
out, the right classical theory to quantize.  
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So what is most important is for researchers in particle, baryon and nuclear theory to be 

aware of the possibility of modelling baryons as Yang-Mills magnetic monopoles to gain 
possible insight into confinement and related QCD symmetries, so that this possible connection 
can be further developed, vetted, and empirically-tested by anyone who finds it interesting or 
promising.  We now explore the next several steps in this development. 
 
5. Classical Field Equations for the Yang-Mills Electric Charge 
 
 Now let us develop the electric charge density *J in (1.12).  Once again, via the same 
type of calculation used to go from (1.5) a.k.a. (1.7) to (1.11), which was also used to go from 
(2.5) to (2.6), together with [ ],F DG dG i G G= = − , we write (1.12) for *J in commutator form: 

 

[ ] [ ]( ) [ ]( )
[ ] [ ] [ ]

* * * * ,* * , ,* ,

* * , ,* ,* ,

J D F D DG d F i G F d dG i G G i G dG i G G

d dG id G G i G dG G G G

 = = = − = − − − 

 = − − −  

. (5.1) 

  
This should be contrasted with the analog for P in the middle line of (2.6).  Above, however, we 

do not have all the zeroes that were in (2.6), namely, ddG, 0P = , and [ ], , 0G G G  =  . 

 
 As in (2.7) to (2.10), we expand the differential forms of each term.  We first have: 
 

1
3!* * *J J dx dx dx J dx dx dxσ µ ν σ µ ν

σµν σµν= ∧ ∧ = , (5.2) 

 

( )
( )( )

( ) ( )

1
; ;[ ] ; ;[ ] ; ;[ ]3!

.5 ;[ ]1 1 1
; ;[ ] ;2! 2! 2!

.5 .5;[ ] ;1 1 1
; ;2! 2! 2!

* * * *

*

d dG G G G dx dx dx

G dx dx dx g G dx dx dx

g G dx dx dx g G dx dx dx

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν α β σ µ ν
σ µ ν σ αβµν

α β σ µ ν α β σ µ ν
αβµν σ αβµν σ

ε

ε ε

= ∂ ∂ + ∂ ∂ + ∂ ∂ ∧ ∧

= ∂ ∂ ∧ ∧ = ∂ − ∂ ∧ ∧

= − ∂ ∂ ∧ ∧ = − ∂ ∂ ∧ ∧

.  (5.3) 

 

Above, we have used the duality relationship ( ).5 ;[ ]1
;[ ] 2!* G g Gα β

µ ν αβµνε∂ = − ∂ .  We have also 

allowed for a curved spacetime by using the covariant derivatives, as well as the product rule 

which simplifies to ( )( ) ( ).5 .5;[ ] ;[ ]
; ;g G g Gα β α β
σ σ∂ − ∂ = − ∂ ∂  because of the metricity ; 0gµν σ = .  In 

flat spacetime, ;σ σ∂ → ∂  and ( ).5 1g− = . 

 

Next, in contrast to (2.8), using ( ).51
2!* , ,G G g G Gα β

µ ν αβµνε    = −     and of course 

; 0gµν σ = , with the analogous sign reversal at the sixth line as in (2.8), we have: 
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[ ]
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1
;2!

.5 .51 1 1
; ;2! 2! 2!

.5 .51 1
; ;2! 2!

.5 [1 1
;2! 2!

* , * ,

,

id G G i G G dx dx dx

i g G G dx dx dx i g G G dx dx dx

i g G G dx dx dx i g G G dx dx dx

i g G

σ µ ν
σ µ ν

α β σ µ ν α β σ µ ν
αβµν σ αβµν σ

α β σ µ ν α β σ µ ν
αβµν σ αβµν σ

α
αβµν σ

ε ε

ε ε

ε

 − = − ∂ ∧ ∧ 

 = − − ∂ ∧ ∧ = − − ∂ ∧ ∧ 

= − − ∂ ∧ ∧ − − ∂ ∧ ∧

= − − ∂( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( )

.5] [ ]1 1
;2! 2!

1 1
; [ ] [ ; ]2! 2!

1 1
; [ ] [ ; ]2! 2!

; ;

* *

* *

* *

G dx dx dx i g G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G dx dx dx i G G dx dx dx

i G G dx dx dx i G G dx dx dx

β σ µ ν α β σ µ ν
αβµν σ

σ µ ν σ µ ν
σ µ ν µ σ ν

σ µ ν σ µ ν
σ µ ν σ µ ν

σ µ ν σ µ ν
σ µ ν σ µ ν

ε∧ ∧ − − ∂ ∧ ∧

= − ∂ ∧ ∧ − ∂ ∧ ∧

= − ∂ ∧ ∧ + ∂ ∧ ∧

= − ∂ ∧ ∧ + ∂ ∧ ∧

( )
( )

( )
( )

1
; [ ] ; [ ] ; [ ]3!

1
[ ; ] [ ; ] [ ; ]3!

1
;[ ] ;[ ] ;[ ]3!

1
;[ ] ;[ ] ;[ ]3!

;

* * *

* * *

* * *

* * *

*

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

= − ∂ + ∂ + ∂ ∧ ∧

+ ∂ + ∂ + ∂ ∧ ∧

= − ∂ + ∂ + ∂ ∧ ∧

+ ∂ + ∂ + ∂ ∧ ∧

= − ∂( );*

* *

G G iG G dx dx dx

i dGG iG dG

σ µ ν
σ µ ν σ µ ν+ ∂ ∧ ∧

= − +
,(5.4) 

 

Note that within the differential forms, and given ( ).51
2!*F g Fαβ

µν αβµνε= −  and ; 0gµν σ = , we are 

able to “transfer” the duality operation, i.e., that we are able to set ; [ ] ;[ ]* *G G G Gσ µ ν σ µ ν∂ → ∂ , etc. 

and [ ; ] ;[ ]* *G G G Gσ µ ν σ µ ν∂ → ∂ , etc.  This reveals [ ]* , * *d G G dGG G dG= −  as a duality 

product-rule identity, contrast [ ],d G G dGG GdG= −  from (2.8). 

 

 Similarly, in contrast to (2.9), using ( ).5 ;[ ]1
;[ ] 2!* G g Gα β

µ ν αβµνε∂ = − ∂ , with a sign reversal 

as previously in the sixth line, and transferring [ ; ] ;[ ]* *G G G Gσ µ ν σ µ ν∂ → ∂  in the eighth line as 

was done in (5.4) above without repeating the expansion to third rank tensor form, we obtain: 
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[ ] ( )
( )

( )
( )

1
;[ ] ;[ ] ;[ ]3!

.5 ;[ ]1 1 1
;[ ]2! 2! 2!

.5 ;1
2!

.51
2!

,* ,* ,* ,*

,* ,

,

i G dG i G G G G G G dx dx dx

i G G dx dx dx i g G G dx dx dx

i g G G dx dx dx

i g G

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν α β σ µ ν
σ µ ν αβµν σ

α β σ µ ν
αβµν σ

αβµν

ε

ε

ε

     − = − ∂ + ∂ + ∂ ∧ ∧     

  = − ∂ ∧ ∧ = − − ∂ ∧ ∧   

 = − − ∂ ∧ ∧ 

= − − ( )( )
( ) ( )

( ) ( )
( )

; ;

.5 ; ; ;1
2!

.5 ;[ ] [ ; ] ;[ ]1 1
2! 2!

1
;[ ] [ ; ] ;[ ]2!

1
;[ ]2!

* * *

2 * *

G G G dx dx dx

i g G G G G G G dx dx dx

i g G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G

α β α β σ µ ν
σ σ

α β β α α β σ µ ν
αβµν σ σ σ

α β α β α β σ µ ν
αβµν σ σ σ

σ µ ν
σ µ ν σ µ ν σ µ ν

σ µ ν

ε

ε

∂ − ∂ ∧ ∧

= − − ∂ − ∂ − ∂ ∧ ∧

= − − ∂ + ∂ − ∂ ∧ ∧

= − ∂ + ∂ − ∂ ∧ ∧

= − ∂ −( )
( )

;[ ]

; ;2 * *

2 * *

G G dx dx dx

iG G i G G dx dx dx

iG dG i dGG

σ µ ν
σ µ ν

σ µ ν
σ µ ν σ µ ν

∂ ∧ ∧

= − ∂ + ∂ ∧ ∧

= − +

. (5.5) 

 

 Finally, in contrast to (2.10), using ( ).51
2!* , ,G G g G Gα β

µ ν αβµνε    = −    , 

 

[ ] [ ]( )
( )

( )

1
3!

.51 1 1
2! 2! 2!

.51 1
2! 3!

,* , ,* , ,* , ,* ,

,* , , ,

, , , ,

G G G G G G G G G G G G dx dx dx

G G G dx dx dx g G G G dx dx dx

g G G G G G G

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν α β σ µ ν
σ µ ν αβµν σ

α β α β
αβµν σ αβνσ µ

ε

ε ε

         − = − + + ∧ ∧          

     = − ∧ ∧ = − − ∧ ∧      

  = − − +  ( ), , 0G G G dx dx dxα β σ µ ν
αβσµ νε      + ∧ ∧ ≠      

.(5.6) 

 
Unlike (2.10), this is not zero via the Jacobian identity [ ] [ ] [ ], , , , , , 0a b c b c a c a b     + + =      , 

because although ,G Gα β    is common to each of the three terms in the bottom line of (5.6), 

G G Gαβµν σ αβνσ µ αβσµ νε ε ε≠ ≠  are three distinct tensors. 

 
 So now we use [ ]* , * *id G G i dGG iG dG− = − +  and [ ],* 2 * *i G dG iG dG i dGG− = − +  

found in (5.4) and (5.5), in (5.1).  Analogously to (2.11) we obtain: 
 

[ ] [ ] [ ]
[ ]

[ ]
[ ] [ ]

[ ] [ ]
[ ]

* * * , ,* ,* ,

* * * 2 * * ,* ,

* * ,* ,

* * , * ,* ,

* ,* ,* ,

* 2 * * ,* ,

J d dG id G G i G dG G G G

d dG i dGG iG dG iG dG i dGG G G G

d dG iG dG G G G

d dG id G G i dGG G G G

d F i G dG G G G

d F iG dG i dGG G G G

 = − − −  

 = − + − + −  

 = − −  

 = + − −  

 = − −  

 = − + −  

. (5.7) 
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This corresponds to (2.11), however, here, a) * 0J ≠  in contrast to 0P = ; b) * 0d dG≠  in 
contrast to 0ddG= ; c) [ ],* , 0G G G  ≠   in contrast to [ ], , 0G G G  =  , and d) the terms 

[ ] [ ], * ,id G G id G G→  and *idGG i dGG− → − .  Based on the top line, we also use 

[ ]( )* * ,F dG i G G= −  which is the differential form for ( )[ ]* * ,F G i G Gµν µ ν µ ν = ∂ −    in the final 

two lines.  
 
 Now we wish to apply Gauss’ / Stokes’ theorem to (5.7), as we earlier did to (2.11).  
Using the last two lines of (5.7) with the integrable term *d F  separated on the left, we have: 
 

[ ] [ ]( )
[ ]( )

* *

* ,* ,* ,

* * 2 * ,* ,

F d F

J i G dG G G G

J i dGG iG dG G G G

=

 = + +  

 = − + +  

∫∫ ∫∫∫

∫∫∫

∫∫∫

�

. (5.8) 

 
The Abelian portion of this equation, * *F J=∫∫ ∫∫∫�  which we used for pedagogic simplicity in 

the analysis following (3.3), is clearly included when the gauge fields are set to zero.  Putting the 
Yang-Mills electric charge equation (5.8) together with the magnetic charge equation (3.3), we 
find that Maxwell’s Yang-Mills equations in integral form are: 
 

[ ]( )
[ ]

* * * 2 * ,* ,

,

F i dGG J iG dG G G G

F i dGG i G G

 = − + + +  

= − = −

∫∫ ∫∫∫ ∫∫∫ ∫∫∫

∫∫ ∫∫∫ ∫∫

�

� �

. (5.9) 

 
In this form, the parallels and differences are manifestly clear.  *F∫∫�  is the net electric 

field flux and F∫∫�  the net magnetic field flux over a closed surface.  *J  is the electric source 

charge density and it is non-vanishing, while the magnetic source density 0P =  vanishes by the 
Jacobian (2.4).  Similarly, while * 0G dG≠  and [ ],* , 0G G G  ≠   in the electric field equation, 

their duality counterparts 0GdG=  and [ ], , 0G G G  =   are also part of the magnetic charge 

equation, but vanish by the respective identities found in (2.11) and (2.10).  We see how the only 
true, elementary source is *J  and that there are then a number of faux sources which include 
P idGG′ = −  for the net magnetic field flux F∫∫� , and [ ]* * 2 * ,* ,J i dGG iG dG G G G′  ≡ − + +    

which is a faux electric source which contributes to the net electric field flux beyond that 
contributed by “true” electric source J in the abelian portion * *F J=∫∫ ∫∫∫�  of (5.9). 

 
 Because the only elementary, real, not-faux source in the Yang-Mills equations (5.9) is 
the electric source *J , it will be desirable to solve the electric charge density equation (5.7) for 
the gauge field G in terms of *J .  Particularly, as laid out at the end of section 3, our eventual 

goal is to find ( )( )( )F G J ψ∫∫� .  So a key step along the way is to obtain the gauge fields ( )G J  
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in terms of sources.  Equation (5.7) has a number of alternative ways to express ( )*J G , but the 

most compact way is on the third line.  So we expand those differential forms to obtain: 
 

[ ]
( )
( )

[ ]( )

1
3!

1
[ ] [ ] [ ]3!

1
[ ] [ ] [ ]3!

1
3!

* *

* * ,* ,

* * *

* * *

,* , ,* , ,* ,

J J dx dx dx

d dG iG dG G G G

G G G dx dx dx

i G G G G G G dx dx dx

G G G G G G G G G dx dx dx

σ µ ν
σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

= ∧ ∧

 = − −  

= ∂ ∂ + ∂ ∂ + ∂ ∂ ∧ ∧

− ∂ + ∂ + ∂ ∧ ∧

        − + + ∧ ∧        

. (5.10) 

 
Stripping off the forms, we obtain the tensor equation: 
 

( )
( )

[ ]( )

[ ] [ ] [ ]

[ ] [ ] [ ]

* * * *

* * *

,* , ,* , ,* ,

J G G G

i G G G G G G

G G G G G G G G G

σµν σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

= ∂ ∂ + ∂ ∂ + ∂ ∂

− ∂ + ∂ + ∂

        − + +        

. (5.11) 

 

Then, we apply the duality operations ( ).5
*J g Jα

σµν ασµνε= − , ( ).5 [ ]1
[ ] 2!* G g Gα β
µ ν αβµνε∂ = − ∂  and 

( ).51
2!* , ,G G g G Gα β

µ ν αβµνε    = −    , and the metricity ; 0gµν σ =  as discussed after (5.3), to 

obtain (a good summary of the use of duality is contained in [9], pages 87-89): 
 

( )
( ) ( )
( ) ( )

( ) ( )

.5

.5 [ ] [ ] [ ]1
2!

.5 [ ] [ ] [ ]1
2!

.51
2! , , , , , ,

g J

g G G G

i g G G G G G G

g G G G G G G G G G

α
ασµν

α β α β α β
αβµν σ αβνσ µ αβσµ ν

α β α β α β
αβµν σ αβνσ µ αβσµ ν

α β α β α β
αβµν σ αβνσ µ αβσµ ν

ε

ε ε ε

ε ε ε

ε ε ε

−

= − ∂ ∂ + ∂ ∂ + ∂ ∂

− − ∂ + ∂ + ∂

          − − + +          

. (5.12) 

 

Factoring out ( ).5
g−  and multiplying through by κσµνε  next yields: 
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( )
( )

[ ] [ ] [ ]1
2!

[ ] [ ] [ ]1
2!

1
2!

3! 6

, , , ,

J J J

G G G

i G G G G G G

G G G G G G

κσµν α κ α κ
ασµν α

κσµν α β κσµν α β κσµν α β
αβµν σ αβνσ µ αβσµ ν

κσµν α β κσµν α β κσµν α β
αβµν σ αβνσ µ αβσµ ν

κσµν α β κσµν α β
αβµν σ αβνσ µ

ε ε δ

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε

= − = −

= ∂ ∂ + ∂ ∂ + ∂ ∂

− ∂ + ∂ + ∂

    − +    ( )
( )

( )
( )

[ ] [ ] [ ]

[ ] [ ] [ ]

, ,

, , , , , ,

G G G

G G G

i G G G G G G

G G G G G G G G G

κσµν α β
αβσµ ν

κσ α β κµ α β κν α β
αβ σ αβ µ αβ ν

κσ α β κµ α β κν α β
αβ σ αβ µ αβ ν

κσ α β κµ α β κν α β
αβ σ αβ µ αβ ν

ε ε

δ δ δ

δ δ δ

δ δ δ

    +     

= − ∂ ∂ + ∂ ∂ + ∂ ∂

+ ∂ + ∂ + ∂

          + + +          

. (5.13) 

 
Using κσ κ σ κ σ

αβ α β β αδ δ δ δ δ≡ −  and the like, with κ ν→  index renaming, this reduces to: 

 
[ ] [ ] , ,J G iG G G G Gν σ ν σ ν σ ν

σ σ σ  − = ∂ ∂ − ∂ −    . (5.14) 

 
Contrasting to the original [ ]* * * ,* ,J d dG iG dG G G G = − −   , we see that aside from the sign 

reversal, the * between two objects essentially results in an index contraction between those two 
objects when they are written as tensors.  If we then expand all the commutators and reorganize 
terms in a familiar way, we obtain: 
 

( ) ( )
( ) ( )

( )

[ ] [ ] , ,

2

2

J G iG G G G G

iG G G G iG G G G G G

g iG G G G iG G G G G G

g D D D D G

ν σ ν σ ν σ ν
σ σ σ

σ σ σ ν σ ν σ ν σ ν ν σ
σ σ σ σ

νσ τ τ τ σ ν σ ν σ ν ν σ
τ τ τ σ σ

νσ τ σ ν
τ σ

  − = ∂ ∂ − ∂ −   

= ∂ ∂ − ∂ − − ∂ ∂ − ∂ − +

= ∂ ∂ − ∂ − − ∂ ∂ − ∂ − +

≡ −

, (5.15) 

 
with a configuration space operator g D D D Dνσ τ σ ν

τ −  where in the final line we have defined: 

 
2D D iG G G G Gσ ν σ ν σ ν σ ν ν σ≡ ∂ ∂ − ∂ − +  (5.16) 

  
which, upon contraction, does yield: 
 
D D iG G Gτ τ τ τ

τ τ τ τ= ∂ ∂ − ∂ − . (5.17) 

 

By way of contrast, in Abelian gauge theory, ( )J g Gν νσ τ σ ν
τ σ− = ∂ ∂ − ∂ ∂ .  So (5.15) for ( )J Gν

σ , 

is now in a familiar form which we can use to approach taking the inverse ( )G Jν
σ .  This is the 

first step toward being able to obtain ( )( )( )F G J ψ∫∫� . 
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 Finally, let us find the continuity equation for conservation of the electric source density 
and current, based on (5.15).  Equation (5.15) will clearly be recognized as another way to 
express J D Fν σν

σ− =  which may be similarly derived from * *J D F=  in (1.12).  Particularly, 

we wish to show that 0D J D D Fν σν
ν ν σ− = = , by identity.  Similarly to (2.1), we may take the 

gauge-covariant derivative of Jν  via the commutation: 
 

( ) ( ) ( ) ( ),

,

D J D J J D iG J J iG

J J iG J J iJ G J i G J D J

ν ν ν ν ν
ν ν ν ν ν ν ν

ν ν ν ν ν ν ν ν
ν ν ν ν ν ν ν ν

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

  = − = ∂ − − ∂ − 

 = ∂ + ∂ − − ∂ + = ∂ − = 

. (5.18) 

 
Stripping off the ϕ , we see the correct derivative: 
 

, ,D J J i G J D Jν ν ν ν
ν ν ν ν   = ∂ − =     (5.19) 

 

which includes the commutator ,G Jν
ν   .  So, we start with D J D D Fν σν

ν ν σ− =  and apply 

,D F D Fσ µν σ µν  =   from (2.2), ,D J D Jν ν
ν ν  =   from (5.19), J D Fν σν

σ− = , and  [ ],iF D Dσν ν σ=  

from (1.1) to show via simple index commutativity that the continuity equation, due to the scalar 
contraction F Fσν

σν  of like-objects, is:  

 

[ ]1
2

1
2

, , , ,

, , ,

, 0

D J D J D D F D D F

D D F D F D D F D F D D

D D F F D D D D F D D F

i F F

ν ν σν σν
ν ν ν σ ν σ

σν σν σν σν
ν σ ν σ σ ν σ ν

σν σν σν σν
ν σ σ ν ν σ ν σ

σν
σν

      − = − = =      

= − − +

   = + = =   

 = = 

. (5.20) 

 
The continuity equation in differential forms, therefore, is * * 0D J DD F= = .  This equation for 
the conservation of the non-abelian charge density will play a very central role the development 
to follow. 
 
6. Abelian and non-Abelian Massive Gauge Boson Inverses for the Electric 
Charge Density, Using the “Coleman-Zee” Method 
 

 The next stage in our development to demonstrate that F i dGG= −∫∫ ∫∫∫�  in (5.9) is the 

integral-form classical equation for a baryon, is to invert the configuration space operator 

g D D D Dνσ τ σ ν
τ −  of (5.15) to obtain ( )G Jν

σ , so we can obtain ( )( )F G J∫∫� .  This inverse, 

which we denote by I µν , may be defined by G I Jν
µ µν≡ .  In general, I Iµν νµ≠  is not necessarily 

symmetric, so G I Jν
µ µν≡  is an inner product definition not necessarily the same as an outer 
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product definition G I Jν
µ νµ′≡ / .  Making use of G I Jν

µ µν≡  to left-multiply (5.15) by I µν−  allows 

us to write: 
 

( )I J I g D D D D G G Gν νσ τ σ ν σ
µν µν τ σ µ µ σδ= − − = = , (6.1) 

 
from which we may extract a more-directly defined inverse: 
 

( )I g D D D Dνσ τ σ ν σ
µν τ µδ− − = . (6.2) 

 
Now the task is to show that this inverse exists, to understand the degree to which any particular 
inverse which does exist is non-unique, to review the options for fixing the gauge of these 
inverses, and to select the inverse or inverses with suitable gauge choices or better yet, unique 

gauge requirements which best illustrate why F i dGG= −∫∫ ∫∫∫�  based on a faux magnetic 

charge P idGG′ = −  of (3.4) has all of the key symmetries of a baryon. 
 

Taking inverses in gauge theory is a tricky business, because one is often free to choose 
the gauge resulting in non-unique inverses, and because particularly for massless gauge bosons – 
which include the gluons of QCD – the inverse may not even exist without a careful selection and 
fixing of the gauge, see, e.g., [11] chapter III.4.  Additionally, because the gauge field is the field 
of integration used to turn a classical action S into a quantum field amplitude W, a symmetry that 
exists classically may not be a symmetry of the related quantum field theory, see, e.g., [11] 
chapter IV.7 (Chiral Anomaly).  Specifically, a classical symmetry exists if some transformation 
leaves the action ( )S ϕ  invariant.  A quantum symmetry exists if (and inherits the classical 

symmetry) if the same transformation leaves the path integral ( )expZ D iSϕ ϕ= ∫  invariant.  But 

this may not always be the case.  Therefore, let us start by carefully parsing out the various issues 
that come into play when taking inverses of the form (6.2). 
 
 First, as to classical versus quantum fields, we consider the local non-abelian gauge 
transformation which is ,G G G i Gµ µ µ µ µθ θ′  → = + ∂ −    in tensors, [ ],G G G d i Gθ θ′→ = + −  

in differential commutator forms, and ( )G G G d G G d Gθ θ θ′→ = + + ∧ = + + ∧  in differential 

wedge forms.  These are all alternative but equivalent ways of saying the same thing.  All of the 
classical field equations developed thus far including (1.12), (2.11), (3.3), (5.1), (5.7) and (5.9) 
are symmetric under such a gauge transformation.  So too, the electric charge field equation 
(5.15) with the specific D Dσ ν  and D Dτ

τ  identified in (5.16) and (5.17) is symmetric under this 

non-abelian gauge transformation.  This should be no surprise: all of these equations were 
developed with the express purpose of preserving this gauge symmetry.  This means that the 
action ( ) ( ) 4S G G d x= ∫L  is similarly invariant.  But when we take a path integral 

( ) ( )exp expZ DG iS G iW J= ≡∫ C  to obtain the associated quantum field theory for the 

amplitude ( )W J , we see that we are not necessarily assured that the measure DG  will have this 

same symmetry.  And this in turn means that the quantum field theory may not share all of the 
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symmetries of the classical field theory.  Typically, ensuring that the path integral also carries 
forward the gauge symmetry under [ ]( ),DG D G d i Gθ θ→ + −  is what gives rise to gauge-

fixing measures such as Faddeev-Popov [13] including anticommuting scalar “ghost” fields, see 
some concise development of this in [11], chapters III.4, and VII.1.  However, so long as we 
restrict ourselves to classical field theory, which we are doing at the moment, we can develop 
inverses without this particular worry.  We just need to be prepared to address this issue once we 
are ready to calculate the path integral, which is to be done only after the classical theory has 
been fully elaborated.  Again, as to why there is both validity and benefit to doing taking this 
approach of fully elaborating the classical theory in advance of the quantum theory, see the 
discussion of section 4. 
 
 Second, as to why we need to take inverses when going from classical to quantum field 
theory, this is because the mathematical exercise of calculating a path integral revolves around 

clever extrapolations of the Gaussian integral ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫  

into ( )( ) ( )( )exp expZ DG iS G C iW J= ≡∫ , with the correspondence ( ) 2~ / 2W J J A.  Because 

the abstracted coefficient A of 2Ax  gets inverted in 2 / 2J A, and because A ends up 
corresponding with the configuration space operator g D D D Dνσ τ σ ν

τ −  in (6.2) which then gets 

inverted via 2 / 2J A into Iνµ  which then becomes proportionately related to the quantum 

propagator assuming we can find a way as we will in sections 8 and 11 to deal with 
g D D D Dνσ τ σ ν

τ −  not being quadratic in Gµ , one must expect to have to obtain 

( ) 1
g D D D Dνσ τ σ ν

τ
−

−  to arrive at quantum field theory, in addition to having to deal with the 

invariance of the measure under [ ]( ),DG D G d i Gθ θ→ + − .  Thus, it is desirable to have a 

number of inverses already developed “on the shelf” when it comes time to use them to calculate 
a path integral.  But, as we see in (6.2), even before we start approaching path integration, we 
still need this inverse even to develop the classical theory, and specifically, in order to obtain 

( )( )F G J∫∫� .  

 
 Third, even in classical theory, configuration space operators of the form gνσ τ σ ν

τ∂ ∂ − ∂ ∂  

simply have no inverse!  Although often couched in mystery, this problem arises from the simple 
fact that for a massless gauge boson, a Lorentz vector Gµ  with four spacetime components is 

used to describe physical fields – for example the photon in electrodynamics and the gluons in 
chromodynamics – which only have two physical degrees of freedom.  That is, a mathematical 
object Gµ  with four degrees of freedom is used to represent a physical object which only has 

half as many degrees of freedom.  This is an inherent redundancy in how we describe gauge 
fields that causes inverses to be non-unique and brings about the need for gauge fixing.  Gauge 
fixing and related methods are then used to create a menu of gauge-fixed solutions out of the 
non-uniqueness stemming from this redundancy.  This gauge non-uniqueness is a separate and 

distinct issue from gauge symmetry.  For example, the field equation ( )J g Aν νσ τ σ ν
τ σ− = ∂ ∂ − ∂ ∂  

for a photon field Aσ  sourced by a current density Jν  is fully symmetric under an abelian gauge 
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transformation A A Aσ σ σ σθ′→ = + ∂ .  But Aσ  is still redundant insofar as it has four spacetime 

degrees of freedom while a photon only has two transverse degrees of freedom.  Additionally, as 
mentioned, the operator gνσ τ σ ν

τ∂ ∂ − ∂ ∂  has no inverse, or, to be more precise, has an inverse 

which is of infinite magnitude and so is completely indeterminate. 
 
 Now, as Zee points out on page 30 of [11]: 
 

“In order to avoid complications at this stage associated with gauge invariance 
[we] will consider instead the field theory of a massive spin 1 meson, or vector 
meson. . . .  We can adopt a pragmatic attitude: Calculate a photon mass m and set 

0m=  at the end, and if the result does not blow up in our faces, we will presume 
that it is OK.” 

 
Zee states in a footnote to this passage that when he “took a field theory course as a student with 
Sidney Coleman this was how he treated QED to avoid discussing gauge invariance.”  So to 
simplify the development here, we shall take this same pragmatic approach as Coleman and Zee:  
We shall introduce a non-zero “Proca mass” for the gauge fields G, develop the classical 
monopole F i dGG= −∫∫ ∫∫∫�  of (5.9) to show how it has all of the classical symmetries that one 

would expect of a baryon, and then set 0m=  at the appropriate point in the development (which 
will come at (9.15) infra) and explore the massive / massless correspondences. 
 
 In this section, we shall develop the inverse of the massive boson configuration space 
operators ( )2g D D m D Dνσ τ σ ν

τ + −  for non-abelian gauge theory and ( )2g mνσ τ σ ν
τ∂ ∂ + − ∂ ∂  for 

abelian gauge theory, and then follow Coleman and Zee by setting the mass to zero to see what 
results.  In the next section we will take the more formal approach of developing the inverses 
g D D D Dνσ τ σ ν

τ −  and gνσ τ σ ν
τ∂ ∂ − ∂ ∂  for a massless particle directly, using the Faddeev-Popov 

method.  We will then contrast the both approaches to see where they meet, to give us some 
guidance about how to then use these inverses in the non-abelian magnetic monopole field 
equation F i dGG= −∫∫ ∫∫∫� .   

 
 So, following the Coleman-Zee approach, let us add a Proca mass m to (5.15), thus: 
 

( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + − . (6.3) 

 
Let us then consider (6.3) in flat spacetime where gradient operators , 0µ ν ∂ ∂ =   commute.  Let 

us also momentarily revert D → ∂  to ordinary derivatives to make a pedagogical point, and so 

write (6.3) as its abelian subset ( )( )2J g m Gν νσ τ σ ν
τ σ− = ∂ ∂ + − ∂ ∂ .  The current density is 

conserved by the continuity equation 0Jν
ν∂ = , so if we take the gradient of each side and 

reduce, we find that 2 0m Gν
ν∂ = .  Because we take the mass to be non-zero, this means that 

0Gν
ν∂ = , which is a fully-covariant equation known as the Lorenz gauge.  Here, 0Gν

ν∂ =  is not 
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a gauge condition at all; it is a requirement needed to ensure continuity for a massive vector 
boson.  The number of degrees of freedom in the mathematical object Gν  is covariantly reduced 
from four to three by 0Gν

ν∂ = , and this matches precisely with the three polarization degrees of 

freedom – one longitudinal and two transverse – possessed by the physical gauge boson.  So 
now, most of the gauge redundancy is squeezed out from Gν .  Even here, however, there is still 
a residual redundancy that requires gauge fixing.  For, if we transform G Gν ν νθ→ + ∂ , then the 
Lorenz condition becomes ( ) 0Gν ν

ν θ∂ + ∂ = , or Gν ν
ν ν θ∂ = −∂ ∂ .  So to maintain 0Gν

ν∂ =  

under any such gauge transformation, we may this fix the gauge completely by the gauge 
condition 0ν

ν θ∂ ∂ = .  Therefore, with everything taken together, (6.3) is invariant under a gauge 

transformation G Gν ν νθ→ + ∂ , the four degrees of freedom in Gν  are covariantly-reduced 
down to three degrees of freedom by 0Gν

ν∂ =  which is required to match the three polarization 

degrees of freedom of the physical field, and the residual gauge freedom is fixed and thereby 

removed by 0ν
ν θ∂ ∂ = .  The field equation ( )( )2J g m Gν νσ τ σ ν

τ σ− = ∂ ∂ + − ∂ ∂  remains invariant 

under the gauge transformation G Gν ν νθ→ + ∂  and this invariance does not depend in any way 
on 0ν

ν θ∂ ∂ =  because nowhere does the non-observable gauge (really, phase) angle θ  appear in 

the field equation.  
 
 In the non-abelian (6.3) it is a bit more complicated, because we have D from (5.15), 
(5.16) not ∂ , and because the proper way to take the gauge-derivative of the current density is by 

, ,D J J i G J D Jν ν ν ν
ν ν ν ν   = ∂ − =     derived in (5.19).  But we already saw that the continuity 

equation 0D Jν
ν =  of (5.20) which we now combine with (5.15), by identity, is: 

 

( )D J D g D D D D Gν νσ τ σ ν
ν ν τ σ− = − = 0 . (6.4) 

 
So if we simply add a Proca mass to (6.4) and maintain continuity, we must have:  
 

( )( ) ( )2 2

2

0

0

D J D g D D m D D G D g D D D D G m D g G

m D G

ν νσ τ σ ν νσ τ σ ν νσ
ν ν τ σ ν τ σ ν σ

ν
ν

− = + − = − + =

= + =0
. (6.5) 

 
This includes ( ) ( )2 2 2 0D g m G D m G m D Gνσ ν ν

ν σ ν ν= = = , where the highlighted zero in (6.4) and 

(6.5) is the zero-by-identity of the continuity equation (5.20).  But the symmetries of the term 

D Gν
ν  in the above are driven by those of (5.19) which is ,D J J i G Jν ν ν

ν ν ν = ∂ −   .  

Consequently,  ,D G G i G Gν ν ν
ν ν ν = ∂ −    because of (5.19). Additionally, because of (6.5), 

, 0D G G i G Gν ν ν
ν ν ν = ∂ − =  .  As in the abelian case just discussed, for a massive gauge boson, 

and this is not a mere gauge condition.  It is required to ensure continuity.  As in abelian theory 
this reduces the gauge freedom of a four-component spacetime object Gν  down to three to match 

the three massive boson polarizations.  Additionally, here the commutator , 0G Gν
ν  =   because 
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of the scalar contraction G Gν
ν  of like objects.  This means in turn that 0D G Gν ν

ν ν= ∂ = .  And 

this means that 0Gν
ν∂ =  still applies even to the non-abelian theory and is not a gauge 

condition but is a requirement for a massive gauge boson. 
 

As to the residual gauge freedom, because ,G G G i G G Dν ν ν ν ν ν νθ θ θ′  → = + ∂ − = +   

is the non-abelian gauge transformation, 0D G D G D D G Dν ν ν ν ν
ν ν ν ν νθ θ′ = + = ∂ + ∂ =  is the 

required covariant gauge condition for G ν′ .   Taken with 0D Gν
ν =  this means that for a non-

abelian theory, 0D Dν
ν θ =  replaces 0ν

ν θ∂ ∂ = as the residual gauge condition.  Taken with 

0Gν
ν∂ = , this means that , 0D i Gν ν ν

ν ν νθ θ θ ∂ = ∂ ∂ − ∂ =  , which means that 0D Dν
ν θ =  may 

be written out with ordinary derivatives as , 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =  .  So while (6.3) is invariant 

under a non-abelian gauge transformation ,G G G i Gν ν ν ν νθ θ′  → = + ∂ −   , we are required to 

have 0D G Gν ν
ν ν= ∂ =  because the boson in (6.3) is presumed to be massive and subject to 

continuity, and the remaining gauge freedom is fixed by imposing 0D Dν
ν θ =  which as just seen 

is equivalent to the expression  , 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =  .  Nonetheless, as in the abelian theory, 

this invariance does not depend in any way on 0D Dν
ν θ =  a.k.a. , 0i Gν ν

ν νθ θ ∂ ∂ − ∂ =   because 

nowhere does the non-observable gauge / phase angle θ  appear in the field equation (6.3). 
 
 Now, let us stop for a moment to take a close look at the gauge-covariant, second-rank, 
second-derivative operator D Dσ ν  in (5.16) and its gauge-covariant d'Alembertian D Dτ

τ=�  of 

(5.17).  Close study of D Dσ ν  will reveal that there is no apparent way to separate each of Dσ  
and Dν  to make D Dσ ν  a product of two separate expressions for Dσ , Dν .  Even the 
commutator of (5.16), which we can calculate to be [ ], 3 ,i D D G i G Gσ ν σ ν σ ν   = ∂ −     in flat 

spacetime, is different from ( )[ ], ,F i D D G i G Gµν µ ν µ ν µ νϕ ϕ ϕ   = = ∂ −     which is the field 

strength defined in (1.1), (1.5).  This is because in (5.15) D Dσ ν  is operating on Gσ  not ϕ  and 

because, as noted at the outset following (1.1), gauge-covariant derivatives, like covariant 
derivatives in Riemannian geometry, take a form that depends on the representation of the object 
they act upon.   
 

However, for D Dτ
τ=�  we may make use of the very recent finding after (6.5) that 

0Gν
ν∂ =  for a massive gauge boson even in non-abelian gauge theory, and specifically, may 

add this “zero” to (5.17) and thus write: 
 

( ) ( ) ( ) ( )D D i G iG G G iG iG iG iG iG

V

τ τ τ τ τ τ τ τ τ τ τ
τ τ τ τ τ τ τ τ τ

τ
τ

= ∂ ∂ − ∂ − ∂ − = ∂ ∂ − − ∂ − = ∂ − ∂ −

= ∂ ∂ +
, (6.6) 

 
where in the final line we have defined the gauge field perturbation (see, e.g., [14] eq. [4.4]): 
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( )
i k

V i G G G G k G G k G Gτ τ τ τ τ τ
τ τ τ τ τ τ

∂→

≡ − ∂ + ∂ − ⇒ − − − . (6.7) 

 
This use of 0Gν

ν∂ =  does allow a clean separation ( )( )D D iG iGτ τ τ
τ τ τ= ∂ − ∂ − , and it enables 

us to explicitly introduce and identify gauge field perturbations.  This will be very useful 
throughout the subsequent development.  And again, because we are considering a massive 
gauge boson, 0Gν

ν∂ =  is not just an optional gauge condition; it is required for continuity. 

 
With these preliminaries behind us, it is time to calculate the inverse of (5.15) for a 

massive gauge boson.  We start with the inverse I µν  of (6.2), for which we follow Coleman and 

Zee and add the Proca mass as follows: 
 

( )( )2I g D D m D Dνσ τ σ ν σ
µν τ µδ+ − = − . (6.8) 

 
It is well-known how to calculate inverses of the form (6.8), but we do need to be cognizant of 
two important points because the D are not the same as ordinary ∂  especially in flat spacetime.  

First, while , 0σ ν ∂ ∂ =   in flat spacetime, we cannot treat D Dσ ν  as commuting here, that is, 

, 0D Dσ ν  ≠  .  In fact, as noted prior to (6.6), [ ], 3 , 0i D D G i G Gσ ν σ ν σ ν   = ∂ − ≠     when the 

operand is Gσ .  So we need to be very careful throughout to maintain strict commutation 

ordering.  Second, we cannot just put expressions involving D Dσ ν  or D Dτ
τ  into a denominator.  

Rather, we have to treat carefully, as inverses and not mere denominators, inverse expressions 
which contain D Dσ ν  as well as the gauge-covariant d'Alembertian D Dτ

τ=� . 

 
 With that in mind, let us calculate I µν .  First, we specify I µν  using the general form with 

A and B unknown and to-be-deduced: 
 
I Ag BD Dµν µν µ ν≡ + . (6.9) 

 
Given that I Iµν νµ≠  (to see this, simply note that D D D Dµ ν ν µ≠ ), the above definition together 

with G I Jν
µ µν≡  leads to ( )G Ag BD D J Ag J BD D J AJν ν ν

µ µν µ ν µν µ ν µ≡ + = + =  once the 

continuity relation 0D Jν
ν =  of (5.20) is applied.  So the inner-product definition G I Jν

µ µν≡  

combined with the inverse definition (6.9) will eventually allow the important simplification of 
setting 0BD Dµ ν →  by continuity, which is analogous to what happens in abelian gauge theory 

when the continuity equation 0Jν
ν∂ =  is applied. 

 
  So, the task now is to find the unknowns A and B.  If we place (6.9) into (6.8) we obtain: 
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( ) ( )( )
( ) ( )

( ) ( )

2

2 2

2 2

Ag BD D g D D m D D

Ag g D D m Ag D D BD D g D D m BD D D D

A D D m AD D BD D D D m BD D D D

σ νσ τ σ ν
µ µν µ ν τ

νσ τ σ ν νσ τ σ ν
µν τ µν µ ν τ µ ν

σ τ σ σ τ σ ν
µ τ µ µ τ µ ν

δ

δ

− = + + −

= + − + + −

= + − + + −

. (6.10) 

 
Matching up the terms with σ µδ  we first obtain ( )21 A D D mτ

τ− = + , or inverting: 

 

( ) 12A D D mτ
τ

−
= − + . (6.11) 

 
We then use (6.11) in (6.10) and reduce, to next obtain: 
 

( ) ( )( )12 20 D D m D D B D D D D m D D D Dτ σ σ τ σ ν
τ µ µ τ µ ν

−
= + + + − , (6.12) 

 
or, rearranged: 
 

( ) ( )( ) 112 2B D D m D D D D D D m D D D Dτ σ α α σ τ α σ τ
τ τ τ

−−
= − + + − . (6.13) 

 
Finally, we use (6.11) and (6.13) in (6.9) to find that: 
 

( ) ( )( ) 112 2I D D m g D D D D D D m D D D D D Dτ σ α α σ τ α σ τ
µν τ µν τ τ µ ν

−−  = − + + + −
  

. (6.14) 

 
Above, each derivative pair is defined by 2D D iG G G G Gσ ν σ ν σ ν σ ν ν σ≡ ∂ ∂ − ∂ − +  in (5.16) and 

D D iG G Gτ τ τ τ
τ τ τ τ= = ∂ ∂ − ∂ −�  in (5.17) (remember too, that 0Gτ

τ∂ = which produces (6.6) and 

(6.7)).  We may then substitute (6.14) into the original definition G I Jν
µ µν≡  to conclude that: 

 

( ) ( )( )
( ) ( ) ( )( )
( ) ( )

112 2

11 12 2 2

1 12 2

G I J D D m g D D D D D D m D D D D D D J

D D m g J D D m D D D D D D m D D D D D D J

D D m J iG G G m J

ν τ σ α α σ τ α σ τ ν
µ µν τ µν τ τ µ ν

τ ν τ σ α α σ τ α σ τ ν
τ µν τ τ τ µ ν

τ τ τ τ
τ µ τ τ τ µ

−−

−− −

− −

 = = − + + + −
  

= − + − + + −

= − + = − ∂ ∂ − ∂ − +

.(6.15) 

 
In an essential step, we get to the final line by enforcing continuity 0D Jν

ν =  from (5.20), 

and then making use of the d'Alembertian D Dτ
τ=�  of (5.17).  We shall shortly add a term 

0i Gτ
τ− ∂ =  to the expression for which the inverse is being taken, so that we can take advantage 

of (6.6) and explicitly identify the perturbations V. 
 

To make all of this appear a bit more familiar to the way such inverses are usually 
written, let us set D → ∂  in (6.14), and let us assume flat spacetime so all derivatives commute, 
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, 0µ ν ∂ ∂ =  .  With these assumptions, the inverses can be treated as regular denominators.  With 

all this, we find embedded in (6.15), the very familiar abelian (A subscript) inverse AI Iµν µν→ : 

 

( )2
2 2 2

2 2 2 2

i k i

A

k k k kg
g g gm m m mI

m m k k m k k m i

σ α
µ ν

µ ν µ ν µ νµν α σ τ α σ τ
εµν µν µντ τ

µν τ τ τ τ
τ τ τ τ ε

∂→ +

∂ ∂ ∂ ∂ ∂ ∂+ + − −∂ ∂ ∂ ∂ + − ∂ ∂ ∂ ∂
= − = − ⇒ ⇒

∂ ∂ + ∂ ∂ + − − +
.(6.16) 

  
With the first arrow, we convert to momentum space via i kµ µ∂ → .  With the second arrow, we 

then add the iε+  prescription.  Using the final term above with A AG I Jν
µ µν= , we may write: 

 

02

2 2 2

1k J

A A

k k
g gmG I J J J J

k k m i k k m i k k m i

ν
ν

µ ν
µν

µνν ν ν
µ µν µτ τ τ

τ τ τε ε ε

=−
= = = =

− + − + − +
, (6.17) 

  
where 0k J i Jν ν

ν ν= ∂ = , which is just another version of the continuity equation, is used for the 

reduction after the third equal sign.  If we set 0m=  in (6.16) we then obtain the clearly 
indeterminate result: 
 

0
A

k k
g g

I
k k i k k i

µ ν
µν µν

µν τ τ
τ τε ε

− − ∞
= = = −∞

+ +
. (6.18) 

 
But in contrast, doing the same in (6.17) simply yields the finite: 
 

1
AG J

k k iµ µτ
τ ε

=
+

. (6.19) 

 
The infinite result in (6.18) is tamed in (6.19) because of the continuity imposed in (6.17).  If we 
then put the boson on mass shell, 0k kτ

τ = , we finally have: 

 
1

AG J
iµ µε

= . (6.20) 

 
This only stays finite because of the iε+  prescription.  Equation (6.18) explicitly illustrates why 
gνσ τ σ ν

τ∂ ∂ − ∂ ∂  has no inverse, or more precisely, why the abelian inverse for a massless gauge 

boson in flat spacetime is indeterminately-infinite.  Equation (6.20) explicitly illustrates why this 
inverse is also indeterminately-infinite for on-shell bosons, unless one uses the iε+  prescription. 
 
 Now let us do the same in the non-abelian inverse (6.14) to see whether the same 
infinities are encountered.  Setting 0m=  in (6.14) we simply obtain: 
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( ) ( )1 1
I D D g D D D D D D D D D D D Dτ σ α α σ τ α τ σ

µν τ µν τ τ µ ν

− − = − + −
  

. (6.21) 

 
The term ,D D D D D D D D D D D Dα σ τ α τ σ α σ τ

τ τ τ − =    must be evaluated using the D Dσ ν  and 

D Dτ
τ  of (5.16) and (5.17), that is, as a second order quadratic rather than a fourth order linear 

term.  That is because these derivatives were obtained prior to inversion by operating on Gσ  and 

because the explicit form of a gauge-covariant derivative depends upon its operand.  Thus, from 
(5.16) and (5.17): 
 

( )( ) ( ) ( )
( )( )
( )( )

2

2 2

D D D D D D D D D D D D D D D D

iG G G G G iG G G

iG G G G G iG G G G G

α σ τ α τ σ α σ τ α τ σ
τ τ τ τ

α σ α σ α σ σ α τ τ τ
τ τ τ

α τ α τ α τ τ α σ σ σ σ
τ τ τ τ

− = −

= ∂ ∂ − ∂ − + ∂ ∂ − ∂ −

− ∂ ∂ − ∂ − + ∂ ∂ − ∂ − +

. (6.22) 

 
If it was possible to commute , 0D Dσ τ  =  , then this term would become zero and (6.21) would 

contain ( ) 1
1, 0D D D Dα σ τ

τ

− −  = = ∞   and become indeterminate when the mass is zero for the 

same reason as (6.18).  But the defining feature of non-abelian gauge theory is that the gauge 
fields do not commute, i.e., that , 0G Gσ τ  =  .  So the term (6.22) is not zero and thus (6.21) 

does not become infinite even when the mass is set to zero.  It is the non-commuting nature of 
non-Abelian gauge theory that bears direct responsibility for maintaining a finite inverse (6.21) 
for the configuration space operator g D D D Dνσ τ σ ν

τ −  in (6.1) even when the gauge boson has 

no mass.  As we see in (6.15), however, none of this matters at all once we apply 0D Jν
ν =  

continuity, because that zeroes out the term in (6.22) entirely.  Indeed, setting 0m=  in the non-
abelian relation (6.15) for ( )G J  simply yields  

 

( ) ( )1 1
G D D J iG G G Jτ τ τ τ

µ τ µ τ τ τ µ
− −

= − = − ∂ ∂ − ∂ − . (6.23) 

 
 Now let us examine what happens for on-shell bosons in non-abelian gauge theory.  The 
relativistic energy relationship is 2 0p p mσ

σ − = .  Via ( ) { }1 1
2 2 ,στ σ τ τ σ σ τη γ γ γ γ γ γ= + =  this 

becomes ( ) ( )0 0p m u i mψ− = ⇔ ∂ − =/  when operating on a free, non-interacting Dirac spinor / 

wavefunction.  But for interaction via a gauge field Gτ , 2 0p p mσ
σ − =  becomes 2 0mσ

σπ π − =  

with p Gτ τ τπ ≡ +  defining the kinetic momentum τπ  in relation to the canonical momentum pτ  

and the gauge field Gτ .  This means that ( ) ( ) 0m u p G m uπ − = + / − =/ / , or, with p i→ ∂  and 

u ψ→ , ( ) 0i G m ψ∂/ + / − =  is Dirac’s equation for an interacting fermion.  The key point of all 

this – with pτ  and kσ  respectively used to denote fermion and boson momentum vectors – is 

that a free on-shell fermion is described by 2 0p p mσ
σ − =  and a free on-shell gauge boson by 
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2 0k k mσ
σ − = .  But for an interacting on-shell particle with p Gτ τ τπ ≡ +  for fermions and 

k Gτ τ τπ ≡ +  for bosons, the exact form of the on-shell equation depends on whether Gτ  is an 
abelian or a non-abelian gauge field.  Let us see why: 
 
 Suppose that Gτ  is a U(1) photon / electromagnetic potential Aτ .  Here the on-shell 
relationship, referring also to the perturbation (6.7) and noting that k k Vσ σ

σ σπ π = −  because 

0k Gτ
τ = , is: 

 

( )( )2 2 2

2

0 m k A k A m k k k A A k A A m

V k k m

σ σ σ σ σ σ σ
σ σ σ σ σ σ σ

σ
σ

π π= − = + + − = + + + −

= − + −
. (6.24) 

 
This perturbation V k A A k A Aτ τ τ

τ τ τ− = + +  is a 1x1 scalar number which can be added to the 

number 2k k mσ
σ − , so that (6.24) is a sensible equation.  But suppose now that i iG Gτ τλ=  is an 

NxN object formed using the generators iλ  of the simple gauge group SU(N).  To be explicit, 
showing Yang-Mills indexes , 1...A B N=  for the fundamental SU(N) representation, suppose 

now that i i
AB ABG Gτ τλ= .  Then, if carelessly generalized, (6.24) would become: 

 

( )( ) ( )
( ) ( )

2 2 2

2 2

0 AB AB AB

AB AB

m k G k G m k k k G G k G G m

V m k k V k k m

σ σ σ σ σ σ σ
σ σ σ σ σ σ σ

σ σ
σ σ

π π

δ

= − = + + − = + + + −

= − − − = − + −
. (6.25) 

  
But this expression is not quite right.   The 2k k mσ

σ −  is still a scalar number, and because ABV  is 

now taken to be an NxN object for SU(N), the 2k k mσ
σ −  will occupy the diagonal positions in 

the overall expression (6.25), hence the explicit showing of ( )2
AB m k kσ

σδ − .  At the same time, 

( )AB AB AB AB
V k G G k G Gσ σ σ

σ σ σ− = + +  will now be an NxN Hermitian matrix with off-diagonal 

elements.  The perturbation ABV  is a matrix, while 2k k mσ
σ −  is a scalar number that we also 

know is part of an inverse abelian propagator.  So the only way to make sense out of (6.25) is to 
use this as an eigenvalue equation in which 2m k kσ

σ−  represents the scalar eigenvalues of the 

perturbation ABV− .   

 
Now, one way to write (6.25) as an eigenvalue equation, it to have it operate on an N-

component column vector ϕ , and to rewrite the non-abelian on-shell condition as  

( )2 0AB ABV m k kσ
σδ ϕ − − =  .  But because expressions such as (6.25) will show up in the 

context of equations such as (6.15), we want to be able to express the on-shell condition 
independently of any ϕ .  We can do so by taking the determinant detA A=  of (6.25), in the 

form of the eigenvalue equation: 
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( ) ( )2 2 20 AB ABm V k k m V k k mσ σ σ
σ σ σπ π δ= − = − − − = − + − . (6.26) 

 
This is what specifies an on-shell gauge boson in non-abelian gauge theory.  On shell, the 
eigenvalue solutions of the perturbation ABV  are given by the scalar number 2k k mσ

σ − . 

 
 In view of this, if we therefore write (6.15) with iε+  and k Gτ τ τπ ≡ +  as 
 

( ) ( )
( )

( ) ( )
( )

1 12 2

12

0 1 12 2

12

i k

k G

G D D m i J iG G G m i J

k k G k G G m i J

k k k G G k G G m i J m i J

V k k m i J

τ
τ

τ τ τ τ
µ τ µ τ τ τ µ

τ τ τ
τ τ τ µ

τ τ τ τ τ
τ τ τ τ µ τ µ

τ
τ µ

ε ε

ε

ε π π ε

ε

− −

∂→ −

= − −

−

= − + − = − ∂ ∂ − ∂ − + −

⇒ + + − +

⇒ + + + − + = − +

= − + − +

, (6.27) 

 
we see by writing (6.17) in the form of an inverse: 
 

( ) 12
AG k k m i Jτ

µ τ µε
−

= − + , (6.28) 

 
that the sole difference between the abelian and non-abelian solutions for ( )G Jµ µ  is that the 

canonical scalar k kτ
τ  of abelian gauge theory is replaced by the kinetic scalar τ

τπ π  in non-

abelian gauge theory, or, alternatively and equivalently, that a perturbation ABV V− = −  is added 

to the abelian (6.28) to arrive at the non-abelian (6.27), which then turns the usual inverse 
propagator 2k k m iτ

τ ε− +  into 2
ABV k k m iτ

τ ε− + − +  for which on-shell particles are described by 

( )2 0AB ABV k k mσ
σδ− − =  in (6.26).  

 
If the “careless” 2 0mσ

σπ π − =  in (6.25) were to describe the on-shell condition for an 

interacting particle in non-abelian gauge theory – which it does not – then for an on-shell 

particle, (6.27) in the form ( ) 12G m i Jτ
µ τ µπ π ε

−
= − +  would reduce to ( ) 1

G i Jµ µε −= +  which is 

exactly the same as the abelian (6.20).  So in either abelian or non-abelian gauge theory, we 
would require the iε+  prescription to avoid the poles for an on-shell particle.  However, 

2 0mσ
σπ π − =  is not the on-shell condition for non-abelian gauge theory.  Rather, on-shell 

bosons are specified by the eigenvalue equation 2 0mσ
σπ π − =  of (6.26).  So even with 

2 0mσ
σπ π − = , the expression ( ) 12G m i Jτ

µ τ µπ π ε
−

= − +  will generally remain finite in non-

abelian gauge theory even if we use ( ) 12G m Jτ
µ τ µπ π

−
= −  absent iε+ .  Because on shell 

particles are described by 2 0mσ
σπ π − =  and not 2 0mσ

σπ π − =  in non-abelian gauge theory, 

the non-abelian theory remains finite on shell even absent iε+ . 
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 Before studying massless gauge bosons using the more formal approach of Faddeev-
Popov, we also note that the continuity relation 0Jν

ν∂ =  which tames ( )G Jµ µ  in the massless 

boson inverse (6.19) notwithstanding the infinite inverse (6.18), plays a similar role in taming the 
quantum field amplitude obtained from the QED path integral.  Specifically, the action 

corresponding to the field equation ( )( )2J g m Gν νσ τ σ ν
τ σ− = ∂ ∂ + − ∂ ∂  which is the abelian 

version of (6.3), for which the inverse was found in (6.16), is: 
 

( ) ( )( )4 4 21
2S G d x d x G g m G G Jνσ τ ν σ σ

ν τ σ σ
 = = ∂ ∂ + − ∂ ∂ −
 ∫ ∫L . (6.29) 

 

 When the Gaussian integral ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫  is employed as the 

template to use (6.29) in ( )( ) ( )( )exp expZ DG iS G C iW J= ≡∫ , the inverse in 2 / 2J A is based 

on the abelian inverse AI µν  in (6.16), and we obtain (see, e.g., [11], pages 30-31): 

 

( )
( )

( ) ( )
( )

( ) ( )
4 4

4 4

1 1
* *

2 22 2
A

k k
gd k d kmW J J k J k J k I J k

k k m i

µ ν
µν

µ ν µ ν
µντ

τ επ π

− +
= − =

− +∫ ∫  . (6.30) 

 
This too looks like it will become singular for 0m= , just like (6.18).  But there too, as in (6.17), 
the continuity relationship 0k J i Jν ν

ν ν= ∂ =  rescues the path integral from an indeterminate fate, 

and facilitates the reduction: 
 

( )
( )

( ) ( )
( )

( ) ( )
4 40

4 4

1 1 1 1
* *

2 22 2

md k d k
W J J k J k J k J k

k k m i k k i
µ µ

µ µτ τ
τ τε επ π

=
= + ⇒+

− + +∫ ∫ . (6.31) 

 
This also tells us that the electromagnetic force between like-charges is repulsive.   
 

But the key feature of interest in both (6.17) which is for a classical field and (6.31) 
which is for a quantum field, is that even though the mathematical abelian inverse (6.16) 
becomes infinite if 0m= , when this inverse is placed into the context of a physical equation  
such as A AG I Jν

µ µν=  in (6.17) or ... * AJ I Jµ ν
µν  in (6.30), the seemingly-infinite result becomes 

finite and well-behaved.  This is because the physical context – in this case the continuity 
relation 0k J i Jν ν

ν ν= ∂ =  – causes the otherwise singular term / / 0k k m k kµ ν µ ν→ = ∞  to be 

zeroed out before it ever gets to wreak any havoc.  This contextual finiteness is very important, 
because even though the mathematical object – the inverse – becomes singular, the physical 
result remains finite.   In the discussion to now be developed, where we use the more formal 
approach of Faddeev-Popov to develop the massive gauge bosons, this will lead to what we shall 
call “contextual gauge fixing.”  In Faddeev-Popov, where a gauge number ξ  enables an 
unlimited array of non-unique inverses, the continuity relation forces the physical results into a 
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very definite and unique choice of gauge.  When we use these same inverses in ( )( )F G J∫∫�  to 

show why F i dGG= −∫∫ ∫∫∫�  looks very much like a baryon, this type of “contextual gauge 

fixing” coupled with Fermi-Dirac-Pauli Exclusion will not only result in unique solutions for 

( )G J , but will give mass to the fermions of J µ µψγ ψ=  and turn them into quarks, while 

rendering the massive gauge bosons massless just like gluons. 
 
7. Abelian and non-Abelian Massless Gauge Boson Inverses for the 
Electric Charge Density, Using the Faddeev-Popov Method 
 
 In the last section we took the “pragmatic” Coleman-Zee approach of obtaining the 
classical field equation inverse for a massive gauge boson and then setting the mass to zero to 
see what happens under a variety of circumstances.  Now, we take the more formal, direct 
approach of using the Faddeev-Popov method to calculate the inverse for a massless gauge boson 
ab initio, without the intermediate stop for a massive boson. 
 

If we take the “non-pragmatic” route and start out with a massless gauge boson for which 
we apply Faddeev-Popov, and to open simplified discussion revert (5.15) to its abelian limit 
D → ∂ , then along the way the effective field equation becomes (see [11], after (III.4(8))): 
 

( )( )1 1/J g Gν νσ τ σ ν
τ σξ− = ∂ ∂ − − ∂ ∂ , (7.1) 

 
where ξ  is a gauge number.  While for the moment we treat the introduction of ξ  simply as a 

mathematical manipulation of the classical field equation ( )J g Gν νσ τ σ ν
τ σ− = ∂ ∂ − ∂ ∂  of (5.15) to 

which (7.1) reduces for ξ = ∞ , we keep in mind that ξ  actually arises when we start with a path 

integral ( )( )expZ DG iS G= ∫  and turn this into ( ) ( ) ( )( )24exp / 2Z DG i S G i d x Gξ = − ∂
 ∫ ∫  

through a change of the integration variable which maintains the invariance of the Z under the 
abelian gauge transformation G G G dθ′→ = + .  So by introducing ξ  in this way, and knowing 
that this carries over to non-abelian gauge theory but for the further introduction of ghost fields 

†,c c  with a path integral ( ) ( ) ( ) ( )( )2† 4 †exp 1/ 2 ,Z DGDcDc i S G d x G S c cξ = − ∂ +
 ∫ ∫  

containing a ghost action ( )†,S c c , we have a “hook” by which this can eventually be used to set 

up a quantum path integration for non-abelian theory.  But for now, as discussed at length in 
section 4, we continue to develop the classical theory. 
 

Once again using an inner-product definition A AG I Jν
µ µν≡  for the abelian inverse, in flat 

spacetime we may multiply through by AI µν−  and write (7.1) as (contrast (6.1)): 

 

( )( )1 1/A AI J I g G G Gν νσ τ σ ν σ
µν µν τ σ µ µ σξ δ= − ∂ ∂ − − ∂ ∂ = =  (7.2) 

 
from which we extract (contrast (6.2)): 
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( )( )1 1/AI gνσ τ σ ν σ
µν τ µξ δ∂ ∂ − − ∂ ∂ = − . (7.3) 

 
Then using AI Ag Bµν µν µ ν≡ + ∂ ∂  based on (6.9), this becomes (contrast (6.10)): 

 

( ) ( )( )
( ) ( )

( ) ( )

1 1/

1 1/ 1 1/

1 1/ 1 1/

Ag B g

Ag g Ag B g B

A A B B

σ νσ τ σ ν
µ µν µ ν τ

νσ τ σ ν νσ τ σ ν
µν τ µν µ ν τ µ ν

σ τ σ σ τ σ ν
µ τ µ µ τ µ ν

δ ξ

ξ ξ

δ ξ ξ

− = + ∂ ∂ ∂ ∂ − − ∂ ∂

= ∂ ∂ − − ∂ ∂ + ∂ ∂ ∂ ∂ − ∂ ∂ − ∂ ∂

= ∂ ∂ − − ∂ ∂ + ∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂

. (7.4) 

 
From this we match up the σ µδ  terms to find (contrast (6.11)): 

 
1/A τ

τ= − ∂ ∂ . (7.5) 

 
so that (cf. (6.12)): 
 

( ) ( )( )1 1/
0 1 1/B

σ
µ σ τ σ τ

µ τ µ ττ
τ

ξ
ξ

− ∂ ∂
= + ∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂

∂ ∂
, (7.6) 

 
or, commuting and cancelling derivatives freely (cf. (6.13)): 
 

( ) ( ) ( )1 1/ 1 11 1/ 1
1 1/ 1/

B

σ
µ

σ τ σ τ α α
µ τ µ τ α α

τ τ τ
τ τ τ

ξξ ξξ ξ
∂ ∂  −− − ∂ ∂ ∂ ∂ − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = − = − =

∂ ∂ ∂ ∂ ∂ ∂
. (7.7) 

 
Thus, using (7.5) and (7.7) in AI Ag Bµν µν µ ν≡ + ∂ ∂  we obtain (cf. (6.14) and (6.16)): 

 

( ) ( ) ( )1 1 1
i k i

A

k k k k
g g g

k k k k
I

k k k k i

µ ν µ ν µ ν
µν µν µνα α αε

α α α
µν τ τ τ

τ τ τ

ξ ξ ξ

ε
∂→ +

∂ ∂
− + − − + − − −

∂ ∂= ⇒ − ⇒
∂ ∂ +

. (7.8) 

  
We then use this in A AG I Jν

µ µν≡  to write: 

 

( )1

A A

k k
g

k k
G I J J

k k i

µ ν
µν α

ν να
µ µν τ

τ

ξ

ε

− −
≡ =

+
. (7.9) 

 
 Now let us follow two different routes to reduce (7.9).  First, let us apply the continuity 
relation 0k J i Jν ν

ν ν= ∂ =  as we did in (6.17).  This causes (7.9) to become: 
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( ) ( )0
1

1 0 1k J

A

k k
g

g gk k
G J J J J

k k i k k i k k i k k i

ν
ν

µ ν
µν α

µν µνν ν να
µ µτ τ τ τ

τ τ τ τ

ξ ξ
ε ε ε ε

=
− −

− −
= ⇒ = =

+ + + +
. (7.10) 

 
Alternatively, let us embark upon the different path of selecting the Feynman gauge 1ξ =  in 
(7.9).  Now we have: 
 

( )
1

1 0
1

A

k k k k
g g

gk k k k
G J J J J

k k i k k i k k i k k i

µ ν µ ν
µν µνα αξ

µνν ν να α
µ µτ τ τ τ

τ τ τ τ

ξ

ε ε ε ε

=
− − −

= ⇒ = =
+ + + +

, (7.11) 

  
which is the exact same result as in (7.10).  And both of these are exactly the same as the result 
in (6.19).  These are three routes to the exact same result.  In (7.10), the expression ( )1 0ξ−  

which emerges from requiring continuity via 0k J i Jν ν
ν ν= ∂ =  has forced this term to be zeroed 

out.  Just as in (6.17) (and analogously in the non-abelian (6.15)), there is no choice other than to 
zero out the term containing the gauge number ξ .  But if we were unaware of continuity, we 

could get to the same effective inverse ( )/AI g k k iτ
µν µν τ ε= +  in general, by the different route 

of selecting the Feynman gauge 1ξ = .  Importantly, this means that after we find the inverse and 

then use it in A AG I Jν
µ µν≡ , we are forced into an equation for AG µ  which could be 

independently arrived at by selecting the Feynman gauge 1ξ =  for the standalone inverse.   
 

The point here is that for a massless gauge boson, there is a complete freedom to select 
any gauge number ξ−∞ ≤ ≤ ∞  for the inverse AI µν , which means that this inverse is infinitely 

non-unique when regarded as a mathematical entity.  This is because of the redundancy whereby 
Gµ  contains four degrees of freedom despite the associated massless physical field having only 

two degrees of freedom.  Nevertheless, once we use this inverse in a physical equation such as 

A AG I Jν
µ µν≡  in (7.9) to (7.11), the continuity equation forces us to fix the gauge of the inverse 

into 1ξ = , or more precisely, forces a result that can equivalently be achieved by selecting 1ξ =  

for the standalone inverse before it is ever inserted into A AG I Jν
µ µν≡ .  This is a specific example 

of the “contextual gauge fixing” mentioned at the end of section 6, wherein a gauge which is 
completely non-unique and thus an associated inverse which is also non-unique as a 
mathematical matter, is forced to be unique when placed into a physical context, in this case, the 
context of a conserved current density enforced by continuity.  In this way, we may think of the 
Feynman gauge as the “continuity gauge,” because it uniquely fixes the inverse in the exact same 
manner as does the continuity equation 0k J i Jν ν

ν ν= ∂ = . 

 
 With (7.1) to (7.11) as a backdrop, we return to the field equation (5.15) with D Dσ ν  and 
D Dτ

τ  defined as in (5.16) and (5.17) when the operand is Gσ , and introduce the gauge number 

ξ  exactly as we did in (7.1).  Thus, we write: 
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( )( )1 1/J g D D D D Gν νσ τ σ ν
τ σξ− = − − . (7.12) 

 
As with (7.1), we treat the introduction of ξ  simply as a mathematical manipulation of (5.15) to 

which (7.12) will revert for ξ = ∞ , which allows us to solve this classical equation (7.12) for Gσ  

as a function of Jν .  Since ( ) ( ) ( ) ( )( )2† 4 †exp 1/ 2 ,Z DGDcDc i S G d x G S c cξ = − ∂ +
 ∫ ∫  is the 

path integral for non-abelian gauge theory, it should be clear that the inverse obtained from 
(7.12) will be a useful item to have “on the shelf” when it comes time to try to calculate the non-
ghost portion of this path integral.  But for now, we are still working classically, so our imminent 
goal is to solve the classical equation (7.12) for Gσ  as a function of Jν . 

 
As we have done previously, we use G I Jν

µ µν≡  to define I µν , and then multiply each 

side of (7.12) by I µν−  to write: 

 

( )( )1 1/I J I g D D D D G G Gν νσ τ σ ν σ
µν µν τ σ µ µ σξ δ= − − − = = . (7.13) 

 
From this we extract:  
 

( )( )1 1/I g D D D Dνσ τ σ ν σ
µν τ µξ δ− − = − . (7.14) 

 
Then we combine the above with (6.9) to write (cf. (6.10) and (7.4)): 
 

( ) ( )( )
( ) ( )

( ) ( )

1 1/

1 1/ 1 1/

1 1/ 1 1/

Ag BD D g D D D D

Ag g D D Ag D D BD D g D D BD D D D

A D D A D D BD D D D BD D D D

σ νσ τ σ ν
µ µν µ ν τ

νσ τ σ ν νσ τ σ ν
µν τ µν µ ν τ µ ν

σ τ σ σ τ σ ν
µ τ µ µ τ µ ν

δ ξ

ξ ξ

δ ξ ξ

− = + − −

= − − + − −

= − − + − −

. (7.15) 

 
Here, the reductions used twice earlier (cf. (6.11) to (6.13) and (7.5) to (7.7)) yield: 
 

( ) 1
A D Dτ

τ
−

= − , (7.16) 

 

( )( ) ( )1
0 1 1/ 1 1/D D D D BD D D D B D D D Dτ σ σ τ σ τ

τ µ µ τ µ τξ ξ
−

= − + − − , (7.17) 

 

( )( ) ( )( )1 1
1 1/ 1 1/B D D D D D D D D D D D Dτ σ α α σ β α β σ

τ β βξ ξ
− −

= − − − − , (7.18) 

 
thus leading via I Ag BD Dµν µν µ ν≡ +  from (6.9), to: 

 

( ) ( ) ( )( )1 1
1 1/ 1 1/I D D g D D D D D D D D D D D Dτ α β β α σ β σ α

µν τ µν σ σ µ νξ ξ
− − = − + − − −
  

. (7.19) 
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 Reducing (7.19) is a bit tricky because of the inverse.  But if we momentarily put the 
latter inverse into a “denominator” and use a ∨  marker to hold the commutation position of the 

inverse, all just to aid in visualization, we may reduce this to: 
 

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )( )

1

1

11

1 1/

1/

1

1

D D D D
I D D g

D D D D D D D D D D D D

D D D D
D D g

D D D D D D D D D D D D

D D g D D D D D D D D D D D D D D D D

α β
µ ντ

µν τ µν β α σ β σ α β σ α
σ σ σ

α β
µ ντ

τ µν β α σ β σ α β σ α
σ σ σ

τ α β β α σ β σ α β σ α
τ µν σ σ σ µ ν

ξ
ξ

ξ
ξ

ξ ξ

− ∨

− ∨

−−

 −
= − + − +  

 −
 = − +

− +  

 = − + − − +
  

,(7.20) 

 
where in the middle line we multiply each of the “numerator” and “denominator” by ξ , then in 
the final line revert to the inverse formulation. 
 
 In this form, we see that the redundancy of Gµ  with four degrees of freedom to describe 

a massless field that has two degrees of freedom permits an infinite non-uniqueness ξ−∞ ≤ ≤ ∞   
in the choice of the gauge number, just as it does in abelian gauge theory, see after (7.11).  But 
now, as before, let us insert this inverse (7.20) into G I Jν

µ µν=  to obtain: 

 

( ) ( ) ( )( ) 11
1G D D g D D D D D D D D D D D D D D D D Jτ α β β α σ β σ α β σ α ν

µ τ µν σ σ σ µ νξ ξ
−−  = − + − − +

  
.(7.21) 

 
As in (7.10) and (7.11) we now take two routes to reduce (7.21).  For the first route, we 

apply the non-abelian continuity relationship 0D Jν
ν =  deduced in (5.20) to obtain: 

 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( )

11

0 11

1

1

1 0
D J

G D D g D D D D D D D D D D D D D D D D J

D D g J D D D D D D D D D D D D D D D

D D J

ν
ν

τ α β β α σ β σ α β σ α ν
µ τ µν σ σ σ µ ν

τ ν α β β α σ β σ α β σ α
τ µν σ σ σ µ

τ
τ µ

ξ ξ

ξ ξ

−−

= −−

−

 = − + − − +
  

 ⇒ − + − − +  

= −

.(7.22) 

 
For the second route, we simply select the Feynman gauge 1ξ =  in (7.21).  Now we obtain: 
 

( ) ( ) ( )( )
( ) ( ) ( )( )
( )

11

1 11

1

1

0

G D D g D D D D D D D D D D D D D D D D J

D D g D D D D D D D D D D D D D D D D J

D D J

τ α β β α σ β σ α β σ α ν
µ τ µν σ σ σ µ ν

ξ
τ α β β α σ β σ α β σ α ν

τ µν σ σ σ µ ν

τ
τ µ

ξ ξ

ξ

−−

= −−

−

 = − + − − +
  

 ⇒− + − +
  

= −

.(7.23) 
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These two results (7.22) and (7.23) are exactly the same.  So just as in the abelian (7.10) and 
(7.11), the Feynman gauge acts as a continuity gauge, because when used in the standalone 
inverse of (7.20), it leads us to the exact same result as the non-abelian continuity relationship 

0D Jν
ν = .  Additionally, if we now return to (6.15) in which we have also employed continuity, 

and follow the Coleman-Zee approach of setting the gauge field mass 0m= , we also find just as 
in (7.22) and (7.23) that: 
 

( ) ( )1 1
G D D J iG G G Jτ τ τ τ

µ τ µ τ τ τ µ
− −

= − = − ∂ ∂ − ∂ −  (7.24) 

  
which we have already seen in (6.23), with D D iG G Gτ τ τ τ

τ τ τ τ= ∂ ∂ − ∂ −  as found in (5.17), see 

also (6.6) and (6.7) which make use of 0Gν
ν∂ =  for a massive gauge boson and so are able to 

also provide a connection to the perturbation V. 
 
 So we see that in contextual setting of the continuity relationship 0D Jν

ν = , the unique 

solution to the massless non-abelian field equation ( )J g D D D D Gν νσ τ σ ν
τ σ− = −  of (5.15) is 

always going to be ( ) 1
G D D Jτ

µ τ µ
−

= − .  Whether we arrive at (6.23) / (7.24) by starting with a 

massive gauge field, obtaining the inverse, applying continuity, and then setting 0m=  via 
Coleman-Zee; whether we start with a massless gauge field, use Faddeev-Popov to find the 
inverse, and then apply continuity; or whether we start with a massless gauge field, use Faddeev-
Popov to find the inverse, and then choose the Feynman/continuity gauge 1ξ = ; we will always 
end up with the same unique solution (7.22) to (7.24). 
 
 The point is that even for non-abelian gauge theory, while the mathematical inverse for a 
massless gauge field gives us the freedom to select any gauge number ξ−∞ ≤ ≤ ∞ , the physical 

continuity condition 0D Jν
ν =  forces us to put the inverse into the Feynman gauge.  This 

contextual gauge fixing removes the arbitrariness of the mathematical inverse, and forces us into 
the specific gauge 1ξ =  the moment we use the inverse in G I Jν

µ µν=  and then apply 0D Jν
ν = . 

 
 Before concluding this section, let us compare the non-abelian results (7.22) to (7.24) all 
of which are equivalent to one another, with the abelian results (7.10) and (7.11) both of which 
are also equivalent to one another.  The chief difference at this point is that we have not yet 
introduced the iε+  prescription into the non-abelian inverses.  Comparing (7.22) to (7.24) with 
(7.10) and (7.11), we see that the way to introduce iε+  is to amend (7.24) as such: 
 

( ) ( ) ( )1 1 1i k

G D D i J iG G G i J k k i G k G G Jτ τ τ τ τ τ τ
µ τ µ τ τ τ µ τ τ τ µε ε ε

∂→− − −
= − − = − ∂ ∂ − ∂ − − ⇒ + + + .(7.25) 

 
Above, we have also gone over into momentum space via i k∂ → .  This is just the second line of 
(6.27) with 0m= .  In the 0k Gτ

τ =  gauge, which for a massless boson is a choice and not a 

requirement, this becomes: 
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( ) ( ) ( )1 1 1
G k k k G G k G G i J i J V k k i Jτ τ τ τ τ τ

µ τ τ τ τ µ τ µ τ µε π π ε ε
− − −

= + + + + = + = − + + . (7.26) 

 
In contrast, if we write (7.10) / (7.11) in the form of an inverse relation, these become: 
 

( ) 1

AG k k i Jτ
µ τ µε

−
= + , (7.27) 

 

which is just (6.28) with 0m= .  Of course, the abelian ( ) 1
k k iτ

τ ε
−

+  can be written as an 

ordinary denominator, while the non-abelian ( ) 1
k k i G k G Gτ τ τ

τ τ τε
−

+ + +  cannot because the 

G G k G Gτ τ τ
τ τ τπ = +  term in general will have a matrix form which must be inverted rather than 

placed in a denominator. 
 
 Insofar as on-shell bosons are concerned, as noted in (6.28) and the discussion following, 
an on-shell boson in non-abelian gauge theory will be described by the eigenvalue equation 
(6.26), which for 0m=  and using (6.7) and k k Vσ σ

σ σπ π = −  in the 0k Gτ
τ =  gauge becomes: 

 

( )0 AB ABV k k V k k k k k G G k G Gσ σ σ σ τ τ τ
σ σ σ σ τ τ τπ π δ= = − − = − + = + + + . (7.28) 

 
Note again that while 0i G k Gτ τ

τ τ∂ = =  is a required relation for a massive gauge boson as found 

in (6.5) and the ensuing discussion, it is an optional gauge condition for a massless gauge boson.  

So the relation ( ) ( )1 1
G k k G k G G J k k V Jτ τ τ τ

µ τ τ τ µ τ µ

− −
= + + = −  without mass, whenever it is 

used, assumes the gauge condition 0k Gτ
τ = .  With this gauge condition this can also be written 

in terms of the kinetic momentum as ( ) ( )1 1
G J k k V Jτ τ

µ τ µ τ µπ π
− −

= = −  and it will not become 

singular even on-shell because 0σ
σπ π =  above, and not 0σ

σπ π = , is the on-shell condition for 

a massless gauge boson in non-abelian theory in the chosen, not required, 0k Gτ
τ =  gauge.  This 

does introduce a degree of non-uniqueness into the inverse relationship for a massless gauge 
boson even with continuity which, unlike the residual gauge condition 0D Dν

ν θ =  a.k.a. 

, 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =   discussed after (6.5), does affect the form of the equations whenever one 

wishes to write them with the perturbation V.  As such, we will wish to find ways to avoid 
situations in which 0i G k Gτ τ

τ τ∂ = =  is an optional gauge condition, in favor of always having it 

be a required relationship. 
 
8. The Recursive Nature of Non-Abelian Gauge Theory, and what it may 
Teach about Quantizing Yang-Mills Gauge Theory   
 

Now we look for the first time at a very important recursive feature of non-abelian gauge 

theory.  If we write the massive boson solution as ( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + +  from 
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the second line of (6.27) and recognize that the perturbation V k G G k G Gτ τ τ
τ τ τ= − − −  in (6.7) 

may also be written as V G k G Gτ τ
τ τ= − −  because 0k Gτ

τ =  is a required condition for a massive 

gauge boson, see (6.5) et seq., then a preferred way to write and use (6.27) will be the following: 
 

( ) ( )1 12 2G k k m i G k G G J k k m i V Jτ τ τ τ
µ τ τ τ µ τ µε ε

− −
= − + + + = − + − . (8.1) 

  
Again, it bears emphasis, this uses the fact that 0k Gτ

τ =  is required, but only for a massive, not 

massless, gauge boson.  Now, although (8.1) appears on the surface to solve for ( )G Jµ µ , this is 

not a closed solution.  Rather, it is really a recursive solution for ( ),G G Jτ τ τ  which can be 

recursed into itself ad infinitum.  Let us see exactly how this is done. 
 
 To do recursion, one generally needs two inputs: first, a recursive kernel; second, a 
terminal condition.  A quintessential example is the recursive definition of the factorial function:  
The recursive kernel says that ( )! 1 !n n n= × − .  The terminal condition says that 0! 1= .  We shall 

pursue a similar approach to understand Gµ  in (8.1). 

 
 To keep track of things, let us develop some notations.  We shall generally use the 
double-nested symbol ( )( )  to denote a recursion.  If we recurse Gµ  into itself n times, we shall 

denote this as ( )( )
n

Gµ .  If after n recursions we leave the perturbation V in the equation, then 

we shall write this as ( )( )
n

G Vµ .  If, however, after n recursive iterations we set 0V = , then we 

shall write this as ( )( ) ( )( )0 0
n n

G G Vµ µ≡ = .  So, at the zeroth order of recursion, we simply set 

0V G k G Gτ τ
τ τ− = + =  in (8.1) which removes all of the terms containing Gτ  and reduces (8.1) to 

 

( )( ) ( ) 12

0
0G k k m i Jτ

µ τ µε
−

= − + . (8.2) 

 
This is simply the abelian solution (6.28).   
 
 But now, let us perform the first order of recursion.  Here, we substitute (8.1) back into 
itself one time and then set 0V G k G Gτ τ

τ τ= − − = .  This exercise yields: 

 



Jay R. Yablon 

43 
 

( )( ) ( )
( )

( ) ( )

( )( ) ( )
( ) ( )

12

1

112 2

1 12 2

2

0 12

1

1 12 2

0
V

G V k k m i G k G G J

k k m i k k m i G k G G J k
J

k k m i G k G G J k k m i G k G G J

k k m i

G k k m i J k

k k m i J k k m i J

τ τ τ
µ τ τ τ µ

τ τ τ τ τ
τ τ τ τ τ

µ
τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ
τ

τ τ
µ τ τ

τ τ τ
τ τ τ

ε

ε ε

ε ε

ε

ε

ε ε

−

−−

− −

= −

− −

= − + + +

 − + + − + + +
 =
  + − + + + − + + + 

 − +

⇒ = + − +

+ − + − +

1

Jµ

−





 
 



, (8.3) 

   

In leading order, this solution of course still contains (8.2) which is ( ) 12k k m i Jτ
τ µε

−
− +  .  But 

inside the overall inverse we now also have a new J kτ
τ  ( 1J ) and a new J Jτ

τ  ( 2J ) term.  This is 

now an expression strictly for ( )G Jµ µ  not ( ),G G Jτ τ τ , because we have cut off the recursion at 

the first iteration by setting the perturbation 0V G k G Gτ τ
τ τ= − − =  in the final line. 

 
 Now, let us go to the second order of recursion.  Here, we start with the middle line of 
(8.3), do a second substitution of (8.1) to arrive at the second order recursion, and then cut things 
off by setting the perturbation 0V = .  Now we obtain: 
 

( )( ) ( )
( ) ( )

( )
( ) ( )

112 2

1 12 2 2

2

12 2

12 2

k k m i k k m i G k G G J k
G V J

k k m i G k G G J k k m i G k G G J

k k m i

k k m i k k m i G k G G J k

k k m i G k G G J k k m i G k G G

τ τ τ τ τ
τ τ τ τ τ

µ µ
τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ
τ

τ τ τ τ τ
τ τ τ τ τ

τ τ τ τ τ τ
τ τ τ τ τ τ τ

ε ε

ε ε

ε

ε ε

ε ε

−−

− −

−

− −

 − + + − + + +
 =
  + − + + + − + + + 

− +

− + + − + + +
+

+ − + + + − + + +

= ( )
( ) ( )

( )
( )

1

1

112 2

1 12 2

12 2

12 2

J k
J

k k m i k k m i G k G G J k
J

k k m i G k G G J k k m i G k G G J

k k m i k k m i G k G G J k

k k m i G k G G J k k m i G k G

τ
τ

τ

τ τ τ τ τ
τ τ τ τ τ

τ
τ τ τ τ τ τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ
τ τ τ τ τ

τ τ τ τ τ
τ τ τ τ τ τ

ε ε

ε ε

ε ε

ε ε

−

−−

− −

−

−

 
 
  
 

 − + + − + + +
 +
  + − + + + − + + + 

− + + − + + +
×

+ − + + + − + + +( )

1

1

1

J

J
G J

µ

τ

τ τ
τ

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
  
  
    
  

,(8.4) 

 
which, upon setting 0V G k G Gτ τ

τ τ= − − =  reduces to: 
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( )( )
( )

( )

( )

2

1

2
22 2

1

2 2
22 2

1

2
22 2

0

k k m i

J k J J
k k m i J k

k k m i k k m i

G J k J J
k k m i J

k k m i k k m i

J k J J
k k m i J

k k m i k k m i

τ
τ

τ τ
τ ττ τ

τ ττ τ
τ τ

τ τ
µ τ τ τ

τ ττ τ
τ τ

τ τ
τ ττ τ

τ τ τ
τ τ

ε

ε
ε ε

ε
ε ε

ε
ε ε

−

−

−

 − +
 
  
  + − + + +
  − + − + 

 =
 + − + + +
 − + − + 

  
  × − + + +  − + − +  

1

Jµ

−













, (8.5) 

 
It will be appreciated this second recursive iteration contain terms in J, 2J , 3J  and 4J .  A third 
iteration would be expected to produce terms up to 6J , and in general, n iterations should 

produce terms over the entire gamut of 1 2... nJ J .  As with (8.3), ( )( )
2

0Gµ  is an expression 

strictly for ( )G Jµ µ  (really, ( ),G J kµ µ µ ), not ( ),G G Jτ τ τ  because we have cut off the recursion 

at the second iteration by setting the perturbation 0V = .  But, having done two iterations rather 
than one, we have some new terms that we did not have at the first iteration.    So in general the 
technique is to iterate as many times as one wishes, and then set 0V =  to end the recursion.  
Each iteration will add new terms of yet higher order in J, and the result will be an expression for 

( )G Jµ µ  with terms of order 1 2... nJ J .  And, of course, mathematically, theoretically, to obtain an 

exact, closed expression for ( )G Jµ µ  not ( ),G G Jτ τ τ , one would iterate an infinite number of 

times and then set 0V = .  But, of course, the real method we now need to pursue is not to iterate 
to infinity, but to figure out the pattern. 
 
 To discern the overall pattern, we do one more recursion to the n=3 level by substituting 

(8.1) into the each and every Gµ  in (8.4).  The expression for ( )( )
3

G Vµ  takes up over a page, 

and is not shown here.  But upon setting 0V =  to arrive at ( )( )
3

0Gµ , this reduces to the still 

very large expression: 
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( )( )

( )
( ) ( )
( )

( ) ( )
( )

2

112 2

2

1 12 2

112 2

1 12 2

12 2

3
0

k k m i

k k m i k k m i J k
k k m i J k

k k m i J k k m i J

k k m i k k m i J k
J

k k m i J k k m i J

k k m i k k m i J k

k

G

τ
τ

τ τ τ
τ τ ττ τ

τ τ
τ τ τ

τ τ τ

τ τ τ
τ τ τ

τ
τ τ τ

τ τ τ

τ τ τ
τ τ τ

µ

ε

ε ε
ε

ε ε

ε ε

ε ε

ε ε

−−

− −

−−

− −

−

− +

 − + + − +
 − + +
  + − + − + 

 − + + − +
 + +
 
 + − + − + 

− + + − +
×

+

=

( ) ( )

( )
( ) ( )
( )

1

1

1 12 2

112 2

2

1 12 2

12 2

2

J k

J
k m i J k k m i J

k k m i k k m i J k
k k m i J k

k k m i J k k m i J

k k m i k k m i J k

k k m i

τ
τ

τ

τ τ τ
τ τ τ

τ τ τ
τ τ ττ τ

τ τ
τ τ τ

τ τ τ

τ τ τ
τ τ τ

τ
τ

ε ε

ε ε
ε

ε ε

ε ε

−

−

− −

−−

− −

−

 
 
 
 
 
 
 
 
 
 
  
  
  
 − + − +   

 − + + − +
 − + +
  + − + + − + 

− + + − +
+ +

+ − +( ) ( )
( )

( ) ( )

( )
( )

1

1

1 12

112 2

1 12 2

12 2

2

12 2

J J
J k k m i J

k k m i k k m i J k
J

k k m i J k k m i J

k k m i k k m i J k
k k m i

k k m i J k k m

τ τ
τ τ

τ τ

τ τ τ
τ τ τ τ

τ τ τ
τ τ τ

τ τ τ
τ τ ττ

τ
τ τ

τ τ τ

ε ε

ε ε

ε ε

ε ε
ε

ε

−

−

− −

−−

− −

−

−

 
 
 
 
 
  
  
  
 − +  

 
  − + + − +  ×  
 + − + − +   

− + + − +
− + +

+ − + − +

×

( )
( )

( ) ( )
( )

( ) ( )

11

1

112 2

1 12 2

112 2

1 12 2

J k
i J

k k m i k k m i J k
J J

k k m i J k k m i J

k k m i k k m i J k
J

k k m i J k k m i J

τ
τ

τ

τ τ τ
τ τ τ τ

τ
τ τ τ

τ τ τ

τ τ τ
τ τ τ τ

τ τ τ
τ τ τ

ε

ε ε

ε ε

ε ε

ε ε

−−

−

−−

− −

−−

− −



  
  
      
  − + + − +  +  
 + − + − +  

 
  − + + − +  ×  
 + − + − +   

1

Jµ

−


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


. (8.6) 

  
Even this is rather formidable, but now we have enough information to establish a definite 
pattern that can be generalized to any order of recursion.   
 

Recognizing that the abelian boson propagator π  may be denoted 1 2k k m iτ
τπ ε− ≡ − +  up 

to a factor of i, we rewrite the abelian (8.2) simply as: 
 

( )( )
0

0G Jµ µπ= . (8.7) 

 



Jay R. Yablon 

46 
 

We also use this to write (8.3) as: 
 

( )( ) ( ) 11

1
0G J k J J Jτ τ

µ τ τ µπ π π π
−−= + + , (8.8) 

 
and to write (8.5) as: 
 

( )( ) ( )
( ) ( )

111 1

1 12 1 1
0

J k J J J k
G J

J k J J J J k J J J

τ τ τ
τ τ τ

µ µ
τ τ τ τ τ

τ τ τ τ τ

π π π π π

π π π π π π π π

−−− −

− −− −

 + + +
 =
  + + + + + 

, (8.9) 

 

 Now we see that ( ) 11 J k J Jτ τ
τ τπ π π π

−− + +  from (8.8) appears three times in (8.9).  

Given this, let us next define 1 1 J k J Jτ τ
τ τπ π π π− −Π ≡ + + .  This allows us to rewrite (8.8) as: 

 

( )( )
1

0G Jµ µ= Π , (8.10) 

 
and (8.9) as: 
 

( )( ) ( ) 11

2
0G J k J J Jτ τ

µ τ τ µπ
−−= + Π + Π Π , (8.11) 

 
Now we see that (8.11) looks just like (8.8), except that each π  which is in a term with J has 
advanced to a Π .  So now let’s go to that rather large (8.6) to nail down the pattern.  Using 

1 2k k m iτ
τπ ε− ≡ − +  we first reduce (8.6) to: 

 

( )( )

( )
( ) ( )
( )

( ) ( )
( )

111 1

1

1 11 1

111 1

1 13 1 1

11 1

0

J k J J J k
J k

J k J J J J k J J J

J k J J J k
G J

J k J J J J k J J J

J k J J J k

τ τ τ
τ τ τ τ

τ
τ τ τ τ τ

τ τ τ τ τ

τ τ τ
τ τ τ

µ τ
τ τ τ τ τ

τ τ τ τ τ

τ τ
τ τ τ

π π π π π
π

π π π π π π π π

π π π π π

π π π π π π π π

π π π π π

−−− −

−
− −− −

−−− −

− −− −

−− −

 + + +
 +
  + + + + + 

 + + +
 = +
  + + + + + 

+ + +
×

( ) ( )

1

1

1 11 1

J

J
J k J J J k J k J J J

µ

τ
τ

τ τ τ τ τ
τ τ τ τ τπ π π π π π π π

−

−

− −− −

 
 
 
 
 
 
 
 
 
 
  
  
   + + + + +   

.(8.12) 

 

Now, using ( )1 1 J k J Jτ τ
τ τπ π π π− −Π ≡ + + , we may further reduce (8.12) to: 
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( )( ) ( )
( ) ( )

111 1

1 13 1 1
0

J k J J J k
G J

J k J J J J k J J J

τ τ τ
τ τ τ

µ µ
τ τ τ τ τ

τ τ τ τ τ

π π

π π

−−− −

− −− −

 + + Π + Π Π
 =
 
 + + Π + Π Π + Π + Π Π 

. (8.13) 

 

 But now, we see that ( ) 11 J k J Jτ τ
τ τπ

−− + Π + Π Π  from (8.11) appears three times in 

(8.13).  So now, we define yet another 
1 1 J k J Jτ τ

τ τπ
− −Π ≡ + Π + Π Π  and use this to rewrite 

(8.11) as: 
 

( )( )
2

0G Jµ µ= Π  (8.14) 

 
and (8.13) as: 
 

( )( ) ( ) 1
1

3
0G J k J J J Jτ τ

µ τ τ µ µπ
−−= + Π + Π Π ≡ Π . (8.15) 

 

This now has the form of (8.11) but with Π → Π .  Seeing the pattern, we further define 
1

1 J k J Jτ τ
τ τπ

−
−Π = + Π + Π Π .  It is clear that this is the pattern which will continue for higher 

recursive order.  Now, let us systematize this pattern. 
 
 Pulling together the various results from (8.7), (8.10), (8.14), (8.15) and the various 
notational definitions made along the way, we have: 
 

( )( ) ( )
( )( ) ( )
( )( ) ( )
( )( ) ( )

12

0

1 1

1

11

2

1
1

3

0

0

0

0

G J k k m i J

G J J k J J J

G J J k J J J

G J J k J J J

τ
µ µ τ µ

τ τ
µ µ τ τ µ

τ τ
µ µ τ τ µ

τ τ
µ µ τ τ µ

π ε

π π π π

π

π

−

− −

−−

−−

= = − +

= Π = + +

= Π = + Π + Π Π

= Π = + Π + Π Π

. (8.16) 

 
Of course, for notational economy we do not want to have to keep adding bars or primes or any 
other qualifier to each of the “propagators.”  So let us denote each “propagator” with a subscript 

that simply declares its recursive order, thus, 0π π≡ , 1πΠ ≡ , 2πΠ ≡ , 3πΠ ≡ , etcetera.  Then, 

we can inductively compact (8.16) into a fully recursive solution just like the recursive kernel 

( )! 1 !n n n= × −  and the terminal condition 0! 1=  for factorial.  Specifically, starting with 

( )( )
3

0Gµ  and working down, the recursive kernel and the terminal condition are induced to be: 

 

( )( ) ( )
( )( ) ( )

1 1
0 1 1 1

12
00

0

0                        

n n n nn
G J J k J J J

G J k k m i J

τ τ
µ µ τ τ µ

τ
µ µ τ µ

π π π π π

π ε

− −
− − −

−

 = = + +


= = − +

. (8.17) 
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If we wish to separate the propagators from the gauge fields in (8.17), the recursive kernel and 
the abelian terminal condition may be written also as: 
 

( )
( )

1 1
0 1 1 1

12
0                        

n n n nJ k J J

k k m i

τ τ
τ τ

τ
τ

π π π π π

π ε

− −
− − −

−

 = + +


= − +

. (8.18) 

 
 So with all of this in mind, let us now return to (8.1) which is an expression for ( ),G G J .  

But at any recursive order, we now know how to turn this into ( )G J  without any gauge field 

residual:  Just zero out the perturbation.  Of course, nature will not stop at some order and then 
zero out perturbations.  She will recurse ad infinitum and the physics we observe will be for an 
infinite-order recursion.  So in the natural world, we expect that the observed non-linear solution 
for ( )G J  will be the one which recurses to infinity, thus contains terms up to infinite order in J 

and in k (really, 2× ∞  in J), and then sets the perturbation V to zero.  That is, we expect that 
nature’s physical solution (8.1) will be: 
 

( ) ( )
( ) ( )

( )( ) ( )

1 12 2

1 12 2

1 1
0 1 1 10

G k k m i G k G G J k k m i V J

D D m i J m i iG G G J

G J J k J J J

τ τ τ τ
µ τ τ τ µ τ µ

τ τ τ τ
τ µ τ τ τ µ

τ τ
µ µ τ τ µ

ε ε

ε ε

π π π π π

− −

− −

− −
∞ ∞− ∞− ∞−∞

= − + + + = − + −

= − + − = − ∂ ∂ + − − ∂ −

≡ = = + +

, (8.19) 

 
Above, for future use in doing an analytical path integral in section 11, we have also included the 

earlier solution (6.27) to the field equation ( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + −  of (5.15) with a 

Proca massive boson and  2D D iG G G G Gσ ν σ ν σ ν σ ν ν σ≡ ∂ ∂ − ∂ − +  from (5.16) and 
D D iG G Gτ τ τ τ

τ τ τ τ= ∂ ∂ − ∂ −  from (5.17).  We especially wish to take note of the correspondence 

( ) 12D D m iτ
τπ ε

−

∞ ↔ − + − .  And we also note the embedded correspondences 1G k J kτ τ
τ τπ ∞−↔  

and 1 1G G J Jτ τ
τ τπ π∞− ∞−↔ , which both contain the elemental correspondence 

1G J Jτ τ τπ π∞− ∞↔ ≅ . 

 
Very importantly, written as: 

 

( )( ) ( )
( )

1 1
0 1 1 1

12
0

0

                                                             

G G J J k J J J

k k m i

τ τ
µ µ µ τ τ µ

τ
τ

π π π π π

π ε

− −
∞ ∞− ∞− ∞−∞

−

 = = = + +


= − +

, (8.20) 

 
we have an expression for ( ),G J k  rather than ( ), ,G G J k , with all gauge fields removed.  What 

is left of the gauge field is its momentum vector k, interacting with the current density in the 
terms J kτ

τ  and contracted with itself in the linear terms k kτ
τ . 
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 Why is this all so very important?  First, it points out that although (8.1) appears on the 
surface to solve for ( )G Jµ µ , this is not a closed solution.  Rather, it is really a recursive solution 

for ( ) ( )( ) ( )( )( ), , , , , , ...G G J G G G J J G G G G J J Jτ τ τ τ τ τ τ τ τ τ τ τ τ τ τ= =  which can be iteratively 

recursed ad infinitum, but at any order can be cut off and turned into ( )G Jµ µ  not ( ),G G Jτ τ τ  by 

setting 0V = , i.e., by ceasing any further perturbations.   This makes the non-linear nature of 
Yang-Mills theory very apparent from a different view than [ ]

k k ijk i jF G f G Gµν µ ν µ ν= ∂ +  of (1.9) 

or F dG G G= + ∧  of (1.11) which are the usual expressions used to highlight the non-linear 
nature of Yang-Mills theory. 
 
 Secondly, and of very deep importance, this recursion may well point the way toward 
being able to analytically and exactly quantize Yang-Mills theory.  Specifically, we now return 
to Jaffe and Witten who on page 7 of [6], state: 
 

“Since the inception of quantum field theory, two central methods have 
emerged to show the existence of quantum fields on non-compact configuration 
space (such as Minkowski space). These known methods are (i) Find an exact 
solution in closed form; (ii) Solve a sequence of approximate problems, and 
establish convergence of these solutions to the desired limit.” 

 
The foregoing suggests a third method which is really a hybrid of (i) and (ii):  find an exact 

recursive kernel in closed form (which is ( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + + ) and then 

expand that kernel in successive iterations to see how the recursion behaves in the limit of 
infinite recursive nesting.  That is exactly what we have done in (8.17), (8.18) and (8.20). 
 

 Specifically, regarding ( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + +  as the zeroth order 

solution for ( ),G G Jτ τ τ , with each iteration of ( ),G G Jτ τ τ  from the nth to the (n+1)th recursive 

order we are effectively replacing all gauge fields Gτ  at the nth order with current densities Jτ  up 

to the 2(n+1)th order, and at the same time injecting a new set of gauge fields Gτ  at the (n+1)th 

order.  But at any time we can stop introducing new gauge fields by simply setting the 
perturbation to zero.  So at each order, whenever we decide to do so, we may effectively strip out 
the gauge fields and replace them with current densities.  This  means that in the limit n → ∞  we 
may effectively replace all gauge fields with current densities by stopping perturbation at n = ∞ . 
 
 Very similarly, when we take a path integral ( ) ( )exp expZ DG iS G iW J= =∫ C , 

because G is the integration variable, we effectively strip off the G and obtain a quantum 
amplitude ( )W J  expressed in terms of  the current density J.  So the infinite recursion has the 

same effect as a path integral in terms of trading G for J.  But as pointed out at the start of 
section 6, the mathematical exercise of analytically calculating a path integral revolves around 

clever extrapolations of the Gaussian integral ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫  
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into ( ) ( )exp expZ DG iS G iW J= =∫ C .  The calculation impediment we run into is that 

( )21
2expdx Ax Jx− −∫  is integrable because it is quadratic, but becomes quite intractable once 

this integral involves a polynomial of 3x  and higher order, which is exactly what happens in 
Yang-Mills theory and indeed, any non-linear interaction theory.  Why is this intractable?  
Because nobody knows how to calculate such integrals exactly and analytically! 
 

The usual and best workaround is to employ what Zee [11] in Appendix A refers to as the 
“central identity of quantum field theory”: 
 

( )( ) ( )( ) ( )11 1
2 2exp exp / expD K V J V J J K Jφ φ φ φ φ δ δ −− ⋅ ⋅ − + ⋅ = − ⋅ ⋅∫ C . (8.25) 

This method uses the functional variation /G Jµ
µ δ δ→  to remove all terms which are 

polynomial (greater than second order) in the gauge field Gµ , and replace them with terms 

/ J µδ δ  that contain only the current density.  This allows ( )( )exp /V Jδ δ  to be removed from 

inside the integral, so that the only terms left inside the integral are quadratic in Gµ .  Then, the 

integral is performed to obtain ( )11
2exp J K J−⋅ ⋅ , and the operation of ( )( )exp /V Jδ δ−  on 

( )11
2exp J K J−⋅ ⋅  is thereafter used to extract order-by-order terms in the quantum amplitude to 

reveal various Green’s and Wick’s coefficients in this amplitude. 
 
 The very important point is that an infinitely-iterative application of the recursive kernel 

( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + + of (8.1) serves a purpose totally analogous to 

/G Jµ
µ δ δ→ .  But ( )1 1

0 1 1 1G J k J J Jτ τ
µ τ τ µπ π π π− −

∞− ∞− ∞−→ + +  from (8.20) is now the 

replacement we use in lieu of /G Jµ
µ δ δ→ .  In the limit of infinite recursion, this will allow us 

in section 11 to do an analytically-exact calculation of the path integral by turning Gµ  into Jµ  

on an order-by-order basis such that in the limit of infinite nesting, all of the gauge fields have 
been replaced by current densities which then pose no problem to carrying out a Gaussian 
integration which is simply of quadratic form ( )21

2expdx Ax Jx− −∫  in the gauge fields. 

  
 Now, let us return to the Yang-Mills monopoles 0F i dGG= − ≠∫∫ ∫∫∫�  of (3.3) and (5.9), 

and particularly the identity [ ],P d G G dGG′ = =  of (2.11) upon which this is based.  It will be 

our goal to use one or more of the inverses ( )G J  that we have developed here to replace each G 

in this monopole with its source current J, then to replace each J with fermions via J µ µψγ ψ= , 
then to apply exclusion to the fermions, and then to show that this faux magnetic charge 

[ ],P d G G dGG′ = =  – at least in the classical theory – has the exact same chromodynamic  

symmetries as a baryon. 
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9. Populating the Composite Yang-Mills Magnetic Monopoles with 
Chromodynamically-Colored Fermions 
 
 Let us start the present discussion with the identity [ ],d G G dGG=  uncovered in (2.11), 

which we combine with (3.3) and then expand into tensor component expressions (see also (2.8) 
and (2.9)) while also including the faux magnetic charge [ ],P idGG id G G′ = − = − , as such: 

 

[ ] [ ]

( )
[ ]( )

1 1
2! 3!

1
[ ] [ ] [ ]3!

1
3!

1
2!

, ,

, , ,

,

F P i dGG i d G G i G G

F dx dx P dx dx dx

i G G G G G G dx dx dx

i G G G G G G dx dx dx

i G G dx dx

µ ν σ µ ν
µν σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν
σ µ ν µ ν σ ν σ µ

µ ν
µ ν

′= = − = − = −

′= ∧ = ∧ ∧

= − ∂ + ∂ + ∂ ∧ ∧

   = − ∂ + ∂ + ∂ ∧ ∧   

 = − ∧ 

∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫

∫∫ ∫∫∫

∫∫∫

∫∫∫

∫∫

� �

�

� 0≠

. (9.1) 

 
Let us now further develop (9.1) using the inverses reviewed in sections 6 and 7.   
 
 For a massless gauge boson in non-abelian gauge theory, we found that the relationship 

( ) 1
G D D Jτ

µ τ µ
−

= −  is the unique solution to the field equation  ( )J g D D D D Gν νσ τ σ ν
τ σ− = −  of 

(5.15) with D Dσ ν  and D Dτ
τ  given by (5.16) and (5.17), in the circumstance where the current 

density is conserved according to 0D Jν
ν =  as found in (5.20), because this continuity 

contextually fixes the gauge to the Feynman / continuity gauge 1ξ = , see (7.22) and (7.23).  We 
further found in (7.24) that by setting the mass 0m=  in (6.15) for a massive gauge boson, we 

arrive at exactly the same solution ( ) 1
G D D Jτ

µ τ µ

−
= − .  And, we found that in (7.25), in order to 

include the iε+  prescription in the non-Abelian theory, we need simply migrate 
D D D D iτ τ

τ τ ε⇒ − .  So as shown in (6.27), the non-abelian solution for a massive gauge boson 

is ( ) 1
G m i Jτ

µ τ µπ π ε
−

= − + , while as shown in (6.28), the corresponding abelian solution for a 

massive gauge boson is ( ) 1

AG k k m i Jτ
µ τ µε

−
= − + .  So again, we are reminded that the non-

abelian solution is identical in form to the abelian relation for a massive gauge boson, but for the 
replacement of the canonical k kτ

τ  with the kinetic τ
τπ π  momentum scalar, which replacement 

can be made in the massive theory because 0Gτ
τ∂ =  is a requirement, and which replacement 

may be made in the massless theory if one chooses 0Gτ
τ∂ =  although one does not have to.  So 

the massive solution is more unique in this way than the massless solution. 
 
 Now we wish to replace each Gµ  in (9.1) with its unique continuity solution, i.e., with 

the gauge contextually fixed to 1ξ =  because of requiring continuity, either 0Jσ
σ∂ =  for 

abelian theory, or  0D Jσ
σ =  for non-abelian theory, and to have the result be as uniquely-
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determined as possible.  Based on the development in sections 6 and 7, we have four choices of 

solution: a) the massive non-abelian solution ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  of (6.27); b) the 

massive abelian solution ( ) 12G k k m i Jτ
µ τ µε

−
= − +  of (6.28) which is simply solution (a) with 

0V = ; c) the massless non-abelian solution ( ) 1
G V k k i Jτ

µ τ µε
−

= − + +  of (7.26) in the 0k Gτ
τ =  

gauge which is simply solution (a) with 0m= ; and d) the massless abelian solution 

( ) 1
G k k i Jτ

µ τ µε
−

= +  of (7.27) which is simply solution (b) with 0m=  or solution (c) with 

0V = .  Because one can follow Coleman-Zee as shown in sections 6 and 7 to include a massive 
boson solution 0m≠  and then arrive at the massless solution simply by setting 0m= , and 
because the massless solution is uniquely forced to the 1ξ =  gauge to preserve continuity and 
thus we arrive at the exact same point whether we start with a massive or a massless solution, it 
makes more sense to first include the mass 0m≠ .  This is a more general approach, and as we 
have seen, this mass can always be zeroed out later at the appropriate time, whereby the 
requirement for continuity will contextually fix the gauge into the Feynman / continuity gauge 

1ξ = . 
 
 But there is also another more specific reason for starting with 0m≠  beyond its 
generality, and that has specifically to do with the uniqueness of the massive solutions.  Even 
though the continuity relationships 0D Jσ

σ =  and 0Jσ
σ∂ =  do zero out the terms containing the 

gauge number ξ  from the massless bosons and contextually fix the gauge to 1ξ = , see (7.22) 

and (7.23), the condition 0k Gτ
τ =  is required for a massive boson but is simply a covariant 

choice of gauge condition for a massless gauge boson.  So if we start with massive solution (a) 

which is ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − + , we know that the gauge condition 0k Gτ

τ =  must be in 

place because that is a requirement to ensure continuity for the massive solution, and that the 
perturbation V appears in simple form in this solution precisely because 0k Gτ

τ = , see (6.6) and 

(6.7), and (6.24).  On the other hand, if we start with massless solution (c) which is 

( ) 1
G V k k i Jτ

µ τ µε
−

= − + + , we know even though the gauge number is contextually fixed to 

1ξ =  by continuity, again, (7.22) and (7.23), that 0k Gτ
τ =  is merely a choice of gauge, and that 

the manner in which the perturbation V appears in ( ) 1
G V k k i Jτ

µ τ µε
−

= − + +  is itself dependent 

upon this choice of 0k Gτ
τ =  gauge.  If we choose 0k Gτ

τ ≠ , then ( ) 1
G V k k i Jτ

µ τ µε
−

= − + +  

will have to include this 0k Gτ
τ ≠ , and so its very form will change.   So solution (a) is uniquely 

determined in all respects up to the covariant gauge condition 0D Dν
ν θ =  a.k.a. 

, 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =   developed after (6.5), while solution (c) is contextually fixed to the 1ξ =  

gauge by continuity but D G Gν ν
ν ν= ∂  remains a free scalar object which is not required to be 

zero and so renders the massless solutions weaker, i.e., less-unique than the massive solutions.  

Again, this solution will only be ( ) 1
G V k k i Jτ

µ τ µε
−

= − + +  if we choose 0k Gτ
τ =  and will 
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change in form in the event we choose a 0k Gτ
τ ≠  whereby we will explicitly have to include a 

k Gτ
τ  term. 

 
 So to preserve generality and maximize uniqueness, we shall now use solution (a), 

namely ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  of (6.27) to replace each occurrence of Gµ  with 

( ) 12V k k m i Jτ
τ µε

−
− + − +  in (9.1).  This has a required gauge relation 0k Gτ

τ = , and a selected 

gauge condition 0D Dν
ν θ =  which does not change the form of the solution in the event one 

chooses 0D Dν
ν θ ≠ , see (6.5) and thereafter.  As noted, this becomes solution (b) if we set V=0, 

this becomes solution (c) if we set m=0 and choose 0k Gν
ν =  as a gauge condition, and it 

becomes solution (d) if we set V=0 and m=0 and again choose 0k Gν
ν = .  Thus, inserting 

( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  into (9.1) we obtain: 

 

[ ] [ ]

( )( ) ( )
( )( )( )
( )( )( )

1 1
2! 3!

1 12 2
[ ]

1 12 21
[ ]3!

1 12 2
[ ]

, ,F P i dGG i d G G i G G

F dx dx P dx dx dx

V k k m i J V k k m i J

i V k k m i J V k k m i J

V k k m i J V k k m i J

µ ν σ µ ν
µν σµν

τ τ
σ τ µ τ ν

τ τ
µ τ ν τ σ

τ τ
ν τ σ τ µ

ε ε

ε ε

ε ε

− −

− −

− −

′= = − = − = −

′= ∧ = ∧ ∧

∂ − + − + − + − +

= − +∂ − + − + − + − +

+∂ − + − + − + − +

∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫

∫∫ ∫∫∫

� �

�

( ) ( )
( ) ( )
( ) ( )

1 12 2

1 12 21
3!

1 12 2

,

,

,

dx dx dx

V k k m i J V k k m i J

i V k k m i J V k k m i J dx dx dx

V k k m i J V k k m i J

i

σ µ ν

τ τ
σ τ µ τ ν

τ τ σ µ ν
µ τ ν τ σ

τ τ
ν τ σ τ µ

ε ε

ε ε

ε ε

− −

− −

− −

 
 
 
  ∧ ∧
 
 
 
 

  ∂ − + − + − + − +   
 

  = − +∂ − + − + − + − + ∧ ∧
   

  +∂ − + − + − + − +    

= −

∫∫∫

∫∫∫

( ) ( )1 12 21
2! , 0V k k m i J V k k m i J dx dxτ τ µ ν

τ µ τ νε ε
− − − + − + − + − + ∧ ≠

  ∫∫�

.(9.2) 

 
This is the complete expression for the net-flux F∫∫�  of the non-abelian magnetic field over a 

closed two-dimensional surface, and as we just learned in section 8, it is highly nonlinear, and 
indeed, contains an infinite recursion of ( ),G G Jτ τ τ  which is ultimately made into ( )G Jτ τ  by 

recursing to infinity then setting 0V =  as shown in (8.20).  Indeed, we could also have 
employed G Jµ µπ ∞=  in from (8.20) in (9.1) to alternatively and equivalently obtain: 
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( )( ) ( )( ) ( )( ) [ ] ( )( ) [ ] ( )( )
( )( ) ( )( )

( )
[ ]( )

1 1
2! 3!

1
[ ] [ ] [ ]3!

1
3!

0 0 0 , 0 , 0

0 0

, , ,

F P i dGG i d G G i G G

F dx dx P dx dx dx

i J J J J J J dx dx dx

i J J J J J J

µ ν σ µ ν
µν σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

π π π π π π

π π π π π π

∞ ∞ ∞ ∞ ∞

∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

′= = − = − = −

′= ∧ = ∧ ∧

= − ∂ + ∂ + ∂ ∧ ∧

   = − ∂ + ∂ + ∂   

∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫

∫∫ ∫∫∫

∫∫∫

∫

� �

�

1
2! , 0

dx dx dx

i J J dx dx

σ µ ν

µ ν
µ νπ π∞ ∞

∧ ∧

 = − ∧ ≠ 

∫∫

∫∫�

.(9.3) 

 
We will eventually return at the end of section 10 to discuss (9.3) above in more detail.  But at 
the moment, (9.2) is in a form that better facilities understanding the connection between P′  and 
a baryon density, because we can set 0V =  at any order n of recursion we choose and thereby 
obtain ( )( )0

n
F∫∫� . 

 
 Before trying to tackle the highly-nonlinear (9.2), see the section 8 discussion of 
recursion that is inherent in the above because (9.2) contains the perturbation 

V k G G k G Gτ τ τ
τ τ τ− = + +  of (6.7) throughout, let us now do what is commonly done in many 

other situations in particle physics: consider the zero-perturbation limit by setting V=0 
throughout (9.2) right away.  That is, we obtain and explore ( )( )

0
0F∫∫� .  This will of course 

remove the non-linear physics occurring in (9.2), but it will readily reveal why these faux 
magnetic monopoles have the symmetries that one expects to see in a baryon.  Moreover, 
surprisingly enough, when we use ( )( )

0
0F∫∫�  to calculate the energies associated with the flux 

equation [ ],P i G G′ = −∫∫∫ ∫∫�  after some development of the baryon into protons and neutrons, 

we find a surprising, very tight concurrence with the binding energies that are experimentally-
observed in nuclear physics, which suggests that the nuclear binding energies are in fact 
expressive of the behaviors of (9.2) in this zero-perturbation limit, i.e., in the linear / abelian 
approximation (see [15] sections 6 through 12 and all of [16]).   
 

Once we set V=0 in each of the ( ) 12V k k m iτ
τ ε

−
− + − +  in (9.2), these each become the 

ordinary denominator ( )21/ k k m iτ
τ ε− + , because as developed in (6.26), it is 

( )AB AB AB AB
V k G G k G Gσ σ σ

σ σ σ− = + +  which is responsible for our having to write (9.2) with 

inverses rather than denominators.  Thus, setting V=0 and rearranging somewhat, (9.2) for 

( )( )
0

0F∫∫�  and ( )( )
0

0P′  becomes: 
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( )( ) ( )( ) ( )( ) [ ] ( )( ) [ ] ( )( )
( )( ) ( )( )

( ) ( ) ( )

0 0 0 0 0

1 1
2! 3!0 0

[ ] [ ] [ ]1
3! 2 2 22 2 2

1
3!

0 0 0 , 0 , 0

0 0

,

F P i dGG i d G G i G G

F dx dx P dx dx dx

J J J J J J
i dx dx dx

k k m i k k m i k k m i

J J
i

k k

µ ν σ µ ν
µν σµν

σ µ ν µ ν σ ν σ µ σ µ ν

τ τ τ
τ τ τ

σ µ ν

τ
τ

ε ε ε

′= = − = − = −

′= ∧ = ∧ ∧

 ∂ ∂ ∂ = − + + ∧ ∧
 − + − + − + 

 ∂  = −

∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫

∫∫ ∫∫∫

∫∫∫

� �

�

( )
[ ]

( ) ( )

( )

2 2 22 2 2

1
2! 22

,,

,
0

J JJ J
dx dx dx

m i k k m i k k m i

J J
i dx dx

k k m i

ν σ µµ ν σ σ µ ν

τ τ
τ τ

µ ν µ ν

τ
τ

ε ε ε

ε

  ∂∂   + + ∧ ∧
 − + − + − + 

  = − ∧ ≠
− +

∫∫∫

∫∫�

. (9.4) 

 
Although the complete non-linear physics of 0F ≠∫∫�  is described by (9.2) and alternatively 

(9.3), the simplified (9.4) enables us to reveal certain key symmetries for 0F ≠∫∫�  which will 

support the view that the faux magnetic monopole density P′  is in fact a baryon density, which 
symmetries carry over fully to the more-complete, highly-perturbed (9.2), (9.3).  We shall refer 
to (9.4) as the “ground state” monopole equation, because the perturbations are zeroed out 
immediately before any levels of recursion are carried out. 
 
 Of particular interest, let us now focus on the [ ] ( )( )

0
, 0i d G G= − ∫∫∫  term in (9.4), which 

we restructure into: 
 

( )( ) ( )
( )( ) ( )( ) [ ] ( )( )

( )
[ ]

( ) ( )

1
2!0

1
3!0 0 0

1
3! 2 2 22 2 2

0 0

0 0 , 0

, ,,

F F dx dx

P P dx dx dx i d G G

J J J JJ J
i dx dx dx

k k m i k k m i k k m i

µ ν
µν

σ µ ν
σµν

σ µ ν ν σ µµ ν σ σ µ ν

τ τ τ
τ τ τε ε ε

= ∧

′ ′= = ∧ ∧ = −

    ∂ ∂∂    = − + + ∧ ∧
 − + − + − + 

∫∫ ∫∫

∫∫∫ ∫∫∫ ∫∫∫

∫∫∫

� �

. (9.5) 

  
From this we extract the faux magnetic monopole density raised to contravariant indexes: 
 

( )( )
( ) ( ) ( )2 2 20 2 2 2

, , ,
0

J J J J J J
P i

k k m i k k m i k k m i

σ µ ν µ ν σ ν σ µ
σµν

τ τ τ
τ τ τε ε ε

      ∂ ∂ ∂      ′ = − + +
 − + − + − + 

. (9.6) 

 
 Now we take the crucial step of developing the current sources densities J µ  in terms of 
the underlying fermion wavefunctions ψ  which arise in Dirac theory.  Specifically, in abelian 

gauge theory, Dirac’s equation says that ( ) 0i mµ
µγ ψ∂ − = .  For the adjoint spinor † 0ψ ψ γ=  the 
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field equation is 0i mµ
µψγ ψ∂ + = .  Adding yields ( ) 0µ

µ ψγ ψ∂ =  as is well known.  And 

because the conserved current is expressed by 0J µ
µ∂ = , we identify the current density with 

J µ µψγ ψ= , where each Dirac wavefunction ψ  in a U(1) theory is of course a four-component 
column vector.   
 
 In non-abelian gauge theory, for the compact simple gauge group SU(N) (or for the 
product group SU(N)xU(1) with a U(1) factor that is required for magnetic monopoles to be 
topological stability as will be reviewed in section 10), the generalized wavefunction AΨ = Ψ , 

1...A N=  is an Nx4 column vector of 4-component Dirac wavefunctions  ψ .  This non-abelian 
wavefunction Ψ  may then subsist in any one of N distinct eigenstates.  For example, for the 
SU(3)C group of chromodynamic strong interactions, the three (3) eigenstates are generally 
denoted (R)ed, (G)reen, (B)lue, and these distinct eigenstates are used to enable a baryon 
containing three quarks to satisfy the Fermi-Dirac-Pauli Exclusion Principle.  Explicitly defined, 
using the SU(N) group generators i i

ABλ λ= , 21... 1i N= − , the current density generalizes to 
i i i i

CAB AB CD DJ Jµ µ µ µλ λ λ γ γ= = Ψ Ψ ≡ Ψ Ψ , with Yang-Mills adjoint i and fundamental A,B,C,D 

indexes explicitly shown for illustration, and where as already stated AΨ = Ψ  is an N-

component column vector of N fermion eigenstates.  As has been reviewed at length earlier 
staring at (5.20), this current density satisfies the continuity relationship 0D Jν

ν = .  For 

SU(N)xU(1), we may for simplicity use i
ABλ  with 20... 1i N= − , where we denote the U(1) 

generator as 0
ABλ  with the “0” index.  If we suppress the A,B,C,D indexes, then 

i i i iJ Jµ µ µ µλ λ λ γ γ= = Ψ Ψ ≡ Ψ Ψ . 
 
 So now, into (9.6), we first substitute i iJ Jµ µλ= , then i iJ µ µλ γ= Ψ Ψ , and then use 

( ) ( ), ,i j i jµ ν µ νλ λ λ γ λ γ γ γ   Ψ Ψ Ψ Ψ = Ψ Ψ Ψ Ψ     (just a variant of , ,i j i jA B A Bµ ν µ νλ λ   =     ) 

in (9.6) to “populate” the faux Yang-Mills magnetic monopole with fermions.  The result is: 
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( )( ) ( )
( )

( )
( )

( )
( )

( )( )( )
( )

( )( )( )
( )

( )( )( )

2 2 20 2 2 2

22

22

, , ,
0

,

,

,

i j i j i j i j i j i j

i j i j

i j i j

i j i j

J J J J J J
P i

k k m i k k m i k k m i

k k m i

i
k k m i

σ µ ν µ ν σ ν σ µ
σµν

τ τ τ
τ τ τ

σ µ ν

τ
τ

µ ν ν

τ
τ

ν σ µ

λ λ λ λ λ λ

ε ε ε

λ λ λ γ λ γ

ε

λ λ λ γ λ γ

ε

λ λ λ γ λ γ

      ∂ ∂ ∂      ′ = − + +
 − + − + − + 

 ∂ Ψ Ψ Ψ Ψ 

− +

 ∂ Ψ Ψ Ψ Ψ = − +
− +

 ∂ Ψ Ψ Ψ Ψ +
( )

( ) ( ) ( )

22

2 2 22 2 2

, , ,

k k m i

i
k k m i k k m i k k m i

τ
τ

σ µ ν µ ν σ ν σ µ

τ τ τ
τ τ τ

ε

γ γ γ γ γ γ

ε ε ε

 
 
 
 
 
 
 
 
 
 
 
 − +
 

      ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ      = − + +
 − + − + − + 

. (9.7) 

 
We could just as readily have just inserted J µ µγ= Ψ Ψ  into (9.6) to arrive directly at the bottom 
line of (9.7), but it is helpful to see the intermediate calculations which explicitly contain the 
group generators.  Given that F P′=∫∫ ∫∫∫� , and referring back to the discussion at the end of 

section 3, we now see for the first time the manner in which ( )( )( )F G J ψ∫∫� , that is, the 

manner in which the composite faux magnetic monopole F∫∫�  arising from the faux magnetic 

source [ ],P idGG id G G′ = − = −  does indeed contain fermion wavefunctions Ψ .  Now, we shall 

show how these fermion wavefunction in fact possess all of the key symmetries required to 
qualify them as colored quarks, and how P σµν′  possesses all of the key symmetries of a baryon. 
 

 The first thing we observe is that ( )( )
0

0P σµν′  contains three additive terms.  And, as 

discussed moments ago, for SU(N) or for SU(N)xU(1), each AΨ = Ψ  is an N-component 

column vector of 4-component Dirac wavefunctions ψ  which may subsist in any one of N 

distinct eigenstates.  So if we regard ( )( )
0

0P σµν′  as a composite system of more than one 

fermion, then each fermion in this system must be placed into a distinct eigenstate in order to 
satisfy the Fermion Exclusion Principle.  The three additive terms in (9.7) advise us that there are 

a total of three such fermion eigenstates which constitute ( )( )
0

0P σµν′ , and so we label these 

eigenstates among the three additive terms as 1 2 3, ,Ψ Ψ Ψ .  With this we now rewrite (9.7), 

including a restructuring [ ],µ ν µ νγ γ γ γ Ψ Ψ Ψ Ψ = Ψ ΨΨ Ψ   of the commutators in the bottom line 

below, as: 
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( )( )

( ) ( ) ( )
( )
( )

( )
( )

( )
( )

0

1 1 1 1 2 2 2 2 3 3 3 3

2 2 22 2 2

[ ] [ ] [ ]
1 1 1 1 2 2 2 2 3 3 3 3

2 2 22 2 2

0

, , ,

P

i
k k m i k k m i k k m i

i
k k m i k k m i k k m i

σµν

σ µ ν µ ν σ ν σ µ

τ τ τ
τ τ τ

σ µ ν µ ν σ ν σ µ

τ τ τ
τ τ τ

γ γ γ γ γ γ

ε ε ε

γ γ γ γ γ γ

ε ε ε

′

      ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ      = − + +
 − + − + − + 

 ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ ∂ Ψ Ψ Ψ Ψ
= − + +
 − + − + − +






. (9.8) 

  
Because we must be able to place the fermions into one of three distinct eigenstates in 

order to satisfy Exclusion for the composite ground state faux monopole ( )( )
0

0P σµν′ , we must 

now chose a rank-3 gauge group in order to enforce this exclusion.  There are two apparent 
choices.  First is the simple group SU(3).  Second is the product group SU(3)×U(1).  But as we 
shall see in the next section, there really is not a choice and we actually must choose 
SU(3)×U(1).  But to start simply, let us assume the simpler choice of SU(3) until contradicted, 
and then see why we are later compelled by contradiction to amend this choice to SU(3)×U(1).  
Choosing SU(3), we first label eigenstates.  Because the labels are arbitrary, we use the names of 
some colors, say, (R)ed, (G)reen, (B)lue.  Thus, using the SU(3) generators iλ  normalized to 

( )2
1
2Tr iλ =  we define: 

 

8 3 8 3 8 31 1 1 1 1
1 2 32 23 2 3 2 3

0 0

; 0 0 ; ; ; ; 0

0 0

R

G

B

ψ
λ λ λ λ ψ λ λ

ψ

     
     Ψ ≡ = = = Ψ ≡ = − = = Ψ ≡ = − = − =     
     
     

.(9.9) 

 

Now, all of a sudden, in a very consequential step, we see how these ( )( )
0

0P σµν′  ground 

state magnetic monopole densities contain three fermions in one of three eigenstates R, G, B, and 
how SU(3) (or really, SU(3)×U(1) as we shall see in the next section) emerges as a required 

gauge group in order to force exclusion upon the fermions that comprise ( )( )
0

0P σµν′ .  In other 

words, we have never had to postulate SU(3) per se in order to force exclusion on the quarks 
within experimentally-observed baryons.  Rather, we have been forced to introduce SU(3) (or at 
least a rank-3 gauge group) in order to ensure proper Exclusion for the fermions of the 
theoretically-motivated P σµν′  which first emerged back in (3.3) when we found that 0F ≠∫∫�  in 

a non-abelian gauge theory, and when we found that the underlying magnetic charge density was 
the composite [ ],P idGG id G G′ = − = −  which is faux-assembled from the gauge fields G.  At the 

same time, because we are required to select a rank-3 gauge group which for now is SU(3), and 
because we have labelled the eigenstates with the names of colors,  there are now eight gauge 
bosons iG µ  in i iG Gµ µλ=   associated with (9.8), and each of these will be bi-colored, just as are 

the gluons of chromodynamic theory.  This means that we may be able to obviate the need for a 
separate postulation of classical or quantum chromodynamics, such that chromodynamics no 
longer a fundamental theory, but rather is a corollary, secondary theory that emerges in the 
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process of enforcing fermion Exclusion upon the fermions contained in the non-abelian faux 
magnetic monopole density (9.8).  
 
 Now we focus on the terms of the form ΨΨ  which appear in the bottom line of (9.8).  
These terms have a column vector to the left of a row vector, and using (9.9), these may be 
explicitly written in 3x3 matrix form as: 
 

1 1 2 2 3 3

0 0 00 0 0 0 0

0 0 0 ; 0 0 ; 0 0 0

0 0 0 0 0 0 0 0

R R

G G

B B

ψ ψ
ψ ψ

ψ ψ

     
     

Ψ Ψ = Ψ Ψ = Ψ Ψ =     
     

    

. (9.10) 

 
We may then use this to rewrite (9.8) in explicit 3x3 matrix form: 
 

( )( )

( )
( )

( )
( )

( )
( )

[ ]
1 1

22

[ ]
2 2

20 2

[ ]
3 3

22

0 0

0 0 0

0 0

R R

G G

B B

k k m i

P i
k k m i

k k m i

σ µ ν

τ
τ

µ ν σ
σµν

τ
τ

ν σ µ

τ
τ

γ ψ ψ γ

ε

γ ψ ψ γ

ε

γ ψ ψ γ

ε

 ∂ Ψ Ψ
 
 − +
 
 ∂ Ψ Ψ ′ = −  − + 
 

∂ Ψ Ψ 
 
 − + 

.(9.11) 

 

 Next, we focus in on R R R Ru uψ ψ = , G G G Gu uψ ψ =  and B B B Bu uψ ψ =  which involve 

ordinary, four-component Dirac wavefunctions ψ  and spinors u, and we focus especially on the 

uu which contain a column spinor to the left of a row spinor.  Often, the Dirac spin sum 

relationship is normalized to 2N m= Ε +  and so is written as  ( )spinsuu p mΣ = +/ .  But if we wish 

to be more general and defer a decision on normalization, we may employ in (9.11) the spin sum 
prior to normalization, which is (see, e.g., [14] exercise 5.9): 
 

( )
2

spins

N
uu p m

E m
= +/+∑ . (9.12) 

 

So, if we now take the sum over all spins ( )( )spins 0
0P σµν′Σ  of the faux monopole (9.11), and if 

we apply (9.12) in the form ( ) ( )2
spins /C C C C C Cu u N p m E mΣ = + +/  to each color , ,C R G B=  of 

fermion, we may use (9.12) to rewrite (9.11), for the moment without iε+  , as: 
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( )( )
( )( )

( )
( )( )

( )
( )( )

( )

spins 0

[ ]2
1 1

22

[ ]2
2 2

22

[ ]2
3 3

22

0

0 0

0 0

0 0

R R

R R

G G

G G

B B

B B

P

p mN

E m k k m

p mN
i

E m k k m

p mN

E m k k m

σµν

σ µ ν

τ
τ

µ ν σ

τ
τ

ν σ µ

τ
τ

γ γ

γ γ

γ γ

′ =

 ∂ Ψ + Ψ/ 
 + −
 
 ∂ Ψ + Ψ/ −  + − 
 

∂ Ψ + Ψ/ 
 + − 

∑

.(9.13) 

 
 Next we next turn our attention to the expressions ( ) ( )2/C Cp m k k mτ

τ+ −/  which appear 

in each diagonal entry above.  We simultaneously take note of the fact that the fermion 

propagator ( ) 1
i p m

−−/  sans iε+  is related by a constant factor i to: 

 

( )( ) ( ) 1

2

p m p m
p m

p p m p m p mτ
τ

−+ +/ /= = −/− + −/ /
. (9.14) 

 
So we are motivated to see if there is a basis upon which we may set the ( ) ( )2/C Cp m k k mτ

τ+ −/  

terms in (9.13) to ( ) 1
p m

−−/  and thereby introduce the propagator for each of these fermions 

directly into (9.13).  For this, we return to the discussion of sections 6 and 7 during which we 
developed inverse solutions to the electric charge equation ( )J g D D D D Gν νσ τ σ ν

τ σ− = −  in both 

massive and massless form, and where we also reviewed the degrees of freedom of various 
solutions and related questions of uniqueness. 
 

 Each term in equation (9.13) contains ( )221/ k k mτ
τ − , that is ( )21/ k k mτ

τ −  times itself.  

As noted in the mass shell discussion prior to (6.24), we are using pτ  and kσ  respectively to 

denote fermion and boson momentum vectors.  And, of course, each ( )21/ k k mτ
τ −  entered 

(9.13) back at (9.2) when we inserted the massive boson inverse solution 

( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  of (6.27) into (9.1).  As reviewed in sections 6 and 7, this 

solution, in view of the continuity requirement 0D Jν
ν =  of (5.20) and the consequently-

mandated covariant gauge 0D Gν
ν =  of (6.5) is unique up to the gauge condition 0D Dν

ν θ =  

a.k.a. , 0i Gν ν
ν νθ θ ∂ ∂ − ∂ =  .  And this solution is unchanged in form under a non-abelian 

gauge transformation because nowhere does the unphysical parameter θ  appear in any of the 
covariant physics equations.  So in trying to match up ( ) ( )2/C Cp m k k mτ

τ+ −/  which appears in 

(9.13) with ( ) ( )2/p m p p mτ
τ+ −/  in the fermion propagator-related (9.14), we see that the 

numerators match up perfectly but there is a mismatch in the denominators.  Particularly, each 
2k k mτ

τ −  in (9.13) is the propagator denominator for a massive gauge boson which has three 
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degrees of freedom, while 2p p mτ
τ −  in (9.14) is the propagator denominator for a massive 

fermion which has four degrees of freedom.  So, how do we match these up, and what impact, if 

any, might this have on the uniqueness of the solution ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  upon 

which (9.13) is based? 
 
 Because each of the boson propagator denominators ( )21/ k k mτ

τ −  in (9.13) represents a 

massive boson with three degrees of freedom, the term ( )221/ k k mτ
τ −  which is a product of two 

boson propagator denominators thus represents six degrees of freedom.  So we now take each 

( ) ( )2 21/ k k m k k mτ τ
τ τ− −  and shift one degree of freedom from the first ( )21/ k k mτ

τ −  into the 

second ( )21/ k k mτ
τ − .  That is, keeping in mind that pτ  and kσ  respectively denote fermion and 

boson momentum vectors and that the former has four degrees of freedom (particle / antiparticle 
in each of spin up and spin down states) and the latter when massive has three degrees of 

freedom (two transverse polarizations, one longitudinal), we rewrite ( )221/ k k mτ
τ −  as: 

 

( ) ( ) ( ) ( )2 2 2 22

1 1 1

k k m k k m k k p p mk k m
τ τ τ ττ

τ τ τ ττ

= =
− − −−

. (9.15) 

 
What we have effectively done is to take the 6=3+3 degrees of freedom represented in the first 
term, and redistribute them into 6=2+4 degrees of freedom represented in the final term.  In the 
final term, therefore, we have turned one originally-massive gauge boson propagator 

denominator ( )21/ k k mτ
τ −  into a massless gauge boson propagator denominator 1/ k kτ

τ .  But at 

the same time, we have turned the other originally-massive gauge boson propagator denominator 

( )21/ k k mτ
τ −  into a massive fermion propagator denominator ( )21/ p p mτ

τ − .  This is very 

analogous to the Goldstone mechanism used to give mass to massless gauge bosons by shifting a 
degree of freedom from a scalar field into a boson field.  Here, we are simply shifting a degree of 
freedom from a boson field into a fermion field. 
 
 Now we saw of course in sections 6 and 7 that the solution for a massless gauge boson 
was less-unique than that for a massive boson, precisely because the massless gauge boson has 
one less degree of freedom.  But we also saw how context matters, and how the context of a 
conserved current 0D Jν

ν =  contextually fixed the massless boson into the Feynman / continuity 

gauge 1ξ = .  The only contextual loss of uniqueness in the massless solution, therefore, was that 

0D Gν
ν =  was no longer a mandatory constraint but instead was relegated to a mere choice of 

gauge, which meant that 0Gν
ν∂ =  was also demoted from a requirement of continuity to an 

optional gauge condition.  And all of the non-uniqueness of the massless solution, even before 
the application of continuity 0D Jν

ν =  fixed the gauge number to 1ξ = , emanated from 

removing a degree of freedom when going from a massive to a massless gauge boson.  But in 
(9.15) we are not removing any degrees of freedom as we did in going from section 6 to section 
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7.  We are merely shifting them around in the overall context of (9.13) according to the recipe of 
(9.15).  So after we apply (9.15) to (9.13), we will not in any way alter the uniqueness of (9.13).  
It will remain just as uniquely-specified after (9.15), as before (9.15).  Effectively, we 
contextually dodge the additional non-uniqueness that emerges in going from the massive 
solutions of section 6 to the massless solutions of section 7, by moving rather than removing a 
degree of freedom, in the context of (9.13). 
 
 So let us now do exactly what we just said.  We now use (9.15) in (9.13) to shift around 
the six degrees of freedom in each diagonal element from a 3+3 to a 2+4 configuration, and at 
the same time we label the pτ  and the m in relation to the color of the fermion in each term.  

Thus, without any loss of uniqueness, simply by shifting a degree of freedom, (9.13) becomes: 
 

( )( )
( )( )

( )
( )( )

( )
( )( )

( )

spins 0

[ ]2
1 1

2

[ ]2
2 2

2

[ ]2
3 3

2

0

0 0

0 0

0 0

R R

R R R R R

G G

G G G G G

B B

B B B B B

P

p mN

E m k k p p m

p mN
i

E m k k p p m

p mN

E m k k p p m

σµν

σ µ ν

τ τ
τ τ

µ ν σ

τ τ
τ τ

ν σ µ

τ τ
τ τ

γ γ

γ γ

γ γ

′ =

 ∂ Ψ + Ψ/ 
 + −
 
 ∂ Ψ + Ψ/ −
 + −
 
 ∂ Ψ + Ψ/
 
 + −
 

∑

.(9.16) 

 
Importantly, in the process of shifting degrees of freedom, the remaining boson 

propagator denominator in each term has become 1/ k kτ
τ  which is the propagator for a massless 

gauge boson.  So now, the eight bi-colored gauge bosons of the required SU(3)C group have 
become massless, at the same time the fermions have acquired mass since they have four degrees 
of freedom following application of (9.15).  Because the eight bi-colored gluons of QCD are also 
massless, this means that the gauge bosons associated with (9.16) have now have three very 
important symmetries that match up with the gluons of QCD: 1) there are eight of them, 2) they 
are bi-colored, and 3) they are massless.  Yet, because of using a Goldstone-like method for what 
is a variant of the contextual gauge shifting discussed in section 7, no uniqueness has been lost. 
 
 Now we return to the normalization which we deferred back at (9.12).  Often, as noted, 
the chosen normalization is 2N m= Ε + .  Let us instead, however, for each term in (9.16), 
choose to include the k kτ

τ  massless boson term in the normalization.  That is, for each term in 

(9.16) let us now normalize to: 
 

( )2
C CN E m k kττ≡ + . (9.17) 

 
So, applying the normalization (9.17), and propagator expression (9.14) for each fermion color 

, ,C R G B= , we reduce (9.16) to: 
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( )( )
( )( )

( )( )
( )( )

spins 0

1[ ]
1 1

1[ ]
2 2

1[ ]
3 3

0

0 0

0 0

0 0

R R

G G

B B

P

p m

i p m

p m

σµν

σ µ ν

µ ν σ

ν σ µ

γ γ

γ γ

γ γ

−

−

−

′ =

 ∂ Ψ − Ψ/ 
 

− ∂ Ψ − Ψ/ 
 
 ∂ Ψ − Ψ/ 

∑

.(9.18) 

 

 Next we look closely at one of the terms above, say, the term ( ) 1[ ]
1 1R Rp mµ νγ γ−Ψ − Ψ/  on 

the upper left.  Making explicit use of (9.9), this term, is: 
 

( ) ( ) ( ) ( )1 1 1[ ] [ ] [ ]
1 1 0 0 0

0

R

R R R R R R R R Rp m p m p mµ ν µ ν µ ν

ψ
γ γ ψ γ γ ψ γ γ ψ− − −

 
 Ψ − Ψ = − = −/ / / 
 
 

. (9.19) 

A similar result obtains for the other two terms, which now allows us to rewrite (9.18) as: 
 

( )( )
( )( )

( )( )
( )( )

spins 0

1[ ]

1[ ]

1[ ]

0

0 0

0 0

0 0

R R R R

G G G G

B B B B

P

p m

i p m

p m

σµν

σ µ ν

µ ν σ

ν σ µ

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

−

−

−

′ =

 ∂ −/ 
 

− ∂ −/ 
 
 ∂ −/ 

∑

.(9.20) 

 

Any time we wish to calculate with the propagator terms ( ) 1
i p m

−−/  and also include iε+ , we set 

these to ( ) ( ) ( )1 2/i p m i p m p p m iσ
σ ε−− = + − +/ / .   

 
Finally, in another important step that will lead us to topological stability, we take the 

trace of the above.  This yields the fully-developed, spin-summed trace of the faux monopole 
density [ ],P idGG id G G′ = − = −  in the zero-recursion, zero-perturbation limit ( )( )

0
0 , namely: 

 

( )( )
( )( ) ( )( ) ( )( )( )

spins 0

1 1 1[ ] [ ] [ ]

Tr 0

R R R R G G G G B B B B

P

i p m p m p m

σµν

σ µ ν µ ν σ ν σ µψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

′

= − ∂ − + ∂ − + ∂ −/ / /

∑
.(9.21) 

 
We shall now show how this has the identical symmetries as a baryon, how this leads directly to 
meson mediators of interactions between monopoles, how this requires us to choose SU(3)×U(1) 
rather than SU(3) as our rank-3 gauge group, how this leads to topological stability, and how the 
above becomes flavored into protons and neutrons.  
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10. Why the Composite Faux Magnetic Monopoles of Yang-Mills Gauge 
Theory have all of the Required Chromodynamic Symmetries of Baryons, and 
how these are Flavored into being Topologically-Stable Protons and Neutrons 
 
 In the trace form of (9.21), we see clearly that ( )( )spins 0

Tr 0P σµν′Σ  is a third rank 

antisymmetric tensor in spacetime which will reverse sign under the interchange of any two 
adjacent indexes.   From here, we simplify by just writing spinsΣ → Σ .  Let us denote this 

fundamental antisymmetry, which is an inherent feature of any magnetic monopole in spacetime, 
using the wedge-product notation σ µ ν∧ ∧ .  If we now associate each color wavefunction with 

the spacetime index in the related σ∂  operator in (9.21), i.e., R~σ , G~µ  and B~ν , and 

keeping in mind that ( )( )
0

Tr 0P σµν′Σ  is antisymmetric in all spacetime indexes, we may use 

[ ] [ ] [ ]~ , , ,R G B R G B G B R B R Gσ µ ν∧ ∧ ∧ ∧ = + +  to express this antisymmetry.  But this is 

the exact colorless wavefunction that is expected of a baryon.  Indeed, the antisymmetric 
character of the spacetime indexes in a magnetic monopole should have been a good tipoff that 
magnetic monopoles would naturally make good baryons.  So, we now may assert that the non-
abelian composite faux monopole density ( )( )

0
Tr 0P σµν′Σ  in the ground state (9.21) has the exact 

same antisymmetric colorless chromodynamic symmetry as does a baryon! 
 
 Now, let us lower the indexes in (9.21) and write this as the differential form relation: 
 

( )( ) ( )( )
( )( )

( )( )
( )( )

( )
( )
( )

1
3!0 0

1

[ ]

11
[ ]3!

1

[ ]

1

[ ]

11
[ ]3!

1

[ ]

Tr 0 =Tr 0

R R R R

G G G G

B B B B

R R R R

G G G G

B B B B

P P dx dx dx

p m

i p m dx dx dx

p m

p m

i p m

p m

σ µ ν
σµν

σ µ ν

σ µ ν
µ ν σ

ν σ µ

µ ν

σ µ ν

µ ν

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

−

−

−

−

−

−

′ ′Σ Σ ∧ ∧

 ∂ −/ 
 

= − +∂ − ∧ ∧/ 
 
 +∂ −/ 

 −/ 
 = − ∂ + −/ 
+ −/ 

dx dx dxσ µ ν∧ ∧



. (10.1) 

 
In the bottom expression, a σ∂  with the same σ  index has been factored out of the entire 

expression.  So now we can apply Gauss’ / Stokes theorem to (10.1), and can use the forms in the 
top line of (9.1) to help us out. 
 

Specifically, by expanding some of the forms in the top line of (9.1), we may write: 
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[ ] [ ]( )
[ ]

1 1
2! 3!

1
3!

1
2!

, , , ,

, ,

F P F dx dx P dx dx dx

i d G G i G G G G G G dx dx dx

i G G i G G dx dx

µ ν σ µ ν
µν σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

µ ν
µ ν

′ ′= = ∧ = ∧ ∧

   = − = − ∂ + ∂ + ∂ ∧ ∧   

 = − = − ∧ 

∫∫ ∫∫∫ ∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫ ∫∫

� �

� �

. (10.2) 

 
Therefore, taking the zero perturbation limit 0V = , summing all spins, taking the trace, and then 
injecting in the final expression from (10.1), we may write this as: 
 

 

( )( ) ( )( ) ( )( ) ( )( )
[ ] ( )( ) [ ]( ) ( )( )

[ ] ( )( ) ( )( )

1 1
2! 3!0 0 0 0

1
3!0 0

1
2!0 0

1
[3!

Tr 0 Tr 0 Tr 0 Tr 0

Tr , 0 Tr , , , 0

Tr , 0 Tr , 0

R

F F dx dx P P dx dx dx

i d G G i G G G G G G dx dx dx

i G G i G G dx dx

i p

µ ν σ µ ν
µν σµν

σ µ ν
σ µ ν µ ν σ ν σ µ

µ ν
µ ν

σ µψ γ

′ ′Σ = Σ ∧ = Σ = Σ ∧ ∧

   = − Σ = − Σ ∂ + ∂ + ∂ ∧ ∧   

 = − Σ = − Σ ∧ 

= − ∂ /

∫∫ ∫∫ ∫∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫ ∫∫

� �

� �

( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1

] [ ] [ ]

1 1 11
[ ] [ ] [ ]2!

R R R G G G G B B B B

R R R R G G G G B B B B

m p m p m dx dx dx

i p m p m p m dx dx

σ µ ν
ν µ ν µ ν

µ ν
µ ν µ ν µ ν

γ ψ ψ γ γ ψ ψ γ γ ψ

ψ γ γ ψ ψ γ γ ψ ψ γ γ ψ

− − −

− − −

− + − + − ∧ ∧/ /

= − − + − + − ∧/ / /

∫∫∫

∫∫�

. (10.3) 

 
From this we extract several integrands with an overall multiplication by i: 
 

( )( ) ( )( )
( ) ( ) ( )
eff 0 0

1 1 1

[ ] [ ] [ ]

Tr 0 Tr , 0

R R R R G G G G B B B B

iF G G

p m p m p m

µν µ ν

µ ν µ ν µ νψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

 Σ ≡ Σ  

= − + − + −/ / /
. (10.4) 

 

This includes defining an “effective” ( )( )eff 0
Tr 0iF µνΣ .  This is because while (1.5) tells us that 

[ ] ,F G i G Gµν µ ν µ ν = ∂ −    so that [ ]Tr , Tr TrG G iF i Gµ ν µν µ ν Σ = Σ − Σ ∂  , as found in (3.5) the total 

net flux F∫∫�  is invariant under the transformation [ ]'F F F Gµν µν µν ν µ→ = − ∂ .  This means that 

the gauge field is not observable with respect to net flux across closed surfaces of the monopole 
precisely because of the abelian subset expression dG =∫∫ 0�  which is responsible for there 

being no net flux of magnetic fields at all across a closed surface in abelian gauge theory.  So 
while ( )( ) [ ] ( )( )

0 0
Tr 0 Tr , 0F i d G GΣ = − Σ∫∫ ∫∫∫�  in the integral formation of (10.3) by virtue of 

the symmetry principle (3.5), when the integrands are separately extracted as in (10.4), the actual 
relationship is [ ] ,F G i G Gµν µ ν µ ν = ∂ −   .  But the effective relationship in terms of what actually 

becomes net observable flux across closed surfaces, is eff ,F i G Gµν µ ν = −   .  That is the basis for 

the definition of effF µν  in (10.4).  

 

By inspection, ( )( )
0

Tr , 0G Gµ ν Σ    in (10.4) has the color wavefunction BBGGRR ++  

of a meson.  But look at the context in which this meson wavefunction has appeared in (10.3):  
Using selected terms from (10.3), especially ( )( )

0
Tr 0FΣ∫∫� , we see that: 
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( )( ) [ ] ( )( ) ( )( )
( ) ( ) ( )( )

1
2!0 0 0

1 1 11
[ ] [ ] [ ]2!

Tr 0 Tr , 0 Tr , 0

R R R R G G G G B B B B

F i G G i G G dx dx

i p m p m p m dx dx

µ ν
µ ν

µ ν
µ ν µ ν µ νψ γ γ ψ ψ γ γ ψ ψ γ γ ψ− − −

 Σ = − Σ = − Σ ∧ 

= − − + − + − ∧/ / /

∫∫ ∫∫ ∫∫

∫∫

� � �

�

.(10.5) 

 
So we see that the Yang-Mills magnetic fields which net-flow across closed surfaces of the 
composite, faux magnetic monopole density [ ],P idGG id G G′ = − = −  of non-abelian gauge 

theory in the form of ( )( )
0

Tr 0FΣ∫∫� , have the BBGGRR ++  color symmetry of mesons! 

 
 This is a very important finding.  Back at (3.3) we identified a puzzle:  We found that in 
non-abelian Yang-Mills gauge theory there is a non-zero net flow of magnetic fields across 
closed surfaces, 0F ≠∫∫� , yet at the same time the magnetic charge density completely vanished 

0P DF DDG= = =  just like in abelian gauge theory.  To reconcile this, we determined that the 
magnetic charge density in non-abelian gauge theory is not the elementary 0P DF DDG= = = , 
but rather is a composite faux magnetic charge density [ ],P id G G idGG′ = − = −  constructed 

from gauge fields, and particularly, that the net flux of magnetic field is given by 

[ ], 0F i G G= − ≠∫∫ ∫∫� �  in (3.3).   

 
Ever since then, we have known that non-abelian gauge theory gives rise to a non-zero 

0F ≠∫∫� , but beyond a few vague hints pointing in the possible direction of baryons and 

confinement, it has not been known what the physics of this 0F ≠∫∫�  might be.  Now, we see in 

(10.5) that ( ) [ ]( )Tr 0 Tr , 0 ~F i G G RR GG BBΣ = − Σ + +∫∫ ∫∫� � .  In other words, the composite 

faux magnetic fields which net flow across closed surfaces in non-abelian gauge theory are 

simply colorless mesons with the symmetric RR GG BB+ +  wavefunction.  Colorless 

RR GG BB+ +  mesons – which, once flavored, include such things as the pions that mediate 

nuclear interactions – are simply the 0F ≠∫∫�  faux magnetic monopole fields of Yang-Mills 

gauge theory.  That means that these effTr Tr ,iF G Gµν µ ν Σ = Σ    objects in (10.4) – which are the 

only objects which flow in and out of the monopoles – must be the mediators of interactions 
between the monopoles.  So if those monopoles are baryons as suggested by their 

[ ] [ ] [ ], , ,R G B G B R B R G+ +  wavefunctions, and if these baryons can be turned into protons and 

neutrons as well shall show how to do momentarily, then these effTr Tr ,iF G Gµν µ ν Σ = Σ    fields 

are also the mediators of the nuclear interaction.  And this also means that we should look to 

effTr Tr ,iF G Gµν µ ν Σ = Σ   when studying anything that might pass in and out of a proton or 

neutron through a closed ∫∫� surface including energies released during nuclear fusion and 

fission which of course are intimately related to nuclear binding energies. 
 

Related to this, to ensure Exclusion for the fermions in (9.8), we were forced to introduce 
a rank-3 gauge group which we assumed to be SU(3)C.  As pointed out after (9.16), after shifting 
the degrees of freedom using a Goldstone-like mechanism, this yielded eight associated gauge 
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fields, which are bi-colored and massless, just like the strong interaction gluons.   As had been 
earlier shown at (3.5), the abelian properties of the differential geometry via 0dd =  which is 
responsible in electrodynamics for the absence of magnetic monopoles entirely, prevents 
individual gauge fields – now these eight bi-colored massless gauge fields – from net flowing 
across any closed surface of the faux magnetic monopole P′  because of 

dG R G dx dx dxτ σ µ ν
νσµ τ= =∫∫ ∫∫∫ 0� .  So in this way, these eight bi-colored massless gauge fields 

appeared to be confined.  What we now see more explicitly and deeply in (10.5) is that the only 
thing which does net flow across these closed surfaces, are mesons which possess a color 

wavefunction BBGGRR ++ .  And finally we saw at the start of this section that the faux 
magnetic monopoles themselves possess the totally-antisymmetric color wavefunction of a 
baryon, namely, [ ] [ ] [ ], , ,R G B G B R B R G+ + .  While one may think of this as color 

“confinement,” what it really says is that is that the non-abelian faux magnetic monopoles P′  
and the mesons [ ],G G  which net flow across closed surfaces of these monopoles, respectively, 

are antisymmetrically and symmetrically color neutral, and that nothing is permitted to net-flow 

across a closed monopole surface unless it has a BBGGRR ++  neutral color configuration.  So 
individual gauge fields, because they are bi-colored and not color neutral, are confined. 
 

With all of this, we see multiple symmetries which are highly reminiscent of hadron 
physics:  We are forced to introduce three fermion eigenstates which can be arbitrarily named as 
three “colors” just like the quark fields which transform non-trivially under SU(3) in the 
chromodynamic theory of strong interactions.  What is arbitrary are the names; what is not 
arbitrary is that we require three such names.  This simultaneously produces eight bi-colored 
gauge fields, also transforming non-trivially under SU(3), just as is the case for the strong 
interaction gluons, and so derives the chromodynamic requirement for a theory with three colors 
of fermion and eight bi-colors of gluon, and shows why baryons contain three quarks.  These 
gluons after using the Goldstone-like mechanism in (9.16) must become massless just like the 
strong interaction gluons.  The faux magnetic monopoles (9.21) have the antisymmetric, color-
neutral symmetry of a baryon, and so are SU(3)-invariant.  No gauge fields are allowed to net 
flow across any closed surface of this monopole, which means that the gauge fields are 
“confined” within the closed monopole surface, just like individual gluons.  Yet there is a net 
flux of a non-abelian magnetic field across the closed monopole surfaces, as we found all the 
way back in section 3.  Now, we see that these net-flowing magnetic fields have the symmetric, 
color-neutral symmetry of a meson, which means that they too are SU(3)-invariant, and that 
interactions between the faux monopoles will take place via colorless meson exchange, exactly 
as occurs in strong hadronic interactions between baryons.   

 
Or, as Jaffe and Witten make clear at page 3 of [6], “quark confinement” is evidenced 

when: 
 

“even though the theory is described in terms of elementary fields, such as the 
quark fields, that transform non-trivially under SU(3), the physical particle 
states—such as the proton, neutron, and pion—are SU(3)-invariant.” 
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This is exactly what transpires if one regards the composite faux magnetic monopole of (9.21) as 
a zero-perturbation, ground state baryon density!  Given all of these symmetries, from here we 
shall regard the monopole ( )( )

0
Tr 0P′Σ  as a ground state baryon.  And this means that (9.3), and 

specifically ( )( )Tr 0P
∞

′Σ , which contains ( )1 1
0 1 1 1J k J Jτ τ

τ τπ π π π π− −
∞ ∞− ∞− ∞−= + +  which can be 

expanded using (8.18) to reveal an exceptionally-non-linear system with perturbations up to 
infinite order in current density J and gauge field momentum k, is the physical baryon with all of 
its non-linear quark and gluon field behaviors. 
 
 Proceeding forward, we now expand the differential forms relationship for the faux 
magnetic charge density [ ] ( ),P id G G idGG′ = − = −  uncovered after (3.3) into tensor form, 

expand i iG Gµ µλ= , and then, having extracted the group generators, finally apply the SU(3) 

group relation  ,i j ijk kifλ λ λ  =  .  This yields: 

 

[ ]( )
( ) ( ) ( )( )

( ) ( ) ( )( )

, , ,

, , ,

, ,

i j i j i j i j

ijk k i j i j i j

P i G G G G G G

i G G G G G G

f G G G G G G

σµν σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

σ µ ν µ ν σ ν σ µ

λ λ

λ

′    = − ∂ + ∂ + ∂   

 = − ∂ + ∂ + ∂ 

= ∂ + ∂ + ∂

. (10.6) 

 
Let us now assume as we have since after (9.9) that our gauge group is the simple subgroup 
SU(3) with the eight traceless generators kλ , 1...8k =  often referred to as the Gell-Mann 
matrices.  If we now take the trace of the above, given that the eight kλ  of the subgroup SU(3) 
are all traceless, Tr 0kλ = , (10.6) tells us that Tr 0Pσµν′ = . 

 
 But (9.21) has a non-zero trace, and so it is worthwhile understanding how it is that even 
when we assume an SU(3) subgroup with Tr 0kλ = , we can still end up with a non-zero trace 
equation (9.21).  The key is to closely examine (9.7), which is why we chose to display the 
intermediate terms even though we could have gone directly from (9.6) to the bottom line (9.7) 

using J µ µγ= Ψ Ψ  without showing generators or internal symmetry indexes.  The key is that 

(9.6) contains commutators ,J Jµ ν   , and so contains a very specific type of second-order 

expression for the currents Jν .  Although the generators are traceless, when any generator is 

squared and then traced, the result in the customary normalization is the non-zero ( )2
1
2Tr iλ = .  

In the intermediate terms (9.7), we see multiple sums i iλ λ  of a generator with itself.  When all 
of the anti-symmetries in these intermediate terms are accounted for, the result is the bottom line 
of (9.7) which, by the time it is worked into (9.21), reflects in a deeper way of the general result 

that ( )2
1
2Tr iλ =  is not zero. 

 
Nonetheless, (10.6) appears to contradict this non-zero trace result obtained in (9.21) 

wherein ( )Tr 0 0P σµν′Σ ≠ .  This is another puzzle.  But think about this more closely:  In (9.9) 
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we were compelled to introduce a rank-3 gauge group to enforce exclusion for each of the 
fermion wavefunctions in (9.8).  But all we really knew is that we needed three mutually-
exclusive eigenstates and therefore required a rank-3 gauge group.  Although we could have just 
as readily chosen SU(3)×U(1), we assumed that the gauge group could be SU(3) unless and until 
contradicted.  But now this assumption is contradicted.  Specifically, based on the development 
up to (9.8), the choice of a gauge group appeared to be non-unique.  Any rank-3 group would do.  
But by the time we reached (9.21), it became clear that we had a Tr 0Pσµν′ ≠ , i.e., that Pσµν′  must 

have a non-vanishing trace.  If one tries to write (9.21) in the same way as (10.6) to extract out 
an overall ijk kf λ , it cannot be done, other than by backtracking to (9.7).  The development from 
(9.7) (where this still could be done) to (9.21) removed the ability to do so, and in particular, that 
started to happen once we used (9.12) in (9.13) and summed spins to remove two wavefunctions 
using the fermion spin sum. 

 
Now, (10.6) informs us that if the gauge group is SU(3) then the trace will vanish.  So 

now, what appeared at (9.9) to be a non-unique choice of SU(3) or SU(3)×U(1) is forced by 
(9.21) in view of (10.6) to be a unique choice of SU(3)×U(1), with 0λ  used to denote the new 
U(1) generator, which now also adds one more degree of freedom to the (9.21) system.  Of 
course, we will now need to determine what this additional U(1) generator represents, and as we 
shall see, it represents the baryon number 1/ 3B =  for each of the three colored fermions 
appearing in (9.21) and may be used to more formally turn the faux magnetic monopole density 
(10.6) into a baryon density.  As we shall also see, while the gauge group SU(3) by itself is 
simply the usual color group SU(3)C of strong interaction chromodynamic theory, once this 
group gets crossed with U(1) it becomes a “modified” color group which mixes color and flavor 
because the introduction of baryon number also facilitates the introduction of the flavor-
distinguishing electric charge generator Q.  But before we discuss this, there is a more general 
point that must be made, and this has to do with topological stability. 
 
 Cheng and Li point out at 472-473 of [17] that “topological considerations lead to the 
general result that stable monopole solutions occur for any gauge theories in which a simple 
gauge group G is broken down to a smaller group H = h × U(1) containing an explicit U(1) 
factor.”  Further, “the stable grand unified monopole . . . is expected to have both the ‘ordinary’ 
and the colour magnetic charges.”  So, while SU(3) alone is incapable of supporting a 
topologically-stable colored magnetic monopole, the group SU(3)×U(1) – when understood to be 
the residual group following symmetry breaking of a larger simple grand unified gauge group 

SU(3)×U(1)G ⊃  – will support topologically stable configurations.  This is an essential 
requirement if the faux monopole (10.6) can ever be regarded as a physically-stable entity like a 
baryon, and especially a distinctively-stable proton, and a neutron which is comparatively stable 
when free, and very stable when part of many lighter atomic nuclei. 
 
 Weinberg makes a similar point to Cheng and Li in his definitive treatise [18] at 442: 
  

“The Georgi-Glashow model was ruled out as a theory of weak and 
electromagnetic interactions by the discovery of neutral currents, but magnetic 
monopoles are expected to occur in other theories, where a simply connected 
gauge group G is spontaneously broken not to U(1), but to some subgroup 
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H’×U(1), where H’  is simply connected. . . .  There are no monopoles produced in 
the spontaneous breaking of the gauge group SU(2)×U(1) of the standard 
electroweak theory, which is not simply connected. . . .  But we do find 
monopoles when the simply connected gauge group G of theories of unified 
strong and electroweak interactions, such as SU(4)×SU(4) or SU(5) or Spin(10), is 
spontaneously broken to the gauge group SU(3)×SU(2)×U(1) of the standard 
model. . . .” 

 
Consequently, not only does (9.8) force us to uniquely select a rank-3 gauge group to 

enforce Exclusion on the faux magnetic monopole density of (9.8), but the non-vanishing trace 
of (9.21) forces us into the specific, unique selection of SU(3)×U(1) over SU(3).  This then 
ensures that these faux monopoles will be topologically stable so long as we arrive at this 
product group following the spontaneous symmetry breaking of a larger simple gauge group 

( 4) SU(3)×U(1)G SU N= ≥ ⊃ , as yet undetermined.  Topologically speaking, referring again to 
Weinberg’s [18] at 442, the homotopy groups associated with this symmetry breaking would be: 
 

( ) ( ) ( ) ( ) ( )2 1 1 1 1/ (3) (1) (3) (1) (3) (1) (1)G SU U SU U SU U U Zπ π π π π× = × = × = = . (10.7) 

 
So there are really two questions raised by the non-vanishing trace in (9.21).  First, as already 
stated, what is the physical meaning of the new U(1) generator?  Second, what is the larger group 

( 4) SU(3)×U(1)G SU N= ≥ ⊃  from which we arrive at SU(3)×U(1) following symmetry 
breaking so as to achieve topological stability?  There is also a third question, not yet apparent, 
but linked to the first question, which is this: what is the meaning of the (3)SU  group which is 
multiplied by the new U(1) gauge group as part of (3) (1)SU U× , and how does this relate to the 
usual color group SU(3)C? 
 
 For the new U(1) group which provides topological stability, the generator 0λ  must be a 

constant multiple of the 3x3 identity (unit) matrix 3 3I × .  If we normalize this to ( )20 1
2Tr λ =  just 

like all the other generators, then we must have 0 1
3 36

Iλ ×= .  Taken together with the two 

remaining diagonalized generators of SU(3) normalized to ( )2
1
2Tr iλ = , we have: 

 

0 8 3

1 0 0 2 0 0 0 0 0
1 1 1

0 1 0 ; 0 1 0 ; 0 1 0
26 2 3

0 0 1 0 0 1 0 0 1

λ λ λ
     
     = = − =     
     − −     

. (10.8) 

 
But that is only the mathematics: now we need a physical interpretation for 0λ .  Because 

each of the three fermion eigenstates in (9.9) will have identical 0λ  eigenvalues, because the 
monopole in (9.21) exhibits many of symmetries of a baryon and the fermions exhibit many of 
the symmetries of quarks, it would appear fruitful to assign the U(1) generator to baryon number 
B according to: 
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1
3

01 1 1
3 33 36

1
3

0 0

2 0 0

0 0

B Iλ ×

 
 ≡ = =  
 
 

. (10.9) 

 
This is our first explicit introduction of flavor into the color eigenstates that were introduced at 
(9.9).  Following (10.9), the monopole (9.21) will now have 1B =  and each of the R, G, B 
fermions will now have 1

3B = , which brings these even a step closer to being identifiable with 

baryons and quarks.  
 
Next, if these monopoles (9.21) are to be baryons and the fermions are to be quarks, let us 

see if there is some way to identify the electric charge Q of these baryons, and specifically to 
produce a proton with 1Q = +   which has a duu configuration of quark flavors, and a neutron 

with 0Q =  which has a udd configuration of quark flavors, wherein the up (u) quark has 2
3Q = +  

and the down (d) quark has 1
3Q = − . 

 
For the proton, we may form the combination: 

 
1 2 1
3 3 3

8 1 1 2
3 3 3

1 1 2
3 3 3

0 0 0 0 0 0
2

0 0 0 0 0 0
3

0 0 0 0 0 0
PQ B λ

−     
     ≡ − = − − =     
     −     

, (10.10) 

 
Following (10.9), each of the R, G, B colored fermions in (9.9) has a flavored baryon number 

1
3B = .  Now, with (10.10), the red color of fermion is assigned 1

3Q = −  and so is a down flavor 

of fermion in addition to its red color assignment, the green and blue colors of quark are assigned 
2
3Q = +  and so are up flavors of fermion in addition to their green and blue color assignments.  

So the SU(3)×U(1) quark triplet is now ( ), ,R G Bd u µ .  Further, the entire faux monopole 

( )( )
0

Tr 0P σµν′Σ  of (9.21) which comprises all of these fermions has a baryon number 1B =  and 

an electric charge 1Q = +  and so is a proton-flavored baryon with the color-neutral wavefunction 

[ ] [ ] [ ], , ,R G B G B R B R G+ + .  To use a parlance familiar from electroweak theory, we see in 

(10.10) that the electric charge generator for the proton and for the quarks within the proton sit 
across baryon number B and the 8λ  color generator, that is, they sit across SU(3)×U(1) in a non-
compact manner.  In similar fashion, in electroweak theory a U(1)Y generator is crossed with the 
three SU(2)W isospin generators iI , 1,2,3i =  to form SU(2)W×U(1)Y with the (left-chiral) quark 

doublets having the U(1)Y 2x2 weak hypercharge matrix generator 223
1

xIY = , the (left-chiral) 

lepton doublets having the 2x2 weak hypercharge matrix generator 221 xIY −= , and a non-

compact embedding of the electromagnetic group with charge generator 32/ IYQ +=  sitting 
across SU(2)W×U(1)Y. 
 
 For the neutron it is even simpler.  We simply make the compact assignment: 
 



Jay R. Yablon 

72 
 

2
3

8 1
3

1
3

0 0
2

0 0
3

0 0
NQ λ

 
 ≡ = − 
 − 

. (10.11) 

 
Here, all of the fermions still have baryon number 1

3B = .  But now the red fermion is assigned 
2
3Q = +  thus is an up flavored-fermion, the green and blue fermions are assigned 1

3Q = −  and so 

are down flavored.  So the quark triplet is now ( ), ,R G Bu d d .  The overall faux monopole of 

(9.21) now has baryon number 1B =  and electric charge 0Q =  and so is a neutron-flavored 
baryon.  So the electric charge generator for the neutron and its quarks is compactly-embedded in 

8λ  which now serves the dual role of one of two SU(3)C generators and the electric charge 
generator.   
 

Of course, the fact that we must employ a different charge assignment (10.10) for the 
proton than (10.11) for the neutron is symptomatic that there is a larger yet-to-be-found gauge 
group which encompasses the SU(3)×U(1) group developed in (10.8) through (10.11).  That is 

82
3PQ B λ= −  and 82

3NQ λ=  is not invariant whereby one relationship, not two, defines the 

relationship between the electric charge and the group generators.  This disconnection between 
the proton and neutron electric charges is analogous to how in electroweak theory, the 1

3qY =  for 

the quark (q) doublets is disconnected from the 1lY = −  lepton (l) doubles which there too, 

signifies the need for a larger unifying group.  So the question is now raised: what is the nature 
of the gauge group that provides a unified basis for the proton and neutron electric charges Q, 
and can this same group also provide the basis for unifying the separate Y charges as between 
quarks and leptons while also dealing with chiral symmetry (breaking) issues?   
 

While we shall not explore this here, the author has studied these exact questions in [19] 
and shown how a simple SU(8) group with the fundamental fermion multiplet 

( ), , , , , , ,R G B R G Bu d d e d u uν  provides a complete unification which breaks down at low energies to 

the phenomenological SU(3)C×SU(2)W×U(1)Y with protons and neutrons, and at the same time – 
because two of the diagonalized SU(8) generators themselves become “fractured” apart from the 
other five diagonalized generators during symmetry breaking – leads to an explanation of why 
the known fermions appear to exist in exactly three generations, which answers Isador Rabi’s 
famous quip about the muon “who ordered this?”  That is because these two “fractured” 
generators provide the precise freedom needed to accommodate three horizontal generational 
eigenstates. 
 
 But what we now know from the development within this paper and specifically (10.10) 
and (10.11) is that the SU(3)C group which we introduced at (9.9) to enforce Exclusion actually 
becomes modified into a hybrid color and flavor group in view of the requirement to use 
SU(3)×U(1) because of the non-vanishing trace in (9.21).  We shall thus refer to this as a “flavor-
enhanced color group” which we denote generally by SU(3)C’.  When we use this group to 
represent a proton (P) quark triplet ( ), ,R G Bd u µ  with the charge assignments (10.10) we shall 

further denote this by SU(3)PC’, while when we use this to represent a neutron (N) quark triplet 
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( ), ,R G Bu d d  with the charge assignments (10.11) we shall denote this by SU(3)NC’.  Finally, in 

all cases, the U(1) factor is associated with baryon number B, so we shall denote this as U(1)B.  
So to summarize, once the U(1) factor is in place, the group developed thus far is SU(3)C’×U(1)B.  
For protons it is specialized via (10.10) to SU(3)PC’×U(1)B.  For neutrons it is specialized via 
(10.11) to SU(3)NC’×U(1)B.   
 

Next, keeping in mind (10.7), it also becomes important to find a larger simple gauge 
group C'( 4) SU(3) ×U(1)BG SU N= ≥ ⊃  which breaks down spontaneously to SU(3)C’×U(1)B.  

As the author details in section 7 of [15], there are two disconnected (4)G SU=  groups, but we 

are able to use 158
3B L λ− ≡ −  as the generator of baryon minus lepton number for both.  This 

follows Volovok from [20] Section 12.2.2 who also uses the 15λ  of SU(4) for a B L−  generator, 
but in the context of a preon model.  The first group, denoted SU(4)P, places the proton’s quarks 
and the electron into a ( ), , ,R G Be d u u  quadruplet in the fundamental representation.  The second 

group, denoted SU(4)N, places the  neutron’s quarks and the neutrino into a ( ), , ,R G Bu d dν  

quadruplet in the fundamental representation.  Then, each of these disconnected proton and 
neutron groups gets broken at GUT energies via C'(4) SU(3) ×U(1)B L BG SU −= →  to produce the 

stable magnetic monopole baryons via: 
 

( ) ( ) ( ) ( ) ( )2 ' 1 ' 1 ' 1 1(4) / (3) (1) (3) (1) (3) (1) (1)B L C B C B C B BSU SU U SU U SU U U Zπ π π π π− × = × = × = = .(10.7) 

 
Then, as the author details throughout [19], the disconnected SU(4)N and SU(4)P groups 

become unified together in the ( ), , , , , , ,R G B R G Bu d d e d u uν  of SU(8) mentioned moments ago, 

such that two of the seven generators (48λ  and 35λ ) become fractured from the remaining 
generators between the Planck and the GUT energy scales to provide the “horizontal” degrees of 
freedom needed to accommodate replication of the fermions into three generations, and there is 
also just enough freedom provided to also support chiral symmetry breaking.  Additionally, all of 
the observed features of left-chiral Cabbibbo / CKM mixing naturally emerge.  The overall 
sequence of symmetry breaking is: 
   

(8) (6) (2) (3) (2) (1) (3) (1)
LB L C W Y B L C emSU SU SU SU SU U SU U= −→ × → × × → × . (10.12) 

 
Simultaneously with and as part of the (8) (6) (2)B LSU SU SU→ ×  symmetry breaking, the two 

isospin-differing C'(4) SU(3) ×U(1)B L BSU − →  symmetry breaks also take place to form the 

topologically-stable proton and neutron.  There is also an earlier breaking of 
(8) (7) (1)SU SU U→ ×  at or near Planck energies which separates the neutrino from all the other 

fermions right at the very start and causes the neutrino to behave very differently from all the 
other fermions as it clearly does at observable energies.  The symmetry breaking sequences 
found in [19] are then utilized in [21] to explain the observed proton and neutron masses 
themselves in relation to the current up and down quark masses and the CKM mixing matrices 
based on [16], within all experimental errors. 
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 Next, let us return to (9.4) where we set the perturbation to 0V =  in (9.2).  Because 

everything that has been developed since (9.2), most notably the ( )( )
0

Tr 0P σµν′Σ  monopole / 

baryon of (9.21) was developed for 0V = , the question may be asked whether all of these results 
carry through when we no longer set 0V =  but allow all of the perturbations to occur.  Section 8 
answers this question.  What we learn in section 8 is that including perturbations really means 

recursing ( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + +  as many times as one chooses, then cutting 

off the recursion by setting 0V G k G Gτ τ
τ τ= − − =  at some chosen recursive order.  Of course, 

recursing to some order n and then setting V=0 as in (8.17) and (8.18) to arrive at a ( )( )0
n
 

expression is a calculation technique.  But it is to be expected that nature does not cut off the 
recursion at all, but rather, recurses to infinity before setting 0V = , so that G Jµ µπ ∞=  as in 

(8.20).  So if the monopole ( )( )
0

Tr 0P σµν′Σ  of (9.21) is the ground state of the baryon, it will be 

the infinite recursion of (8.20), not some arbitrarily truncated recursion, which will drive what 
nature herself does in physical reality.  This means that (9.3) in the form ( )( )Tr 0P σµν

∞
′Σ , is 

really the equation for the physical baryon, with a teeming non-linear mix of quarks and gauge 
fields in a “sea” perturbating through all finite orders up to infinite order, which is exactly what 
one observes in the complex composite system that is a proton or a neutron or any other baryon. 
 
 Finally, although (9.21), if it represents a baryon, only does so in the zero-perturbation, 
no-recursion limit, it is important to ask whether there is anything about this limit that is 
observed in nature.  Put differently, while cutting off the perturbations at the zeroth recursive 
order may see arbitrary, it is the only order beside infinite order that would seem to have some 
distinctive claim to not being arbitrary.  And so we raise the question whether there are any 
phenomena observed in nuclear or particle physics which manifest the linear, non-perturbative 
behavior of the ( )( )

0
Tr 0P σµν′Σ  baryon (9.21)?  To use an analogy, although gravitation is a 

highly non-linear theory, we do observe certain aspects of the linear behavior of gravitation 
theory in the real world, namely, whenever we observe what was first discovered by Keppler and 
Newton.  So while we would most certainly need to describe the complete proton and neutron 
and other baryons without removing the perturbations from (9.2) a.k.a. (9.3), we should also look 
to see if certain aspects of nuclear behavior that might be very-definitively described by the 
“linear approximation” (9.21). 
 
 In this regard, ( )( )eff 0

0F µν  in (10.4) is very important for pursuing experimental 

validation, because it does describe what “effectively” net flows in and out of the closed 
monopole surfaces in the ground state linear theory.  Specifically, it is well-known that one can 
calculate electrodynamic energies from the pure gauge field 1

gauge 4 F Fστ
στ= −L  by using this in 

3
gaugeE d x= −∫∫∫L .  So one should do a similar exercise using what in non-abelian theory 

becomes the Lagrangian density ( )1
gauge 2 Tr F Fστ

στ= −L , using ( )( )eff 0
0F µν .  If we compare 

(10.4) which is a trace equation to (9.21) which is another trace equation from which it was 
derived, then by backtracking to (9.20), we see that (we have now removed the Σ  spin sum 
designation, which now is taken to be implied): 
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( )( )
( )

( )
( )

1

[ ]

1

eff [ ]0
1

[ ]

0 0

0 0 0

0 0

R R R R

G G G G

B B B B

p m

F i p m

p m

µ ν

µν µ ν

µ ν

ψ γ γ ψ

ψ γ γ ψ

ψ γ γ ψ

−

−

−

 −/ 
 = − −/
 
 −/ 

.(10.13) 

 
This is now a 3x3 matrix expression with all diagonal elements.  From this, there are two trace 

expressions that can be formed.  One is ( )Tr F Fστ
στ which is what is usually found in the Yang-

Mills Lagrangian density.  The other is Tr TrF Fστ
στ .   

 
It turns out as the author has detailed in sections 11 and 12 of [15], and greatly expanded 

upon throughout [16], that the expression (10.13) when used in 3
gaugeE d x= −∫∫∫L  with a 

combination of ( )Tr F Fστ
στ  and Tr TrF Fστ

στ  inner and outer products, can be used to retrodict 

nuclear binding energies, including the heretofore unexplained binding energies of the lightest 
nuclides 2H, 3H, 3He and 4He, as well as the 56Fe binding energy, with parts per 105 or even 106 
AMU precision, and the neutron minus proton mass difference to under one part per million 
AMU.  Note that in general, the trace of a product of two square matrices is not the product of 
traces.  The only circumstance in which “trace of a product” equals “product of traces” is when 
one forms a tensor outer product using ( ) ( ) ( )Tr Tr TrA B A B⊗ = , and as shown in [16] the 

observed binding energies contain both inner and outer products.  This line of development in 
sections 11 and 12 of [15] and throughout [16] also explains why the per-nucleon binding energy 
seems to be limited for any nucleus to a maximum of about 8.75 MeV for 56Fe, and yields a 
dynamical, energy-based understanding of confinement.   
 

While all of the formal understandings of the color symmetries of baryons and mesons 
and quarks are important, direct experimental validation is even more important.  It is the 
experimental concurrences that can be confirmed starting with (10.13) to perform various energy 

calculations 3
gaugeE d x= −∫∫∫L  with ( )Tr F Fστ

στ  and Tr TrF Fστ
στ , that leads to the direct 

phenomenological confirmation that the faux magnetic monopoles of non-abelian gauge theory 
really are baryons including protons and neutrons.  
 
11. Quantum Yang-Mills Theory: Exact Analytical Path Integration  
 
 Finally, let us make use of the recursion developed in section 8, and particularly the 
substitution ( )1 1

0 1 1 1G J k J J Jτ τ
µ τ τ µπ π π π− −

∞− ∞− ∞−→ + +  from (8.20) in lieu of the usual 

/G Jµ
µ δ δ→ , to perform an exact analytical deduction of the quantum path integral associated 

with the classical field equation ( )J g D D D D Gν νσ τ σ ν
τ σ− = −  of (5.15) in order to “prove that 

for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory exists on 4� ,” 
see page 6 of Jaffe and Witten’s [6]. 
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 In abelian gauge theory, the classical electric charge field equation is of course 
* *J d dG=  which is an abelian subset equation embedded in (1.12).  When fully expanded for a 

massive boson this becomes the abelian ( )( )2J g m Gν νσ τ σ ν
τ σ− = ∂ ∂ + − ∂ ∂  of (5.15).  The 

related action after integration-by-parts is thus ( ) ( )( )21
2S G G g m G J Gµν σ µ ν µ

µ σ ν µ= ∂ ∂ + − ∂ ∂ + , 

and this is what is used in the path integral ( ) ( )4exp expZ DG i d xS G iW J= ≡∫ ∫  to deduce the 

quantum amplitude ( ) ( )( ) ( ) 144 21
2 / 2W J d k J k k m i Jσ σ

σ σπ ε
−

= − +∫  with iε+  using the 

contextual reduction that also occurs from the continuity relation 0k Jν
ν =  as reviewed at length 

in section 6 and 7.  If we use the terminal condition ( ) 12
0 k k m iτ

τπ ε
−

= − +  of the (8.20) 

recursion, then this simplifies to ( ) ( )( )441
02 / 2W J d k J Jσσπ π= ∫ . 

 
 In non-abelian gauge theory the classical field equation is the entirety of (1.12), that is 

* *J D DG=  which as shown expands to ( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + −  derived in (5.15).  

Without going through a detailed exposition of how to derive the associated Lagrangian and 
conduct the integration-by-parts to obtain the action, it will be appreciated that as the result of 
this exercise the non-abelian action will found to be: 
 

( ) ( )( )
( )( ) ( )( )

2

2

2

2 2

S G G g D D m D D G J G

G g iG G G m iG G G G G G J G

µν τ µ ν τ
µ τ ν τ

µν τ τ τ µ ν µ ν µ ν µ σ τ
µ τ τ τ ν τ

= + − +

= ∂ ∂ − ∂ − + − ∂ ∂ − ∂ − + +
, (11.1) 

  
where we have also included (5.16) and (5.17).  
 

 When we now take the next step of using this action in ( )4expZ DG i d xS G= ∫ ∫ , there 

are now two new issues that come into play that are not present in the abelian gauge theory.  The 

first is that the non-abelian gauge transformation ,G G G i Gν ν ν ν νθ θ′  → = + ∂ −   gives rise to 

ghost fields due to the introduction of the additional term ,i Gν θ −    into the integration measure 

DG  in order to ensure that Z Z Z′→ =  remains invariant under this gauge transformation, and 
so we need to employ †DGDcDc  not just DG  as the integration measure.  But the second issue 
is that even before we get to worrying about ghost fields, it is simply not known, as a 
mathematical matter, how to use an expression like (11.1) in a path integral to calculate: 
 

( )( )
( )( )

( )

4 2

2

4

exp 2

exp 2
2

Z DG i d x G g D D m D D G J G

g iG G G m
DG i d x G G J G

iG G G G G

µν τ µ ν τ
µ τ ν τ

µν τ τ τ
τ τ τ τ

µ ν τµ ν µ ν µ ν µ σ

 = + − +
 

  ∂ ∂ − ∂ − +
  = +
  − ∂ ∂ − ∂ − +   

∫ ∫

∫ ∫
. (11.2) 
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This is because, as will be apparent from studying the lower expression, this is a fourth-order 
polynomial in G, but known mathematical techniques for calculating integrals of this form use 

the second order ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫ .  Why?  Put plainly and 

simply, it is known how to calculate ( )21
2expdx Ax Jx− −∫ , but not how to calculate the higher 

order ( )4 3 21
2expdx Bx Cx Ax Jx+ − −∫ .  Normally, of course, the approach is to turn every gauge 

field inside the configuration space operator ( )2g D D m D Dµν τ µ ν
τ + −  into a current term 

/G Jµ
µ δ δ→  and then use (8.25) to apply ( )( )exp /V Jδ δ−  to ( )11

2exp J K J−⋅ ⋅  the latter of 

which is obtained in the usual way from ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫ . 

 
 But now the recursion developed in section 8 gives us a new mathematical approach.  
Now, we are able to use (8.20) to turn every occurrence of G inside ( )2g D D m D Dµν τ µ ν

τ + −  

into a function solely of ( ),G J k  via ( )1 1
0 1 1 1G J J k J J Jτ τ

µ µ τ τ µπ π π π π− −
∞ ∞− ∞− ∞−= = + +  with the 

abelian terminal condition ( ) 12
0 k k m iτ

τπ ε
−

= − + .  None of these contain Gµ !  So, making this 

replacement in (11.2), we now have 
 

( )( )
( )( )

( )
( )( )

( )

4 2

2

4

2

4

exp 2

exp 2
2

exp
2

Z DG i d x G g D D m D D G J G

g iG G G m
DG i d x G G J G

iG G G G G

g i J J J m
DG i d x G

i J J J J J

µν τ µ ν τ
µ τ ν τ

µν τ τ τ
τ τ τ τ

µ ν τµ ν µ ν µ ν µ σ

µν τ τ τ
τ τ τ

µ µ ν µ ν µ ν µ σ

π π π

π π π π π

∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

 = + − +
 

  ∂ ∂ − ∂ − +
  = +
  − ∂ ∂ − ∂ − +   

 ∂ ∂ − ∂ − +
=

− ∂ ∂ − ∂ − +

∫ ∫

∫ ∫

∫

( )( )2

4

2

exp 2
2

i k

G J G

g k k J k J J m
DG i d x G G J G

k k J k J J J J

τ
ν τ

µν τ τ τ
τ τ τ τ

µ ν τ
µ ν µ ν µ ν µ σ

π π π

π π π π π

∂→ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

 
  +
  
  

  − + + −
  ⇒ +
  + + + −  

∫

∫ ∫

. (11.3) 

 
 Lo and behold, we have removed all the gauge fields from the configuration space 
operator except for ( )...G Gµν

µ ν  and J Gτ
τ .  This leaves us with the usual quadratic form 

( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫ .  So we can integrate this analytically and 

exactly, so long as we know the inverse for ( ) ( )2... g D D m D Dµν µν τ µ ν
τ= + −  or any of its other 

variants in (11.3).  But this, of course, was a central focus of what we studied in section 6 and 7.  

Particularly, for the field equation ( )( )2J g D D m D D Gν νσ τ σ ν
τ σ− = + − , as seen in (8.19), with 

the context afforded by the continuity relation 0D Jσ
σ = , the inverse solution is simply 

G Jµ µπ ∞= .  So we recognize immediately that the exact analytical solution to (11.3) is: 
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( )( )
( )( )

( ) ( )( )

4 2

2

4

44

exp 2

exp 2
2

exp / 2

Z DG i d x G g D D m D D G J G

g k k J k J J m
DG i d x G G J G

k k J k J J J J

iW J i d k J J

µν τ µ ν τ
µ τ ν τ

µν τ τ τ
τ τ τ τ

µ ν τ
µ ν µ ν µ ν µ σ

σ
σ

π π π

π π π π π

π π

∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

∞

 = + − +
 

  − + + −
  = +
  + + + −  

= =

∫ ∫

∫ ∫

∫

. (11.4) 

 
This, again, is an exact analytical solution.  Expressed directly in terms of the amplitude and 
using (8.18), this means that: 
 

( ) ( ) ( )
( )

4 4 4 1 1
0 1 1 1

12
0

2

                                                                                 

W J d kJ J d kJ J k J J J

k k m i

σ τ τ σ
σ σ τ τ

τ
τ

π π π π π π

π ε

− −
∞ ∞− ∞− ∞−

−

 = = + +


= − +

∫ ∫
. (11.5) 

 
 If it is desired to see explicitly how this gives us the non-linear propagator and current 
and momentum terms that we expect to find in a Yang-Mills path integral, it suffices, just for 
illustration, to examine the amplitude ( )

2
W J  for a second-order recursion, using the terminal 

condition ( ) 12
0 k k m iτ

τπ ε
−

= − + .  This is (cf. (8.5)): 

 

( ) ( ) ( )
( )

( ) ( )

4 4 4 1 1
2 0 1 1 12

1 1 1
0 0 0 0 04 1

1 1 1 1
0 0 0 0 0 0 0 0

2

2
2

4

2 W J d kJ J d kJ J k J J J

J k J J J k
d kJ J

J k J J J J k J J J

k k m i

J k J J
k k m i

k k m i k k m

d kJ

σ τ τ σ
σ σ τ τ

τ τ τ
τ τ τ σ

σ τ τ τ τ τ
τ τ τ τ τ

τ
τ

τ τ
τ τ τ

τ τ τ
τ τ

σ

π π π π π π

π π π π π

π π π π π π π π

ε

ε
ε

− −

− − −

−

− − − −

= = + +

 + + +
 =
 + + + + + 

− +

+ − + + +
− + −

=

∫ ∫

∫

( )

( )

( )

1
22

1

2 1
22 2

2 1
22 2

J k
i

JJ k J J
k k m i J

k k m i k k m i

J k J J
k k m i J

k k m i k k m i

τ
τ

στ τ
τ τ τ

τ ττ τ
τ τ

τ τ
τ ττ τ

τ τ τ
τ τ

ε

ε
ε ε

ε
ε ε

−

−
−

−

 
 
  
  
  +  

  
  + − + + +  − + − +  
 
  
  × − + + +
 − + − +  

∫
. (11.6) 

 
With this being only the second-order recursion, it will be appreciated how this will expand 
rapidly in a highly-nonlinear way to include all orders of J, k, m and iε+ , right through infinity.  
For doing practical calculations, including those with computers, one can use expressions with a 
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few more orders of recursion to obtain results fairly close to those that would be obtained upon 
an infinite recursion, assuming convergence.  So let us now look at that. 
 
 We can ascertain the general trend toward convergence or divergence simply using the 

1n =  recursive order, because as we have seen, the basic pattern for higher orders is already 
established at first order.  For ( )

1
W J  we have: 

 

( ) ( ) ( )

( )
( ) ( )

( )

4 4 4 1 1
1 0 0 0 01

4 2 1
22 2

32 2

4 1
22

2 W J d kJ J d kJ J k J J J

J k J J
d kJ k k m i J

k k m i k k m i

k k m i k k m i J k J J
d kJ J

k k m i

σ τ τ σ
σ σ τ τ

τ τ
τ στ τ

σ τ τ τ
τ τ

τ τ τ τ
τ τ τ τ σ

σ τ
τ

π π π π π π

ε
ε ε

ε ε

ε

− −

−

−

= = + +

 
 = − + + +
 − + − + 

 − + + − + +
 =
 − + 

∫ ∫

∫

∫

. (11.7) 

 
Given i i

AB ABJ J Jµ µ µλ= =  for SU(3)×U(1) has rank 3 at the same time that 

( ) ( )3 32 2
ABk k m i k k m iτ τ

τ τε δ ε− + = − +  sits on the third rank diagonal, a naive look at (11.7) 

tells us that the dominant term in the numerator will be ( )32k k m iτ
τ ε− +  for 

( )22J k k k m iτ τ
τ τ ε< − +  and ( )32J J k k m iτ τ

τ τ ε< − + .  But when considering the matrix 

equations, a more precise statement would say that ( )32k k m iτ
τ ε− +  represents eigenvalues of 

( )2k k m i J k J Jτ τ τ
τ τ τδ ε≡ − + + , and will dominate when these eigenvalues are larger rather than 

smaller.  In the case where J kτ
τ  and J Jτ

τ  are small and substantially neglectable in relation to 

( )22k k m iτ
τ ε− +  and ( )32k k m iτ

τ ε− + , the overall expression (11.7) will be: 

 

( ) ( ) ( )
( )

32
4 4 1 4

2 21 2

1
2

k k m i
W J d kJ J d kJ J

k k m ik k m i

τ
τ σ σ

σ σ ττ
ττ

ε δ
π

εε
−

 − + +
 = ≅
  − +− + 

∫ ∫ , (11.8) 

 
which is of the same form as the abelian propagator.  So the solution (11.6) would appear to be 
fully convergent (or, at least no more divergent than the abelian path integral) for J kτ

τ  and J Jτ
τ   

which are small in comparison to eigenvalues which are specific powers of 2k k m iτ
τ ε− + . 

 
 Finally, because (11.5) is an exact analytical calculation using a closed recursive kernel, 
this “prove(s) that for any compact simple gauge group G, a non-trivial quantum Yang–Mills 
theory exists on 4

� .” 
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12. Summary and Conclusion 
 
 This concludes the formal development of this paper, so let us summarize what we have 
learned:  In non-abelian gauge theory with gauge fields G, although the magnetic charge density 

0P DF DDG= = =  by a Jacobian identity (2.4) just as the abelian magnetic charge density 
0P dF ddG= = =  because of the differential forms geometry, there is still a non-vanishing 

magnetic field flux [ ], 0F i G G i dGG= − = − ≠∫∫ ∫∫ ∫∫∫� �  (3.3) across closed surfaces which 

contrasts to the zero net flux 0F =∫∫�  that one has in abelian gauge theory.  These apparently-

conflicting features of non-abelian theory – namely a non-zero magnetic flux over closed 
surfaces but no magnetic sources – are reconciled by realizing that the magnetic field flux is not 
sourced ( )F P∫∫�  by any elementary magnetic charge density which is 0P DF DDG= = = , but 

rather is sourced ( )F G∫∫�  by a “faux” magnetic source [ ],P id G G idGG′ = − = −  which arises 

totally from the gauge fields, ( )P G′ .  But real gauge fields do not arise spontaneously.  They 

must be sourced by an electric charge density J, and in non-abelian gauge theory, the differential 
equation which governs this is * * *J D F D DG= = .  Further, we also know that in Dirac theory, 
electric charge densities are in turn sourced by fermion wavefunctions ψ  via Dirac’s 

J µ µψγ ψ= .  Thus, we now need to set upon obtaining the inverse solution to 

* * *J D F D DG= =  for ( )G J  to enable us to find ( )( )F G J∫∫�  and ( )( )( )F G J ψ∫∫� . 

 
 So in section 5 we develop the electric source field equation * * *J D F D DG= = , and in 
sections 6 and 7 respectively, we carefully develop the inverse solutions ( )G J  for massive and 

massless gauge bosons respectively, paying very close attention to issues involving uniqueness 
and gauge-invariance and gauge fixing and “contextual gauge fixing” wherein a mathematical 
inverse which is non-unique becomes unique when placed into the physical context of a 
conserved current density.  And in section 8 we see how ( )G J  is not really a solution involving 

J alone, but is a highly-non-linear, recursive function ( ),G G J  which can be recursed as often as 

desired, and then turned from ( ),G G J  into ( )G J  by setting the perturbation 0V =  at any 

desired order.  We also noted how the physical inverse ought not to depend on an arbitrary cutoff 
of the recursion, but rather, ought rather to be based on the series (8.20) that results from 
recursing an infinite number of times before zeroing the perturbation.   
 
 So starting in section 9 we made use of the non-abelian solution for a massive gauge 

boson, namely ( ) 12G V k k m i Jτ
µ τ µε

−
= − + − +  of (6.27) to write out ( )( ),F G G J∫∫�  in (9.2).  

Then to keep the initial development simple and develop the “ground state” symmetries, we 
immediately set 0V =  in (9.4) to write ( )( )F G J∫∫�  in the zeroth recursive order ( )( )

0
0 , which 

is the same thing as having used the abelian massive solution ( ) 12G k k m i Jτ
µ τ µε

−
= − +  (6.17) 
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a.k.a. (6.28).  After then using J µ µγ= Ψ Ψ  to replace currents with fermions and thus arrive at 

( )( )( )F G J ψ∫∫�  in (9.7), we turned to the fermion Exclusion Principle of Fermi-Dirac-Pauli. 

 
 It is the Exclusion Principle that drives the introduction of a rank-3 gauge group to ensure 

that all of the fermions within the ( )( )( )F G J ψ∫∫�  system are in three distinct eigenstates, 

turning this now into ( )( )( ), ,R G BF G J ψ ψ ψ∫∫�  which reaches the goal established at the end of 

section 3.  The reason for there being three colored quarks in the ground state of a baryon is then 
seen to be very simple: because there are three additive terms in the covariant tensor expression 
(9.7) for a magnetic monopole.  This also brings with it, eight bi-colored gauge fields.  After 
applying a Goldstone-like mechanism (9.15) to reallocate degrees of freedom and force the 
gauge fields to be massless and give mass to the fermions while contextually-preserving the 
uniqueness of the underlying solution for ( )( )G J , we arrive at the ground state monopole 

density of (9.21).  This monopole has the antisymmetric [ ] [ ] [ ], , ,R G B G B R B R G+ +  color-

neutral wavefunction of a baryon although it does also contain fermions in three colored 
eigenstates, and as we had already found in (3.5), it permits no net flux of individual gauge fields 
across its closed surfaces.  But then we find in (10.4) and (10.5) that this monopole does permit a 

net flux only of color-neutral BBGGRR ++  mesons, which further cements the confinement of 

gauge fields first suspected in section 3 because nothing other than colorless BBGGRR ++  
fields are permitted to net flow in across closed surfaces.  And we further find from (10.6) that 
the rank-3 gauge group must be SU(3)×U(1), not just SU(3), and that this provides the magnetic 
monopoles with topological stability so long as this SU(3)×U(1) group emerges following the 
spontaneous symmetry breaking of a larger simple group SU(3)×U(1)G ⊃ .  We learn at (10.9) 
that the U(1) generator provides a natural platform for equipping each fermion with a baryon 
number 1

3B =  and the overall monopole with 1B = , which now introduces flavor to these color-

neutral monopoles and mesons and their colored fermions and gauge bosons.  And we see in 
(10.10) and (10.11) that one can thereafter arrive at suitable generator assignments which give 
rise to the correct electric charges 1Q = +  for the proton and by a disconnected assignment 

(which then requires a larger unifying group) 0Q =  for the neutron, as well as the 2
3Q = +  for 

the up and 1
3Q = −  for the down flavors of quark. 

 
Although nuclear and particle physics are often discussed as if they are one and the same 

discipline, in fact, they are very distinct based on present understandings of each.  This fault line 
which separates nuclear and hadron physics from particle physics is concisely captured by Jaffe 
and Witten when they state at page 3 of the “Yang-Mills and Mass Gap” problem [6] that: 
 

“. . . for QCD to describe the strong force successfully . . .  It must have ‘quark 
confinement,’ that is, even though the theory is described in terms of elementary 
fields, such as the quark fields, that transform non-trivially under SU(3), the 
physical particle states—such as the proton, neutron, and pion—are SU(3)-
invariant.” 
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It is this difference between “elementary fields, such as the quark [and the gluon] fields, 
that transform non-trivially under SU(3)” and “the physical particle states—such as the proton, 
neutron, and pion—[which] are SU(3)-invariant,” as well as the need to give flavor to color-
neutral baryons and understand the origins of the specific baryon flavors which are protons and 
neutrons, which separates the elementary particle physics of colored quarks and gluons, from the 
hadron physics of the colorless baryons and mesons, and the nuclear physics of proton- and 
neutron-flavored baryons.   
 

As detailed in the discussion following (10.5), if one advances the thesis that the non-
abelian faux magnetic monopole of (9.21) is in fact synonymous with a baryon, then the results 
reviewed in detail in section 10 would appear to solve this confinement leg of the mass gap 
problem, at least in the classical context.  Moreover, the results presented here take a critical step 
forward toward unifying elementary particle physics with hadron physics and nuclear physics.  It 
is equation (9.21) which operates as a “bridge” between the elementary particle physics of 
colored quarks and gluons and the hadron physics of the colorless baryons and mesons.  This is 
because (9.21), together with its related consequence (10.5), demonstrates how quark and gluon 
fields that transform non-trivially under SU(3) assemble together into the colorless, SU(3)-
invariant particle states which are baryons and mesons, that is, hadrons.  Then, the non-
vanishing trace of (9.21) forces us to employ SU(3)×U(1).  This ensures topological stability 
which is required if (9.21) is to be associated with stable physical particles such as the neutron 
and especially the proton.  Further, via the new U(1) generator, this introduces flavor which then 
allows these baryons to be flavored into the protons and neutrons at the heart of nuclear physics. 

  
Of course, as discussed in section 4 there are many reasons to believe confinement is 

related to the running of the coupling constant which is an inherently quantum effect.  But as also 
argued in section 4, one might take the perspective that the cause for confinement and baryon 
compositeness is the classical field equation (3.3) for a Yang-Mills monopole which has the 
symmetry (3.5), and that one of the effects of this is that in a quantum field treatment of these 
baryon monopoles, the strong coupling will weaken for ultraviolet and strengthen for infrared 
probes.  Without more, however, one could fairly conclude that the connections suggested 
between some identities of the classical Yang-Mills equation and confinement in the quantum 
theory are simply still too speculative or weakly supported to constitute a viable theory of 
hadronic physics, especially since quarks are alluded to but not shown to be required.   

 
But sections 9 and 10 overcome any such conclusion.  These sections deepen support for 

the argument made in sections 3 and 4 by demonstrating that a further cause for confinement is 
the color-neutral SU(3)-invariance of both the monopole (9.21) and the meson (10.5), which 
might then be expected in a quantum field treatment to reveal the effect of a running coupling 
constant which is consistent with these root causes that are already seen in the classical theory.  
It is certainly true that an important view of confinement is the quantum view of a running 
coupling.  But so too is Jaffe and Witten’s complementary symmetry view of confinement as 
utilized here, in which “even though [a] theory is described in terms of elementary fields, such as 
the quark fields, that transform non-trivially under SU(3), the physical particle states—such as 
the proton, neutron, and pion—are SU(3)-invariant.”  Sections 9 and 10 here make clear that 
Yang-Mills monopoles manifest these required confinement symmetries.  And, this underscores 
the value as argued in section 4, of finding and fleshing out, the right classical theory to quantize, 
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before trying to leap unarmed into quantization.  Colloquially speaking, classical theory is the 
“horse” which must one must precede the “cart” of quantization. 

 
As to the “cart” of quantization, two further points may now be made in light of the 

development after section 4, to supplement those already made in section 4.  First, as noted in 
section 4, the chiral anomaly provides an object lesson that not every symmetry which appears in 
a classical theory carries through to the associated quantum theory.  As pointed out in section 7, 
any divergence there may be between classical and quantum symmetries emanates from the 
measure Dϕ  which is the integration variable in the path integral.  A classical symmetry exists if 

some transformation leaves the action ( )S ϕ  invariant.  A quantum symmetry exists (and inherits 

the classical symmetry) if the same transformation leaves the path integral ( )expZ D iSϕ ϕ= ∫  

invariant.  So, for example, although the classical monopole (9.21) has the color-neutral baryon 
wavefunction [ ] [ ] [ ], , ,R G B G B R B R G+ +  and the classical net-flowing magnetic field (10.5) 

has the color-neutral meson wavefunction BBGGRR ++ , i.e., are classically invariant under an 
SU(3) gauge transformation, it is valid to ask whether these symmetries will carry through to the 
related quantum objects.  This cannot be answered with absolute certainty until one has the 
complete quantum theory corresponding to the foregoing classical development, but it is 
encouraging to note that the observed baryons and the mesons of quantum physics are also 
known to be color-neutral with the same respective [ ] [ ] [ ], , ,R G B G B R B R G+ +  and 

BBGGRR ++  wavefunctions.  Thus for example, when Jaffe and Witten state on page 3 of [6] 
that “the physical particle states—such as the proton, neutron, and pion—are SU(3)-invariant,” 
they are not qualifying or restricting this statement to classical particles.  QCD is a quantum 
theory, and the invariance of baryons and mesons, i.e., hadrons, under SU(3) is a well-known 
feature not only of classical, but of quantum, chromodynamics.  That these symmetries appear to 
emerge very naturally and inexorably from classical Yang-Mills theory without having to make 
any separate postulates about SU(3) being a theory of strong interactions, is highly compelling. 
 

Second, the most important result pertaining to quantization in this paper, is the finding in 
section 8 and its application in section 11 that the inverse solution ( )G J  is actually a recursive 

solution for ( ),G G J , but that this can be turned into a ( )G J  solution by recursing to any 

desired order and then setting the perturbation 0V = .  This is important because, referring to 
page 6 of [6], the difficulty of being able to: 

 
“Prove that for any compact simple gauge group G, a non-trivial quantum Yang–
Mills theory exists on 4

� . . .” 
 
is not a physics problem, it is a mathematics problem, and more particularly, it is a calculation 
problem of not knowing how to perform an exact analytical calculation of the quantum path 
integral for Yang-Mills theory in particular, and for non-linear physics theories in general. 
 
 Specifically, as discussed in section 8, the technique of analytically calculating a path 
integral  ( ) ( )exp expZ DG iS G iW J= =∫ C  revolves around clever extrapolations of the 
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Gaussian integral ( ) ( ) ( ).52 21
2exp 2 / exp / 2dx Ax Jx A J Aπ− − = −∫  which only contains x and 2x  

and no higher order in the integration variable x.  Put an 3x  or an 4x  into this integral, or even 
worse, put any higher-order polynomial into this integral, and it is simply not known 
mathematically how to calculate this integral at all.  So the physics recipe for quantizing Yang-
Mills is very clear: find the action, and use it in a path integral.  But the mathematical technique 
for how to calculate this is not known.  The best anybody had been able to do thus far is to make 
use of (8.25) to replace gauge fields with /G Jµ

µ δ δ→  and then remove ( )( )exp /V Jδ δ  from 

the integral so all that remains behind to integrate is the simple ( )21
2expdx Ax Jx− −∫ .  

Generally speaking, we need to replace the gauge fields G with current densities J, and leave 
behind the simple quadratic form ( )21

2expdx Ax Jx− −∫ .  What we find in section 8 is a new and 

different way to make a G J→  substitution in lieu of the usual /G Jµ
µ δ δ→ : recurse 

( ) 12G k k m i G k G G Jτ τ τ
µ τ τ τ µε

−
= − + + +  to any desired order, then set V G k G Gτ τ

τ τ= − −  

(because 0k Gτ
τ = ) to zero so that all gauge fields are removed.  By recursing to infinite order 

and removing these gauge fields, we can arrive at an expression for ( )G J  with all the gauge 

fields removed, and be left with only having to integrate ( )21
2expdx Ax Jx− −∫ .  In short, the 

recursion preliminarily developed in section 8 provides the needed mathematical tools to carry 
out exact analytical calculations of what are now seemingly-intractable path integrations for non-
linear physical field theories. 
 
 In section 11, we then show how to apply these recursive results to calculate the non-
linear Yang-Mills path integral over the gauge field portion DG  of the path integral measure 
analytically and exactly, thereby proving the existence of a non-trivial relativistic quantum 
Yang–Mills theory exists on 4

�  for any compact simple gauge group G by solving a 
mathematical challenge for which the solution has not previously been known.  Having used 
recursive technique to prove a quantum field theory for Yang-Mills, the question now arises 
whether recursive technique may be similarly applied to other non-linear field theories, most 
notably, gravitation. 
 
 A next important step is to see if this can be connected to numerically-precise empirical 
observations relating to protons and neutrons.  Among the important unexplained data that we 
already know about for protons and neutrons are their masses, as well as their binding energies in 
a wide variety of nuclei.  Thus, it becomes important to calculate energies and as pointed out at 

(10.13), the way to do so is to use (10.13) in the general energy formulation 3
gaugeE d x= −∫∫∫L , 

using a combination of ( )Tr F Fστ
στ  inner and Tr TrF Fστ

στ  outer product terms.  While we do not 

do so in this paper, the author has done so before, and published these results in [15], [16] and 
[21].  Beyond the clear symmetry concurrences developed in section 10, these empirical 
concurrences provide compelling experimental support for the concluding that the non-zero faux 
magnetic source densities [ ],P id G G idGG′ = − = −  are baryon densities, that P′∫∫∫  is a baryon, 

that eff ,F i G Gµν µ ν = −    in (10.4) is a meson field, and that the 0F ≠∫∫�  which originally 
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actuated this whole line of development represents the interaction of these baryons via mesons, 
and indeed the nuclear interaction protons and neutrons at classical level.  As discussed, although 
these symmetries were all developed using the classical theory, there is no apparent reason why 
these symmetries would be lost in the †DGDcDc  measure of the complete path integral 

( ) ( ) ( ) ( )( )2† 4 †exp 1/ 2 ,Z DGDcDc i S G d x G S c cξ = − ∂ +
 ∫ ∫  and would not carry over to the 

quantum field theory.   
 

In fact, it is well known that the same color symmetries which have been classically 
developed in the present treatment solely emergent from classical Yang-Mills theory, do carry 
over to Quantum Chromodynamics. 
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