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ABSTRACT

Triangular properties of associated Legendre functions are derived using the Vec-

torial Addition Theorem of spherical harmonics

1. Introduction

Triangular properties of associated Legendre functions were first introduced in

reference [1]. They relate associated Legendre functions with the arguments being

the cosines of angles in a triangle. They can be used to simplify the calculations of

corss sections of electron-atom collisions. They were also encountered in the analytical

evaluation of infinte integrals over spherical Bessel functions [2]. This paper arrives

at the same result of reference [1] using the Vectorial Addition Theorem of spherical

harmonics. A new relation involving a double sum over associated Legendre functions

is found using the same technique.

2. Deriving the Triangular Properties

Consider a triangle of sides k1, k2 and k3 such that ~k3 = ~k1 + ~k2. Application of

the Vectorial Addition Theorem for spherical harmonics [3] results in

YM3

λ3
(k̂3) = (−1)λ3−M3 (2λ3 + 1)

(
k1

k3

)λ3 λ3∑
λ=0

√
4π

(2λ+ 1)[2(λ3 − λ) + 1]

(
2λ3

2λ

)1/2

×
(
k2

k1

)λ ∑
M

(
λ3 − λ λ λ3

M3 −M M −M3

)
YM3−M
λ3−λ (k̂1)YM

λ (k̂2),

(2.1)

where −λ3 ≤M3 ≤ λ3 and −λ ≤M ≤ λ. Now let the triangle be in a plane belonging

to a specific azimuthal angle φ, then using
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YM
L (k̂) =

√
2L+ 1

4π

√
(L−M)!
(L+M)!

eimφ PML (cos θk̂), (2.2)

one arrives at

PM3

λ3
(cos θk̂3

) = (−1)λ3−M3

√
(λ3 +M3)!
(λ3 −M3)!

√
2λ3 + 1

(
k1

k3

)λ3 λ3∑
λ=0

(
2λ3

2λ

)1/2 (
k2

k1

)λ

×
∑
M

√
(λ−M)! [λ3 − λ− (M3 −M)]!
(λ+M)! [λ3 − λ+M3 −M ]!

(
λ3 − λ λ λ3

M3 −M M −M3

)

× PM3−M
λ3−λ (cos θk̂1

)PMλ (cos θk̂2
).

(2.3)

It is easy to show that

√
(j1 + j2 +m)! (j2 −m2)!
(j1 + j2 −m)! (j2 +m2)!

(
2(j1 + j2)

2j2

)1/2
(
j1 j2 j1 + j2

m1 m2 −m

)

=
(−1)j1−j2+m√
2(j1 + j2) + 1

√
(j1 +m1)!
(j1 −m1)!

(
j1 + j2 +m

j2 +m2

)
,

(2.4)

Hence, equation (2.3) reduces to

PM3

λ3
(cos θk̂3

) =
(
k1

k3

)λ3 λ3∑
λ=0

(
k2

k1

)λ ∑
M

(
λ3 +M3

λ+M

)
PM3−M
λ3−λ (cos θk̂1

)PMλ (cos θk̂2
).

(2.5)

Let ~k1 point in the z-direction, as in Fig. 1, where cos θk̂1
= 1, cos θk̂2

= − cos γ

and cos θk̂3
= cosβ, then

PM3

λ3
(cosβ) = (−1)M3

(
k1

k3

)λ3 λ3∑
λ=0

(
−k2

k1

)λ (
λ3 +M3

λ3 − λ

)
PM3

λ (cos γ). (2.6)

using
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PML (− cos θ) = (−1)L+M PML (cos θ), (2.7)

PML (1) = δM,0 (2.8)

and (
λ3 +M3

λ+M3

)
=
(
λ3 +M3

λ3 − λ

)
. (2.9)

An alternative form, which is the result of reference [2] can be obtained if the sum

is made over L = λ3 − λ as follows

PM3

λ3
(cosβ) = (−1)M3

(
k1

k3

)λ3 λ3−M3∑
L=0

(
−k2

k1

)λ3−L (λ3 +M3

L

)
PM3

λ3−L(cos γ), (2.10)

where the sum is now restricted to λ3−M3 since PM3

λ3−L(cos γ) vanishes for M3 > λ3−L.

Now let ~k2 point along the z-axis, where cos θk̂2
= 1, cos θk̂1

= − cos γ and

cos θk̂3
= cosα. Equation (2.5) reduces to

PM3

λ3
(cosα) = (−1)M3

(
−k1

k3

)λ3 λ3∑
λ=0

(
−k2

k1

)λ (
λ3 +M3

λ

)
PM3

λ3−λ(cos γ). (2.11)

Also, if ~k3 points in the z-direction, where cos θk̂3
= 1, cos θk̂1

= cosβ and cos θk̂2
=

cosα, equation (2.5) becomes

λ3∑
λ=0

(
k2

k1

)λ ∑
M

(
λ3

λ+M

)
P−Mλ3−λ(cosβ)PMλ (cosα) =

(
k1

k3

)λ3

. (2.12)
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3. Conclusions

The Vectorial Addition Theorem is a powerful tool in obtaining relationships

between associated Legendre functions, PML , for−L ≤M ≤ L. The goal is to be able to

generalise these relations to associated Legendre functions with −∞ ≤M ≤ L, where

these functions were defined in reference [2]. They relations allow the simplification

of expressions obtained in the analytical evaluation of infinite integrals over spherical

Bessel functions.
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Figure 1: Triangle of sides 1k , 2k  and 3k , where 

1k
r

 points along the z-axis 

 


