The function equation $S(n) = Z(n)$

Maohua Le

Department of Mathematics, Zhanjiang Normal College
29 Cunjin Road, Chikan Zhanjiang, Guangdong, P. R. China

Abstract For any positive integer n, let $S(n)$ and $Z(n)$ denote the Smarandache function and the pseudo Smarandache function respectively. In this paper we prove that the equation $S(n) = Z(n)$ has infinitely many positive integer solutions n.

Keywords Smarandache function; Pseudo Smarandache function; Diophantine equation.

For any positive integers n, let $S(n)$ and $Z(n)$ denote the Smarandache function and pseudo Smarandache function respectively. In [1], Ashbacher proposed two problems concerning the equation

$$S(n) = Z(n)$$

as follows.

Problem 1. Prove that if n is an even perfect number, then n satisfies (1).

Problem 2. Prove that (1) has infinitely many positive integer solutions n.

In this paper we completely solve these problems as follows.

Theorem 1. If n is an even perfect number, then (1) holds.

Theorem 2. (1) has infinitely many positive integer solutions n.

Proof of Theorem 1. By [2, Theorem 277], if n is an even perfect number, then

$$n = 2^{p-1}(2^p - 1), \quad (2)$$

where p is a prime. By [3] and [4], we have

$$S(n) = 2^p - 1. \quad (3)$$

On the other hand, since

$$\frac{1}{2} (2^p - 1) ((2^p - 1) + 1) = n, \quad (4)$$

by (2), we get

$$Z(n) = 2^p - 1 \quad (5)$$

immediately. The combination of (3) and (5) yields (1). Thus, the theorem is proved.

This work is supported by N.S.F. of P. R. China(10271104), the Guangdong Provincial Natural Science Foundation(011781) and the Natural Science Foundation of the Education Department of Guangdong Province(0161).
Proof of Theorem 2. Let \(p \) be an odd prime with \(p \equiv 3 \pmod{4} \). Since \(S(2) = 2 \) and \(S(p) = p \), we have

\[
S(2p) = \max(S(2), S(p)) = \max(2, p) = p.
\] (6)

Let \(t = Z(2p) \), By the define of \(Z(n) \), we have

\[
\frac{1}{2}(t + 1) \equiv 0 \pmod{2p}.
\] (7)

It implies that either \(t \equiv 0 \pmod{p} \) or \(t + 1 \equiv 0 \pmod{p} \). Hence, we get \(t \geq p - 1 \). If \(t = p - 1 \), then from (7) we obtain

\[
\frac{1}{2}(p - 1)p \equiv 0 \pmod{2p}.
\] (8)

whence we get

\[
\frac{1}{2}(p - 1)p \equiv 0 \pmod{2}.
\] (9)

But, since \(p \equiv 3 \pmod{4} \), (9) is impossible. So we have

\[t \geq p. \] (10)

Since \(p + 1 \equiv 0 \pmod{4} \), we get

\[
\frac{1}{2}b(p + 1) \equiv 0 \pmod{2p}
\] (11)

and \(t = p \) by (10). Therefore, by (6), \(n = 2p \) is a solution of (1). Notice that there exist infinitely many primes \(p \) with \(p \equiv 3 \pmod{4} \). It implies that (1) has infinitely many positive integer solutions \(n \). The theorem is proved.

References
