A very simple but possible important conjecture about primes

Marius Coman Bucuresti, Romania email: mariuscoman130gmail.com

Abstract. In this paper I present a conjecture about primes with an extremely simple enunciation, but very interesting despite (or on the contrary, because of) its simplicity.

Conjecture:

Any prime number q, $q \ge 11$, can be written as $q = 3*(p_1 - 1) + p_2$, where p_1 and p_2 are odd primes.

The sequence of the lowest p_1 for which the primes that can be written as $q = 3*(p_1 - 1) + p_2$, where p_1 and p_2 are odd primes (the conjecture above states that all the primes greater than or equal to 11 can be written this way), can be written this way:

: 3, 3, 3, 3, 3, 3, 5, 3, 5, 3, 3, 3, 3, 7, 3, 3, 3, 5, 3, 7, 5, 3, 3, 3, 3, 7, 7, 3, 5, 5, 5, 3, 3, 7, 3, 3, 7, 5, 5, 3, 3, 5, 5, 11, 3, 3, 3, 5, 5, 3, 3, 11, 3, 5, 3, 5, 11, 7, 3, 3, 7, 3, 11, 5, 3, 3, 7, 3, 3, 11, 3, 7, 5, 5, 7, 5, 5, 5, 3, 5, 3, 7, 5, 3, 3, 5, 11, 5 (...)

The corresponding p_2 and q in the sequence above:

:	(5,11), (7,	13), (11,17)	, (13,19),	(17,23), (23	3,29), (19,31), (31,37),
	(29,41), (37,43), (41	1,47), (47,	,53), (53,5	9), (43,61)	, (61,67),
	(67,73), (*	73,79), (71	,83), (83,8	39), (79,97)), (89,101),	, (97,103),
	(101,107),	(103,109),	(107,113),	(109,127),	(113,131),	(131,137),
	(127,139),	(137,149),	(139,151),	(151,157),	(157,163),	(149,167),
	(167,173),	(173,179),	(163,181),	(179,191),	(181,193),	(191,197),
	(193,199),	(199,211),	(211,223),	(197,227),	(223,229),	(227,233),
	(233,239),	(229,241),	(239,251),	(251,257),	(257,263),	(263,269),
	(241,271),	(271,277),	(269,281),	(277,283),	(281,293),	(277,307),
	(293,311),	(307,313),	(311,317),	(313,331),	(331,337),	(317,347),
	(337,349),	(347,353),	(353,359),	(349,367),	(367,373),	(373,379),
	(353,383),	(383,389),	(379,397),	(389,401),	(397,409),	(401,419),
	(409,421),	(419,431),	(421,433),	(433,439),	(431,443),	(443,449),
	(439,457),	(449,461),	(457,463),	(461,467),	(467,479),	(457, 487),
	(479, 491),	(487, 499).				

Note:

Another way to enunciate the conjecture: for any prime p greater than or equal to 11 there exist at least a smaller prime q such that q = p - 3*n, where n can be 2, 4, 6, 10, 12, 16, 18, 22, 28 and so on (n + 1 is odd prime).