On finite Smarandache near-rings

T.Ramaraj † and N.Kannapa ‡

Lecture in Selection Grade Department of Mathematics T.B.M.L.College
Porayar-609307 Nagappattinam-(Dt), Tamil Nadu, India
Reader in Mathematics A.V.V.M.Pushpam College (Autonomous)
Poondi-613 503 Tanjore-(Dt), Tamil Nadu, India

Abstract In this paper we study the Finite Smarandache-2-algebraic structure of Finite-near-ring, namely, Finite-Smarandache-near-ring, written as Finite-S-near-ring. We define Finite Smarandache near-ring with examples. We introduce some equivalent conditions for Finite S-near-ring and obtain some of its properties.

Keywords Finite-S-near-ring; Finite-Smarandache-near-ring.

§1. Introduction

In this paper, we studied Finite-Smarandache 2-algebraic structure of Finite-near-rings, namely, Finite-Smarandache-near-ring, written as Finite-S-near-ring. A Finite-Smarandache 2-algebraic structure on a Finite-set \(N \) means a weak algebraic structure \(A_0 \) on \(N \) such that there exist a proper subset \(M \) of \(N \), which is embedded with a stronger algebraic structure \(A_1 \), stronger algebraic structure means satisfying more axioms, by proper subset means a subset different from the empty set, from the unit element if any, from the whole set [5]. By a Finite-near-ring \(N \), we mean a zero-symmetric Finite-right-near-ring. For basic concept of near-ring we refer to Gunter Pilz [2].

Definition 1. A Finite-near-ring \(N \) is said to be Finite-Smarandache-near-ring. If a proper subset \(M \) of \(N \) is a Finite-field under the same induced operations in \(N \).

Example 1 [2]. Let \(N = \{0, n_1, n_2, n_3\} \) be the Finite-near-ring defined by:

Let \(M = \{0, n_1\} \subset N \) be a Finite-near-field. Defined by

Now \((N, +, \cdot, 0, 1)\) is a Finite-S-near-ring.

Example 2 [4]. Let \(N = \{0, 6, 12, 18, 24, 30, 36, 42, 48, 54\} \) (mod 60) be the Finite-near-ring since every ring is a near-ring. Now \(N \) is a Finite-near-ring, Whose proper subset \(M = \{0, 12, 24, 36, 48\} \) (mod 60) is a Finite-field. Since every field is a near-field, then \(M \) is a Finite-near-field. Therefore \(N \) is a Finite-S-near-ring.

Theorem 1. Let \(N \) be a Finite-near-ring, \(N \) is a Finite-S-near-ring if and only if there exist a proper subset \(M \) of \(N \), either \(M \cong M_\phi(z_2) \) or \(Z_p \), integers modulo \(p \), a prime number.

Proof. Part-I: We assume that \(N \) is a Finite-S-near-ring. By definition, there exist a proper subset \(M \) of \(N \) is a Finite-near-field. By Gunter Pilz Theorem (8.1)[2], either \(M \cong M_\phi(z_2) \) or \(Z_p \), integers modulo \(p \), a prime number.
In the notation of the text, \(M_c(z_2) \) or zero-symmetric. Since \(Z_p^S \) is zero-symmetric and Finite-fields implies \(Z_p \), \(S \) are zero-symmetric and Finite-near-fields because every field is a near-field. Therefore in particular \(M \) is \(Z_p \).

Part-II: We assume that a proper subset \(M \) of \(N \), either \(M \cong M_c(z_2) \) or \(Z_p \). Since \(M_c(z_2) \) and \(Z_p \) are Finite-near-fields. Then \(M \) is a Finite-near-field. By definition, \(N \) is a Finite-S-near-ring.

Theorem. Let \(N \) be a Finite-near-ring. \(N \) is a Finite-S-near-ring if and only if there exist a proper subset \(M \) of \(N \) such that every element in \(M \) satisfying the polynomial \(x^{pm} - x \).

Proof. **Part-I:** We assume that \(N \) is a Finite-S-near-ring. By definition, there exist a proper subset \(M \) of \(N \) is a Finite-near-field. By Gunter Pilz, Theorem (8.13)[2]. If \(M \) is a Finite-near-field, then there exist \(p \in P, \exists m \in M \) such that \(M \mid p^m \). According to I.N.Herstein[3]. If the Finite-near-field \(M \) has \(p^m \) element, then every \(a \in M \) satisfies \(a^{p^m} = a \), since every field is a near-field. Now \(M \) is a Finite-field having \(p^m \) element, every element \(a \) in \(M \) satisfies \(a^{p^m} = a \). Therefore every element in \(M \) satisfying the polynomial \(x^{p^m} - x \).

Part-II: We assume that there exist a proper subset \(M \) of \(N \) such that every element in \(M \) satisfying the polynomial \(x^{p^m} - x \), which implies \(M \) has \(p^m \) element. According to I.N.Herstein[3]. For every prime number \(p \) and every positive integer \(m \), there is a unique field having \(p^m \) element. Hence \(M \) is a Finite-field implies \(M \) is a Finite-near-field. By definition, \(N \) is a Finite-S-near-ring.

Theorem 3. Let \(N \) be a Finite-near-ring. \(N \) is a Finite-S-near-ring if and only if \(M \) has no proper left ideals and \(M_0 \neq M \). Where \(M \) is a proper sub near-ring of \(N \), in which idempotent commute and for each \(x \in M \), there exist \(y \in M \) such that \(xy \neq 0 \).

Proof. **Part-I:** We assume that \(N \) is a Finite-S-near-ring. By definition A proper subset \(M \) of \(N \) is a Finite-near-field. In [1] Theorem (4), it is zero-symmetric and hence every left-ideal is a M-subgroup. Let \(M_1 \neq 0 \) be a M-subgroup and \(m_1 \neq 0 \in M_1 \). Then \(m_1^{-1}m_1 = 1 \in M_1 \), therefore \(M = M_1 \). Hence \(M \) has no proper M-subgroup, which implies \(M \) has no proper left ideal.

Part-II: We assume that a proper sub near-ring \(M \) of \(N \) has no proper left ideals and \(M_0 \neq M \), in which idempotent commute and for each \(x \in M \) there exist \(y \in M \) such that \(xy \neq 0 \). Let \(x = 0 \) in \(M \). Let \(F(x) = \{ m \in M \mid mx = 0 \} \). Clearly \(F(x) \) is a left ideal. Since there exist \(y \in M \) such that \(xy \neq 0 \). Then \(y \notin F(x) \). Hence \(F(x) = 0 \). Let \(\phi : (M, +) \longrightarrow (Mx, +) \) given by \(\phi(m) = mx \). Then \(\phi \) is an isomorphism. Since \(M \) is finite then \(Mx = M \). Now by a theorem(2) in [1], \(M \) is a Finite-near-field. Therefore, by definition \(N \) is a Finite-S-near-ring.

We summarize what has been studied in

Theorem 4. Let \(N \) be a Finite-near-ring. Then the following conditions are equivalent.

1. A proper subset \(M \) of \(N \), either \(M \cong M_c(z_2) \) or \(Z_p \), integers modulo \(p \), a prime number.
2. A proper subset \(M \) of \(N \) such that every element in \(M \) satisfying the polynomial \(x^{p^m} - x \).
3. \(M \) has no proper left ideals and \(M_0 \neq M \). Where \(M \) is a proper sub near-ring of \(N \), in which idempotent commute and for each \(x \in M \), there exist \(y \in M \) such that \(xy \neq 0 \).

Theorem 5. Let \(N \) be a Finite-near-ring. If a proper subset \(M \), sub near-ring of \(N \), in which \(M \) has left identity and \(M \) is 0-primitive on \(M^M \). Then \(N \) is a Finite-S-near-ring.

Proof. By Theorem(8.3)[2], the following conditions are equivalent:
(1) M is a Finite-near-field;
(2) M has left identity and M is 0-primitive on M^M.

Now Theorem is immediate.

Theorem 6. Let N be a Finite-near-ring. If a proper subset M, sub near-ring of N, in which M has left identity and M is simple. Then N is a Finite-S-near-ring.

Proof. By Theorem(8.3)[2], the following conditions are equivalent:
(1) M is a Finite-near-field;
(2) M has left identity and M is simple. Now the Theorem is immediate.

Theorem 7. Let N be a Finite-near-ring. If a proper subset M, sub near-ring of N is a Finite-near-domain, then N is a Finite-S-near-ring.

Proof. By Theorem(8.43)[2], a Finite-near-domain is a Finite-near-field. Therefore M is a Finite-near-field. By definition N is a Finite-S-near-ring.

Theorem 8. Let N be a Finite-near-ring. If a proper subset M of N is a Finite-Integer-domain. Then N is a Finite-S-near-ring.

Proof. By I.N.Herstein[3], every Finite-Integer-domain is a field, since every field is a near-field. Now M is a Finite-near-field. By definition N is a Finite-S-near-ring.

Theorem 9. Let N be a Finite-near-ring. If a proper subset M of N is a Finite-division-ring. Then N is a Finite-S-near-ring.

Proof. By Wedderburn’s Theorem(7.2.1)[3], a Finite-division-ring is a necessarily commutative field, which gives M is a field, implies M is a Finite-near-field. By definition N is a Finite-S-near-ring.

References