Forcing (G,D)-number of a Graph

K. Palani
(Department of Mathematics A.P.C. Mahalaxmi College for Women, Thoothukudi, India)

A. Nagarajan
(Department of Mathematics V.O.C. College, Thoothukudi, India)

E-mail: kp5.6.67apcm@gmail.com, nagarajan.voc@gmail.com

Abstract: In [7], we introduced the new concept (G,D)-set of graphs. Let $G = (V, E)$ be any graph. A (G,D)-set of a graph G is a subset S of vertices of G which is both a dominating and geodominating (or geodetic) set of G. The minimum cardinality of all (G,D)-sets of G is called the (G,D)-number of G and is denoted by $\gamma_{G}(G)$. In this paper, we introduce a new parameter called forcing (G,D)-number of a graph G. Let S be a γ_{G}-set of G. A subset T of S is said to be a forcing subset for S if S is the unique γ_{G}-set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset of S. The forcing (G,D)-number of S denoted by $f_{G,D}(S)$ is the cardinality of a minimum forcing subset of S. The forcing (G,D)-number of G is the minimum of $f_{G,D}(S)$, where the minimum is taken over all γ_{G}-sets S of G and it is denoted by $f_{G,D}(G)$.

Key Words: (G,D)-number, Forcing (G,D)-number, Smarandachely k-dominating set.

AMS(2010): 05C69

§1. Introduction

By a graph $G= (V, E)$, we mean a finite, undirected connected graph without loops and multiple edges. For graph theoretic terminology, we refer [5]. A set of vertices S in a graph G is said to be a Smarandachely k-dominating set if each vertex of G is dominated by at least k vertices of S. Particularly, if $k = 1$, such a set is called a dominating set of G, i.e., every vertex in $V - D$ is adjacent to at least one vertex in D. The minimum cardinality among all dominating sets of G is called the domination number $\gamma(G)$ of G[6]. A u-v geodesic is a u-v path of length $d(u,v)$. A set S of vertices of G is a geodominating (or geodetic) set of G if every vertex of G lies on an x-y geodesic for some x,y in S. The minimum cardinality of a geodominating set is the geodomination (or geodetic) number of G and it is denoted by $g(G)$[1-4]. A (G,D)-set of G is a subset S of $V(G)$ which is both a dominating and geodetic set of G. The minimum cardinality of all (G,D)-sets of G is called the (G,D)-number of G and is denoted by $\gamma_{G}(G)$.

\[1\] Received January 21, 2011. Accepted August 30, 2011.
Any (G,D)-set of G of cardinality γ_G is called a γ_G-set of G[7]. In this paper, we introduce a new parameter called forcing (G,D)-number of a graph G. Let S be a γ_G-set of G. A subset T of S is said to be a forcing subset for S if S is the unique γ_G-set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset of S. The forcing (G,D)-number of S denoted by $f_{G,D}(S)$ is the cardinality of a minimum forcing subset of S. The forcing (G,D)-number of G is the minimum of $f_{G,D}(S)$, where the minimum is taken over all γ_G-sets S of G and it is denoted by $f_{G,D}(G)$.

§2. Forcing (G,D)-number

Definition 2.1 Let G be a connected graph and S be a γ_G-set of G. A subset T of S is called a forcing subset for S if S is the unique γ_G-set of G containing T. A forcing subset T of S of minimum cardinality is called a minimum forcing subset for S. The forcing (G,D)-number of S denoted by $f_{G,D}(S)$ is the cardinality of a minimum forcing subset of S. The forcing (G,D)-number of G is the minimum of $f_{G,D}(S)$, where the minimum is taken over all γ_G-sets S of G and it is denoted by $f_{G,D}(G)$. That is, $f_{G,D}(G) = \min\{f_{G,D}(S) : S \text{ is any } \gamma_G\text{-set of } G\}$.

Example 2.2 In the following figure,

![Graph](image)

Fig.2.1

$S_1 = \{u, x\}$ and $S_2 = \{v, y\}$ are the only two γ_G-sets of G. $\{u\}, \{x\}$ and $\{u, x\}$ are forcing subsets of S_1. Therefore, $f_{G,D}(S_1) = 1$. Similarly, $\{v\}, \{y\}$ and $\{v, y\}$ are the forcing subsets of $f_{G,D}(S_2)$. Therefore, $f_{G,D}(S_2) = 1$. Hence $f_{G,D}(G) = \min\{1, 1\} = 1$. For G, we have, $0 < f_{G,D}(G) = 1 < \gamma_G(G) = 2$.

Remark 2.3 1. For every connected graph G, $0 \leq f_{G,D}(G) \leq \gamma_G(G)$.

2. Here the lower bound is sharp, since for any complete graph $S = V(G)$ is a unique γ_G-set. So, $T = \emptyset$ is a forcing subset for S and $f_{G,D}(K_p) = 0$.

3. Example 2.2 proves the bounds are strict.

Theorem 2.4 Let G be a connected graph. Then,

(i) $f_{G,D}(G) = 0$ if and only if G has a unique γ_G-set;

(ii) $f_{G,D}(G) = 1$ if and only if G has at least two γ_G-sets, one of which, say, S has forcing (G,D)-number equal to 1;
(iii) \(f_{G,D}(G) = \gamma_G(G) \) if and only if every \(\gamma_G \)-set \(S \) of \(G \) has the property, \(f_{G,D}(S) = |S| = \gamma_G(G) \).

Proof (i) Suppose \(f_{G,D}(G) = 0 \). Then, by Definition 2.1, \(f_{G,D}(S) = 0 \) for some \(\gamma_G \)-set \(S \) of \(G \). So, empty set is a minimum forcing subset for \(S \). But, empty set is a subset of every set. Therefore, by Definition 2.1, \(S \) is the unique \(\gamma_G \)-set of \(G \). Conversely, let \(S \) be the unique \(\gamma_G \)-set of \(G \). Then, empty set is a minimum forcing subset of \(S \). So, \(f_{G,D}(G) = 0 \).

(ii) Assume \(f_{G,D}(G) = 1 \). Then, by (i), \(G \) has at least two \(\gamma_G \)-sets. \(f_{G,D}(G) = \min\{f_{G,D}(S) : S \text{ is any } \gamma_G \text{-set of } G \} \). So, \(f_{G,D}(S) = 1 \) for at least one \(\gamma_G \)-set \(S \). Conversely, suppose \(G \) has at least two \(\gamma_G \)-sets satisfying the given condition. By (i), \(f_{G,D}(G) \neq 0 \). Further, \(f_{G,D}(G) \geq 1 \). Therefore, by assumption, \(f_{G,D}(G) = 1 \).

(iii) Let \(f_{G,D}(G) = \gamma_G(G) \). Suppose \(S \) is a \(\gamma_G \)-set of \(G \) such that \(f_{G,D}(S) < |S| = \gamma_G(G) \). So, \(S \) has a forcing subset \(T \) such that \(|T| < |S|\). Therefore, \(f_{G,D}(G) = \min\{f_{G,D}(S) : S \text{ is a } \gamma_G \text{-set of } G \} \leq |T| < |S| = \gamma_G(G) \). This is a contradiction. So, every \(\gamma_G \)-set \(S \) of \(G \) satisfies the given condition. The converse is obvious. Hence the result. \(\square \)

Corollary 2.5 \(f_{G,D}(P_n) = 0 \) if \(n \equiv 1(\text{mod}3) \).

Proof Let \(P_n = (v_1, v_2, \ldots, v_{3k+1}) \), \(k \geq 0 \). Now, \(S = \{v_1, v_4, v_7, \ldots, v_{3k+1}\} \) is the unique \(\gamma_G \)-set of \(P_n \). So, by Theorem 2.4, \(f_{G,D}(P_n) = 0 \). \(\square \)

Observation 2.6 Let \(G \) be any graph with at least two \(\gamma_G \)-sets. Suppose \(G \) has a \(\gamma_G \)-set \(S \) satisfying the following property:

\(S \) has a vertex \(u \) such that \(u \in S' \) for every \(\gamma_G \)-set \(S' \) different from \(S \) \((I) \).

Then, \(f_{G,D}(G) = 1 \).

Proof As \(G \) has at least two \(\gamma_G \)-sets, by Theorem 2.4, \(f_{G,D}(G) \neq 0 \). If \(G \) satisfies \((I) \), then we observe that \(f_{G,D}(S) = 1 \). So, by Definition 2.1, \(f_{G,D}(G) = 1 \). \(\square \)

Corollary 2.7 Let \(G \) be any graph with at least two \(\gamma_G \)-sets. Suppose \(G \) has a \(\gamma_G \)-set \(S \) such that \(S \cap S' = \emptyset \) for every \(\gamma_G \)-set \(S' \) different from \(S \). Then \(f_{G,D}(G) = 1 \).

Proof Given that \(G \) has a \(\gamma_G \)-set \(S \) such that \(S \cap S' = \emptyset \) for every \(\gamma_G \)-set \(S' \) different from \(S \). Then, we observe that \(S \) satisfies property \((I) \) in Observation 2.6. Hence, we have, \(f_{G,D}(G) = 1 \). \(\square \)

Corollary 2.8 Let \(G \) be any graph with at least two \(\gamma_G \)-sets. If pair wise intersection of distinct \(\gamma_G \)-sets of \(G \) is empty, then \(f_{G,D}(G) = 1 \).

Proof The proof proceeds along the same lines as in Corollary 2.7. \(\square \)

Corollary 2.9 \(f_{G,D}(C_n) = 1 \) if \(n = 3k \), \(k > 1 \).

Proof Let \(n = 3k \), \(k > 1 \). Let \(V(C_n) = \{v_1, v_2, \ldots, v_{3k}\} \). Note that the only \(\gamma_G \)-sets of \(C_n \) are \(S_1 = \{v_1, v_4, \ldots, v_{3(k-1)+1}\} \), \(S_2 = \{v_2, v_5, \ldots, v_{3(k-1)+2}\} \) and \(S_3 = \{v_3, v_6, \ldots, v_{3k}\} \).
Further, we have, $S_1 \cap S_2 = S_1 \cap S_3 = S_2 \cap S_3 = \emptyset$. That is, pair wise intersection of distinct γ_G-sets of C_n is empty. Hence, from Corollary 2.8, we have $f_{G,D}(C_n) = 1$ if $n = 3k$. \hfill \Box

Definition 2.10 A vertex v of G is said to be a (G,D)-vertex of G if v belongs to every γ_G-set of G.

Remark 2.11 1. All the extreme vertices of a graph G are (G,D)-vertices of G.

2. If G has a unique γ_G-set S, then every vertex of S is a (G,D)-vertex of G.

Lemma 2.12 Let $G = (V,E)$ be any graph and $u \in V(G)$ be a (G,D)-vertex of G. Suppose S is a γ_G-set of G and T is a minimum forcing subset of S, then $u \notin T$.

Proof Since u is a (G,D)-vertex of G, u is in every γ_G-set of G. Given that S is a γ_G-set of G and T is a minimum forcing subset of S, Suppose $u \in T$. Then, there exists a γ_G-set S' of G different from S such that $T - \{u\} \subseteq S'$. Otherwise, $T - \{u\}$ is a forcing subset of S. Since $u \in S'$, $T \subseteq S'$. This contradicts the fact that T is a minimum forcing subset of S. Hence, from the above arguments, we have $u \notin T$. \hfill \Box

Corollary 2.13 Let W be the set of all (G,D)-vertices of G. Suppose S is a γ_G-set of G and T is a forcing subset of S. If W is non-empty, then $T \neq S$.

Definition 2.14 Let G be a connected graph and S be a γ_G-set of G. Suppose T is a minimum forcing subset of S. Let $E = S - T$ be the relative complement of T in its relative γ_G-set S. Then, \mathcal{L} is defined by

$$
\mathcal{L} = \{E | E \text{ is a relative complement of a minimum forcing subset } T \text{ in its relative } \gamma_G - \text{ set } S \text{ of } G\}.
$$

Theorem 2.15 Let G be a connected graph and $\zeta = \text{The intersection of all } E \in \mathcal{L}$. Then, ζ is the set of all (G,D)-vertices of G.

Proof Let W be the set of all (G,D)-vertices of G.

Claim $W = \zeta$, the intersection of all $E \in \mathcal{L}$. Let $v \in W$. By Definition 2.10, v is in every γ_G-set of G. Let S be a γ_G-set of G and T be a minimum forcing subset of S. Then, $v \in S$.

From Lemma 2.12, we have, $v \notin T$. So, $v \in E = S - T$. Hence, $v \in E$ for every $E \in \mathcal{L}$. That is, $v \in \zeta$. Conversely, let $v \in \zeta$. Then, $v \in E = S - T$, where T is a minimum forcing subset of the γ_G-set S. So, $v \in S$ for every γ_G-set S of G. That is, $v \in W$. \hfill \Box

Corollary 2.16 Let S be a γ_G-set of a graph G and T is a minimum forcing subset of S. Then, $W \cap T = \emptyset$.

Remark The above result holds even if G has a unique γ_G-set.

Corollary 2.18 Let W be the set of all (G,D)-vertices of a graph G. Then, $f_{G,D}(G) \leq \gamma_G(G) - |W|$.

Remark 2.19 In the above corollary, the inequality is strict. For example, consider the following graph G.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{graph1}
\caption{Fig. 2.2}
\end{figure}

For G, \(S_1 = \{v_1, v_4, v_5\}, S_2 = \{v_1, v_3, v_5\}, S_3 = \{v_1, v_4, v_6\} \) are the only distinct \(\gamma_G \)-sets. Therefore, \(\gamma_G(G) = 3 \). But, \(f_{G,D}(S_1) = 2 \) and \(f_{G,D}(S_2) = f_{G,D}(S_3) = 1 \). So, \(f_{G,D}(G) = \min\{f_{G,D}(S) : S \text{ is a } \gamma_G \text{-set of } G\} = 1 \). Also, \(W = \{1\} \). Now, \(\gamma_G(G) - |W| = 3 - 1 = 2 \). Hence \(f_{G,D}(G) \leq \gamma_G(G) - |W| \).

Also the upper bound is sharp. For example, consider the following graph G.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{graph2}
\caption{Fig. 2.3}
\end{figure}

For G, \(S_1 = \{v_1, v_4, v_5\}, S_2 = \{v_1, v_3, v_6\} \) are different \(\gamma_G \)-sets. Therefore, \(\gamma_G(G) = 3 \). But, \(f_{G,D}(S_1) = f_{G,D}(S_2) = 2 \). So, \(f_{G,D}(G) = \min\{f_{G,D}(S) : S \text{ is a } \gamma_G \text{-set of } G\} = 2 \). Also, \(W = \{1\} \). Now, \(\gamma_G(G) - |W| = 3 - 1 = 2 \). Hence, \(f_{G,D}(G) = \gamma_G(G) - |W| \).

Corollary 2.20 \(f_{G,D}(G) \leq \gamma_G(G) - k \) where \(k \) is the number of extreme vertices of G.

Proof The result follows from \(|W| \geq k \). \(\square \)

Theorem 2.21 For a complete graph \(G = K_p \), \(f_{G,D}(G) = 0 \) and \(|W| = p \).
Proof $V(K_p)$ is the unique γ_{G}-set of K_p. Hence by Theorem 2.4, $f_{G,D}(K_p) = 0$. By Remark 2.11, $W = V(G)$ with $|W| = p$. □

References