Smarandache's Cevians Theorem (II)

Edited by Dr. M. Khoshnevisan
Neuro Intelligence Center, Australia
E-mail: mkhoshnevisan@neurointelligence-center.org

Abstract.

In this paper we present the Smarandache's Cevians Theorem (II) in the geometry of the triangle.

Smarandache's Cevians Theorem (II)

In a triangle $\triangle \mathrm{ABC}$ we draw the Cevians $A A_{1}, B B_{1}, C C_{1}$ that intersect in P. Then:

$$
\frac{P A}{P A_{1}} \cdot \frac{P B}{P B_{1}} \cdot \frac{P C}{P C_{1}}=\frac{A B \cdot B C \cdot C A}{A_{1} B \cdot B_{1} C \cdot C_{1} A}
$$

Solution 6.

In the triangle $\triangle A B C$ we apply the Ceva's theorem:

$$
\begin{equation*}
A C_{1} \cdot B A_{1} \cdot C B_{1}=-A B_{1} \cdot C A_{1} \cdot B C_{1} \tag{1}
\end{equation*}
$$

In the triangle $\Delta A A_{1} B$, cut by the transversal $C C_{1}$, we'll apply the Menelaus' theorem:

$$
\begin{equation*}
A C_{1} \cdot B C \cdot A_{1} P=A P \cdot A_{1} C \cdot B C_{1} \tag{2}
\end{equation*}
$$

In the triangle $\Delta B B_{1} C$, cut by the transversal $A A_{1}$, we apply again the Menelaus' theorem:

$$
\begin{equation*}
B A_{1} \cdot C A \cdot B_{1} P=B P \cdot B_{1} A \cdot C A_{1} \tag{3}
\end{equation*}
$$

We apply one more time the Menelaus' theorem in the triangle $\Delta C C_{1} A$ cut by the transversal $B B_{1}$:

$$
\begin{equation*}
A B \cdot C_{1} P \cdot C B_{1}=A B_{1} \cdot C P \cdot C_{1} B \tag{4}
\end{equation*}
$$

We divide each relation (2), (3), and (4) by relation (1), and we obtain:

$$
\begin{equation*}
\frac{P A}{P A_{1}}=\frac{B C}{B A_{1}} \cdot \frac{B_{1} A}{B_{1} C} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \frac{P B}{P B_{1}}=\frac{C A}{C B_{1}} \cdot \frac{C_{1} B}{C_{1} A} \tag{6}\\
& \frac{P C}{P C_{1}}=\frac{A B}{A C_{1}} \cdot \frac{A_{1} C}{A_{1} B} \tag{7}
\end{align*}
$$

Multiplying (5) by (6) and by (7), we have:

$$
\frac{P A}{P A_{1}} \cdot \frac{P B}{P B_{1}} \cdot \frac{P C}{P C_{1}}=\frac{A B \cdot B C \cdot C A}{A_{1} B \cdot B_{1} C \cdot C_{1} A} \cdot \frac{A B_{1} \cdot B C_{1} \cdot C A_{1}}{A_{1} B \cdot B_{1} C \cdot C_{1} A}
$$

but the last fraction is equal to 1 in conformity to Ceva's theorem.

Unsolved Problem related to the Smarandache's Cevians Theorem (II).

Is it possible to generalize this problem for a polygon?

References:

[1] F. Smarandache, Problèmes avec et sans... problèmes!, Problem 5.40, p. 58, Somipress, Fés, Morocco, 1983.
[2] F. Smarandache, Eight Solved and Eight Open Problems in Elementary Geometry, in arXiv.org, Cornell University, NY, USA.
[3] M. Khoshnevisan, Smarandache's Cevian Theorem I, NeuroIntelligence Center, Australia, http://www.scribd.com/doc/28317760/Smarandache-s-Cevians-Theorem-II

