Smarandache’s Quantum Chromodynamics Formula:

In order to save the colorless combinations prevailed in the Theory of Quantum Chromodynamics (QCD) of quarks and antiquarks in their combinations when binding, we devise the following formula:

\[Q - A \in \pm M_3 \]

where \(M_3 \) means multiple of three, i.e. \(\pm M_3 = \{3 \cdot k \mid k \in \mathbb{Z}\} = \{\ldots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \ldots\} \), and \(Q = \) number of quarks, \(A = \) number of antiquarks.

But (1) is equivalent to:

\[Q \equiv A \pmod{3} \]

(Q is congruent to A modulo 3).

To justify this formula we mention that 3 quarks form a colorless combination, and any multiple of three (\(M_3 \)) combination of quarks too, i.e. 6, 9, 12, etc. quarks. In a similar way, 3 antiquarks form a colorless combination, and any multiple of three (\(M_3 \)) combination of antiquarks too, i.e. 6, 9, 12, etc. antiquarks. Hence, when we have hybrid combinations of quarks and antiquarks, a quark and an antiquark will annihilate their colors and, therefore, what’s left should be a multiple of three number of quarks (in the case when the number of quarks is bigger, and the difference in the formula is positive), or a multiple of three number of antiquarks (in the case when the number of antiquarks is bigger, and the difference in the formula is negative).

Quark-Antiquark Combinations.
Let’s note by \(q = \) quark \(\in \{\text{Up, Down, Top, Bottom, Strange, Charm}\} \), and by \(a = \) antiquark \(\in \{\text{Up}^, \text{Down}^, \text{Top}^, \text{Bottom}^, \text{Strange}^, \text{Charm}^\} \). Hence, for combinations of \(n \) quarks and antiquarks, \(n \geq 2 \), prevailing the colorless, we have the following possibilities:
- if \(n = 2 \), we have: \(qa \) (biquark – for example the mesons and antimessons);
- if \(n = 3 \), we have \(qqq, aaa \) (triquark – for example the baryons and antibaryons);
- if \(n = 4 \), we have \(qqaa \) (tetraquark);
- if \(n = 5 \), we have \(qqqqa, aaaaq \) (pentaquark);
- if \(n = 6 \), we have \(qqqaaa, qqqqq, aaaaaa (hexaquark) \);
- if \(n = 7 \), we have \(qqqqqaa, qqaaaaa (septiquark) \);
- if \(n = 8 \), we have \(qqqqaaa, qqqqqaa, qqaaaaa (octoquark) \);
- if \(n = 9 \), we have \(qqqqqqqq, qqqqqqqa, qqaaaaaa (nonaquark) \);
- if \(n = 10 \), we have \(qqqqqqqqaa, qqqqqqqqaa, qqaaaaaaa (decaquark) \);

etc.