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The electromagnetic field model including Nakanishi-Lautrup (NL) field of quantum electrody-
namics (QED) can easily treat creation and annihilation of positive and negative charge pairs,
although it is difficult for Maxwell’s equations to treat them. However, the model does not directly
satisfy the charge conservation equation and permits single charge creation and annihilation. It is
shown that the potential energy of NL field for a pair of charge creation and annihilation centers
is proportional to their distance. It causes the confinement of charge creation and annihilation
centers, which means the charge conservation for this model. The quark confinement might be also
explained by the energy of NL field.
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Maxwell’s equations have been used for analyses of
electromagnetic field since J. C. Maxwell found the equa-
tions in 1865[1]. In early 1930s, E. Fermi proposed mod-
ified electromagnetic field model for QED[2–4], where he
assumed that 4-D vector potential satisfy d’ Alembert
equation even in the case except Lorenz gauge condi-
tion. Gupta and Bleuler gave subsidiary conditions to
Fermi’s model in 1950[5, 6]. In 1960s, Nakanishi and
Lautrup proposed the auxiliary field called Nakanishi-
Lautrup (NL) field[7–10] to describe Lorentz covariant
electromagnetic field model for QED. It is now included
in the model of QED and Yang-Mills theory[11–14]. Re-
cently, we found that the electromagnetic field model
including a Lorentz scalar field, which is equivalent to
NL field with Feynman gauge, can easily treat creation
and annihilation of positive and negative charge pairs,
although it is difficult for Maxwell’s equations to treat
them[15, 16]. However, the model does not directly sat-
isfy the charge conservation equation and permits sin-
gle charge creation and annihilation. In this paper, it is
shown that the NL field induces the additional field en-
ergy and causes the confinement of charge creation and
annihilation centers, which means the charge conserva-
tion for this model.
Maxwell’s equations are given by

J = ∇×H− ε
∂E

∂t
, (1)

ρ = ε∇E, (2)

∇×E+ µ
∂H

∂t
= 0, (3)

∇H = 0, (4)
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where J and ρ are current and charge density, ε and µ are
permittivity and permeability, E and H are electric and
magnetic field, respectively. Eqs. (1) and (2) directly
give the following equation of the charge conservation,

∇J+
∂ρ

∂t
= 0. (5)

The creation and annihilation of positive and negative
charge pairs are ordinarily described by the following
equation, which is given by semiconductor physics[17–
19],

∇Jp +
∂ρp
∂t

= −∇Jn − ∂ρn
∂t

= G, (6)

where ρp and ρn are positive and negative charge con-
centration, Jp and Jn are positive and negative charge
current density, and G is charge creation-annihilation
rate. Since Maxwell’s equations satisfy the principle of
superposition[20], positive and negative charges must in-
dividually satisfy Eqs. (1) and (2). Therefore, positive
charges satisfy

Jp = ∇×Hp − ε
∂Ep

∂t
, (7)

and

ρp = ε∇Ep, (8)

where Ep and Hp denote electric and magnetic field in-
duced by positive charges, respectively. Eqs. (7) and (8)
directly give

∇Jp +
∂ρp
∂t

= 0, (9)

which contradicts (6) in the case of G ̸= 0. Since this
situation is same for negative charges, it is difficult for
Maxwell’s equations to treat creation and annihilation of
charge pairs.
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In order to solve the above problem, we introduce
Nakanishi-Lautrup field B and a gauge parameter α. The
Lagrangian density of the electromagnetic field LEM is
given by[10]

LEM = −1

4
F νλFνλ +B∂νAν +

1

2
αB2 − µJνAν , (10)

where Jν and Aν denote 4-D current (cρ,J) and 4-D
vector potential (ψ/c,A), respectively, and F νλ is given
by

F νλ = ∂νAλ − ∂λAν . (11)

The above Lagrangian density gives the following equa-
tions.

µJν = �Aν − ∂ν∂
λAλ − ∂νB, (12)

∂νAν + αB = 0, (13)

πν =
∂LEM

∂(∂0Aν)
= (B,−E/c), (14)

where πν denotes 4-D canonical momentum density and
� is d’Alembertian defined by � ≡ ∂20 −∇2.
Since E and H are written by

E = −∇ψ − ∂A

∂t
, (15)

H =
1

µ
∇×A, (16)

Eqs. (1) and (2) are rewritten by Eqs. (12), (15) and
(16) as

J = ∇×H− ε
∂E

∂t
+

1

µ
∇B, (17)

ρ = ε∇E− ε
∂B

∂t
. (18)

Then, the charge creation-annihilation rate is given by

G = ∇J+
∂ρ

∂t
= − 1

µ
�B. (19)

The above relation enable us to treat creation and anni-
hilation of positive and negative charge pairs. It should
be noticed that G = 0 needs not B = 0 but �B = 0.
When we consider about Lorentz covariance, E, H, A,
ψ, J and ρ have same transformation as Maxwell’s equa-
tions, although B, G, and � are not changed by Lorentz
transformation. Although Eq. (13) does not satisfy the
gauge invariance, if a scalar function Λ satisfies �Λ = 0,
E, H, and B are not changed by the transformation of

A′ = A+∇Λ, (20)

ψ′ = ψ − ∂Λ

∂t
. (21)

The above model is a natural extension from 3-D to 4-D
field for the complex electromagnetic field µH + iE/c.
Maxwell’s equations, given by Eqs. (1), (2), (3), (4),
(15), and (16), can be written by using 3-D complex field
as µHx + iEx/c
µHy + iEy/c
µHz + iEz/c

 =

 −i∂0 −∂z ∂y −∂x
∂z −i∂0 −∂x −∂y
−∂y ∂x −i∂0 −∂z


 Ax

Ay

Az

iψ/c

 ,

(22)

µ

 Jx
Jy
Jz
icρ

 =

 i∂0 −∂z ∂y
∂z i∂0 −∂x
−∂y ∂x i∂0
∂x ∂y ∂z


 µHx + iEx/c
µHy + iEy/c
µHz + iEz/c

 .

(23)
The model including NL field, given by Eqs. (3), (4),
(13), (15), (16), (17), and (18), can be written by using
4-D complex field as µHx + iEx/c
µHy + iEy/c
µHz + iEz/c

−αB

 =

 −i∂0 −∂z ∂y −∂x
∂z −i∂0 −∂x −∂y
−∂y ∂x −i∂0 −∂z
∂x ∂y ∂z −i∂0


 Ax

Ay

Az

iψ/c

 ,

(24)

µ

 Jx
Jy
Jz
icρ

 =

 i∂0 −∂z ∂y −∂x
∂z i∂0 −∂x −∂y
−∂y ∂x i∂0 −∂z
∂x ∂y ∂z i∂0


 µHx + iEx/c
µHy + iEy/c
µHz + iEz/c

−B

 .

(25)
Now we compare the calculation result given by

Maxwell’s equations and the electromagnetic field model
including NL field, using a simple structure. Fig. 1 shows
the example structure consisting of a sphere with radius
R including large amount of positive and negative moving
charges confined in the sphere, which satisfy

Jp + Jn = ρp + ρn = Ep +En = Hp +Hn = 0, (26)

R

r+ - + -

+ - + - + -

+ - - + + -

- + - + - + - +

+ - + - + - + -

+ - + - + -

+ - + -

FIG. 1. A sphere with radius R including positive and neg-
ative moving charges to be annihilating with time constant
τ .
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where En and Hn denote electric and magnetic field in-
duced by negative charges, respectively. Then, the NL
fields Bp and Bn induced by annihilation of positive and
negative charges also satisfy

Bp +Bn = 0. (27)

It is assumed that the positive and negative charges Qp =
4πρpR

3/3 and Qn = 4πρnR
3/3 in the sphere linearly

decrease by charge pair annihilation with time as

Qp = −Qn = Q0(1−
t

τ
), (28)

where Q0 is the absolute value of positive and negative
charge at t = 0 and τ is the time constant of charge pair
annihilation. By using spherical coordinate system and
Gauss’s law, the electric field out of the sphere has only
radial component as

Ep = −En =
Q0(1− t

τ )

4πεr2
, (29)

Since this structure has spherical symmetry, the mag-
netic field does not exist[20]. In the case of Maxwell’s
equations, the radial component of the current Jp and
Jn out of the sphere are needed by Eqs. (1) and (29) as

Jp = −Jn = −ε∂Ep

∂t
=

Q0

4πτr2
. (30)

The above result does not describe the real condition,
because the positive and negative charge currents can-
not exist out of the sphere. Maxwell’s equations cannot
change charge concentration without current because of
the charge conservation of Eq. (5). If we consider the NL
field Bp and Bn out of the sphere induced by annihila-
tion of positive and negative charges, they are given by
analogy of the relation between charge and potential as

Bp = −Bn =
µQ0

4πτr
. (31)

The positive and negative charge current density Jp and
Jn out of the sphere are given by Eqs. (17), (29), and
(31) as

Jp = −Jn = −ε∂Ep

∂t
+

1

µ
(∇Bp)r = 0. (32)

There is no current out of the sphere. The electromag-
netic field model including NL field gives the reasonable
result.
Next we consider about the electromagnetic

field energy including NL field[21]. By using
Eqs. (1), (2), (14), (17) and (18), cJνπν is writ-
ten by

cJνπν = JE+ c2ρB = −∇
(
E×H− 1

µ
BE

)
− ∂

∂t

(
εE2

2
+
µH2

2
+
B2

2µ

)
. (33)

Since the above equation is regarded as the continuity
equation for energy density, JE + c2ρB is energy anni-
hilation rate, E × H − BE/µ is the energy flow vector,
and (εE2 + µH2 + B2/µ)/2 is the energy density. The
NL field induces the additional energy density of B2/2µ.

The NL field permits the existence of charge creation
and annihilation centers by Eq. (19). As shown by Eq.
(31), the NL field B induced by a point charge creation
or annihilation center is given by

B = − µσ

4πr
, (34)

where σ denotes the creating charge per unit time. If
the charge creation or annihilation center is isolated, the
potential energy of the NL field VNL in a surrounding
sphere with radius R is given by

VNL = 4π

∫ R

0

B2

2µ
r2dr =

µσ2R

8π
. (35)

Since the potential energy is proportional to R, an iso-
lated charge creation or annihilation center cannot stably
exist. However, some kinds of pairs of charge creation
and annihilation centers can stably exist. Table I shows
the force between two centers A and B that create or an-
nihilate positive or negative charges, where the upper 4
cases induce attraction and the others induce repulsion.
Only the upper 4 pairs can stably exist, because attrac-
tive force reduces the potential energy of NL field. Fig.
2 shows the creation and annihilation centers for positive
charges, where d denotes their distance. The total NL
field Bpair induced by the pair of creation and annihila-
tion centers for positive charges shown in Fig. 2 is given
by

Bpair = −µσ
4π

(
1

r
− 1√

r2 + d2 − 2rd cos θ

)
, (36)

where the charge creation and annihilation rates are as-
sumed to be equal to σ, because the difference between
the creation and annihilation rates induces similar po-
tential energy as Eq. (35). If we assume the surrounding

TABLE I. Force between A and B centers with creation and
annihilation functions for positive and negative charges.

Charge-A Function-A Charge-B Function-B Force
positive creation positive annihilation attraction
positive creation negative creation attraction
negative creation negative annihilation attraction
positive annihilation negative annihilation attraction

positive creation positive creation repulsion
negative creation negative creation repulsion
positive annihilation positive annihilation repulsion
negative annihilation negative annihilation repulsion
positive creation negative annihilation repulsion
positive annihilation negative creation repulsion
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A

B

Positive charge
annihilation center

Positive charge
creation center

d

θ r

FIG. 2. Positive charge creation and annihilation centers with
their distance d.

sphere radius R is enough larger than d ( R≫ d ), the NL
field potential energy of the pair VNLpair in the sphere is
given by

VNLpair(d) = 2π

∫ R

0

(∫ π

0

B2
pair

2µ
sin θdθ

)
r2dr

=
µσ2

8π

(∫ R

0

2dr −
∫ R

0

∫ π

0

r sin θ√
r2 + d2 − 2rd cos θ

dθdr

)

=
µσ2

8π

(
2R−

∫ R

0

d+ r − |d− r|
d

dr

)

=
µσ2d

8π
. (37)

Therefore the potential energy is proportional to the dis-
tance d and the attractive force between charge creation
and annihilation centers is constant. It causes the con-
finement of charge creation-annihilation centers, which
means the charge conservation in this model instead of
Eq. (5). The above discussion does not depend on the
gauge parameter α.

The quark confinement has been energetically
studied[22–24] since Gell-Mann and Zweig introduced
quarks in hadron’s model in 1960s[25, 26]. Although
duality model was proposed by Nambu, t’Hooft, and
Mandelstam in 1970s[27–30], the theoretical explana-
tion of the confinement has not succeeded yet. Since
the potential dependence on the distance between cre-
ation and annihilation centers is same as the linear po-
tential of quarks based on the spinning stick model for
Regge trajectories[23], the quark confinement might be
explained by the energy of NL field.

In conclusion, the electromagnetic field model includ-
ing NL field can easily treat creation and annihilation of
positive and negative charge pairs. The NL field gives the
additional field energy, which is proportional to the dis-
tance between charge creation and annihilation centers.
It causes the confinement of charge creation and annihi-
lation centers, which means the charge conservation in
this electromagnetic field model. The quark confinement
might be also explained by the energy of NL field.

The author would like to thank Professor Kei-Ichi
Kondo of Chiba University for his helpful suggestion
about NL field.
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