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Abstract

The Principle of Equivalence is a central concept of Einstein’s theory of gravitation, which makes gener-
ally covariant presentation of that theory extremely convenient for working out and communicating its
dynamical detail. Weinberg has pointed out, however, that part of the base physics content of the theory,
e.g., its overall stress-energy and conserved four-momentum, is inaccessible to formulations which main-
tain strict general covariance. Feynman, whose lectures on gravitation initially pursue an order-by-order
construction of the theory, as a by-product arrived at a revelatory insight into the Lorentz pure-tensor
dynamical-field nature of the gravitational potential (i.e., of the “metric”) that reaches one step beyond
Weinberg’s not yet theory-stipulating separation of the Einstein tensor into its physically dissimilar lin-
ear and nonlinear parts. While Einstein’s gauge-imposition of a local conservation principle is a common
theme in physical theory, permitting it to spill over into outright solution nonuniqueness clearly isn’t ac-
ceptable classical physics. Thus adjunct stipulation of Feynman’s gravitational Lorentz condition, which
pins down the Lorentz pure-tensor dynamical-field nature of the “metric”, is fundamental to physically
sensible application of Einstein’s gravity theory.

Introduction

Newton postulated that any reference frame which is at rest or in uniform motion relative to “absolute space”
is an inertial one in which there exist no inertial forces such as centrifugal force. Mach pointed out that
it seemed less metaphysical to suppose that inertial forces such as centrifugal force arise from accelerations
relative to actually existing massive bodies, such as the sun, stars and nebulae, rather than to accelerations
relative to “absolute space”.

Einstein’s Principle of Equivalence postulates the universal existence of localized strictly inertial reference
frames, in which not only inertial forces such as centrifugal force are absent, but all gravitational force is

absent as well . Einstein’s postulate doesn’t envision these localized inertial reference frames as being at rest
or in uniform motion relative to Newton’s “absolute space”, but rather as being “in free fall” in whatever the
local mean gravitational field happens to be. Therefore Einstein’s postulated local inertial frames of reference
can certainly be accelerating relative to large masses in their vicinity, which contradicts Mach’s supposition
that such acceleration is the cause of inertial forces. Weinberg [1] points out that the available evidence
strongly favors Einstein’s postulate over Mach’s supposition; for example, the experiment of Dicke [2] found,
with high accuracy, no local force due to the sun’s gravitational field, in which the Earth is falling freely,
notwithstanding the Earth’s consequent acceleration relative to the sun (although there do exist less local
tidal effects due to the gradient of the sun’s gravitational field).

Einstein’s gravitational theory is strongly aligned to his Principle of Equivalence, which can seem to pro-
duce departures from normal dynamical reasoning that is consonant with Einstein’s 1905 Lorentz-covariant
relativity. For example, in Einstein’s local inertial frames gravitational force is absent, so all of the stress-
energy present in such frames can be attributed to “matter”, which implies that the “matter” stress-energy
tensor must have vanishing divergence in such frames. The mathematical instrument used in Einstein’s
gravity theory to select differential properties of theoretical-physics entities in local inertial frames is the
generally covariant partial derivative. Therefore the generally covariant divergence of the “matter” stress-
energy tensor must vanish.

The fundamental gravitational field equation of Einstein’s gravity theory states a nonlinear second-order

differential relation of the gravitational potential (aka the “metric” tensor) to the “matter” stress-energy
tensor in local inertial frames—although gravitational force is absent in such frames, that isn’t the case
for either the gravitational potential or the gravitational force gradient (aka the “curvature”) which occurs
in Einstein’s gravitational field equation in conjunction with the “matter” stress-energy tensor, and is a
nonlinear second-order differential transformation of the gravitational potential. In highly abbreviated form

Einstein’s gravitational field equation is written,

Gµν = −((8πG)/c4)Tµν , (1a)

where Tµν on its right-hand side is the symmetric “matter” stress-energy tensor, and the symmetric tensor
Gµν on its left-hand side is Einstein’s special form of the contracted Riemann curvature tensor that is
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nonlinearly made up of zeroth, first and second partial derivatives of the symmetric gravitational potential
(i.e., “metric”) tensor gµν . The theoretical physics thrust of this Einstein gravitational field equation is, of
course, the mathematically detailed way in which the “matter” stress-energy tensor Tµν acts as the source

of the gravitational potential (i.e., of the “metric” tensor) gµν in the context of local inertial frames where
the gravitational force vanishes.

We have pointed out that in such frames the only stress-energy is that of the “matter”, which in turn
implies the vanishing of the divergence of Tµν in those local inertial frames, and that this is mathematically
expressed as the vanishing of the generally covariant divergence of Tµν , namely,

Tµν;
ν = 0, (1b)

where the semicolon and index are used to denote the quite complicated generally covariant partial derivative,
which is a construct that includes nonlinear combinations of the zeroth and first partial derivatives of the
gravitational potential (i.e., of the “metric”) because such a generally covariant partial derivative in fact
accounts in more general frames for the gravitational force which happens to be absent in local inertial
frames.

Einstein specifically constructed his form Gµν of the contracted Riemann curvature tensor in such a way
that his gravitational field equation, namely Eq. (1a), compels the “matter” stress-energy tensor to have
vanishing generally covariant divergence, i.e., he made Eq. (1a) self-inconsistent unless Eq. (1b) is satisfied.
Einstein did this by contracting Gµν from the Riemann curvature tensor in such a way that,

Gµν;
ν = 0, (1c)

is identically satisfied—he made use of a Riemann curvature-tensor identity known as the Bianchi identity
to accomplish this [3].

It does seem desirable in principle to make such a fundamental “local conservation” property of a theory as
Eq. (1b) a consequence of its basic equation, which in this instance is Einstein’s gravitational field equation,
Eq. (1a). Maneuvers along the lines of Einstein’s specifically designing his Gµν such that Eq. (1c) is an
identity for the express purpose of absorbing a local conservation property into a theory’s basic equation have
indeed become very widespread in theoretical physics practice since Einstein’s time, but like all contrivances

such “gauge” imposition of a local conservation property on a theory’s basic equation comes with a built-in

potential downside which needs to be kept firmly in mind, as we point out in the next paragraph. The
“poster child” of “gauge” imposition is of course electromagnetic theory, whose basic four-vector potential
equation compels the vanishing of the divergence of the four-vector current density jν when it is written in
the form,

∂µ∂µAν − ∂ν∂µAµ = jν/c. (2a)

The left-hand side of Eq. (2a) has been specifically contrived to have the property that its normal divergence
vanishes identically , which thereby compels the desired vanishing of the normal divergence of the four-current
density jν on its right-hand side as a direct consequence of this particular electromagnetic basic equation.

Doing this sort of “neat trickery”, however, drops a fly into the ointment: insofar as a part of the basic
equation is caused to be identically satisfied , a redundancy is introduced into that equation which prevents

it from having a unique solution; i.e., that basic equation can no longer unequivocally supply all of the

information that it was envisioned to supply when it was written down.
In Einstein’s gravity theory the tendency has been to “just live with” such a state of affairs, citing the

fact that pure mathematicians who practice the closely related discipline of Riemann differential geometry
do exactly that by design. That mathematical discipline specifically limits its interest to the “intrinsic”
properties of the hypersurfaces that it studies, which are the invariants of general coordinate transformations.
To obtain those, it isn’t necessary for the basic equation to possess unique solutions; any solution, however
nonunique, will do because coordinate-transformation invariants have the same value for all solutions.

Is it reasonable for the gravitational branch of classical theoretical physics to likewise limit its predictive

goals concerning the results of envisioned measurements? Einstein inveighed to the end of his life against the
“incompleteness” of quantum theory, obstinately deaf to the question of how the implications of particle-wave
duality could possibly otherwise be theoretically dealt with. Yet here for a branch of manifestly classical

physics, namely gravitational theory, “living with” basic equations that fail to provide unique measurement-
predictive solutions is bafflingly regarded with equanimity by many authorities!

In the starkest contrast, no one advocates for a single moment “just living with” the solution nonunique-
ness of the basic electromagnetic four-vector potential theory manifested by Eq. (2a) above. To be sure, the
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most dramatic way to deal with Eq. (2a), namely its complete abandonment in favor of the electromagnetic
field equation system,

Fµν = −F νµ, ∂µF νλ + ∂νFλµ + ∂λFµν = 0 and ∂µFµν = jν/c,

which does indeed possess unique solutions for Fµν and which is inspired by the relations which the potential

entity (∂µAν − ∂νAµ) satisfies, doesn’t seem to have a gravitational-field-equation analog that springs from

similar relations and that likewise has unique solutions. However there also exists a less dramatic and

much more straightforward , but still fully Lorentz-covariant alternate tack for very satisfactorily resolving

the solution nonuniqueness issue of the electromagnetic Eq. (2a), namely adjunct stipulation of the Lorentz
condition,

∂µAµ = 0, (2b)

which when inserted into Eq. (2a) has the additional virtue of considerably simplifying it to just,

∂µ∂µAν = jν/c, (2c)

As a matter of fact, Eqs. (2b) and (2c) carry with them theoretical physics benefits which go far beyond merely
resolving the solution ambiguity of Eq. (2a): they bring the physical characteristics of the electromagnetic

field into sharp focus, revealing that its radiation propagates at speed c and has two possible polarizations
which lie in a plane transverse to its propagation direction, and also that its nonradiative component is
in essence that of a static scalar field along the coulombic lines of the equation −∇2A0 = j0/c—see R. P.
Feynman’s systematic Fourier-transformation dissection of Eqs. (2b) and (2c) [4].

Indeed, Feynman [5] (and also W. E. Thirring [6]) have done the analogous adjunct stipulation of the
“Lorentz condition” for gravitation, which in the course of likewise removing gravitation’s solution ambi-
guity simplifies that bulky theory even more drastically than what we have just seen above in the case of
electromagnetism, and it similarly brings the physical characteristics of the Lorentz pure-tensor dynamical
gravitational potential gµν into sharp focus.

We note, however, that there is no way to successfully apply an adjunct linear “Lorentz condition”
stipulation to the Einstein equation when it is presented in the customary “generally covariant” form of
Eq. (1a); that fact is apparent from the nonlinear character of the Einstein tensor Gµν which occurs on its
left-hand side. Indeed, the Eq. (1a) form of the Einstein equation is unsuited to any manner of theoretical
physics contemplation which isn’t completely tied to local inertial frames: the “matter” stress-energy tensor
on the right-hand side of Eq. (1a) ignores the stress-energy contribution associated with the gravitational
field by itself , which stress-energy contribution is in turn indiscriminately combined with a key descriptor
of the gravitational potential’s dynamics into the Einstein tensor found on the left-hand side of Eq. (1a).

In the next section we follow Weinberg’s lead [7] in separating the Einstein tensor into its linear descriptor
of the gravitational potential’s dynamics and its nonlinear exclusively gravitational-field contribution to the

total stress-energy , which is then combined with the “matter” contribution to the total stress-energy. The
resulting total stress-energy is then readily seen to have vanishing normal divergence (as it logically must

have), and it is also seen to be the complete source which feeds the linear descriptor of the gravitational
potential’s dynamics, as also logically must be the case.

But notwithstanding this satisfactory resolution of the stress-energy mysteries of the Einstein equation, it
is easily verified to remain an ambiguously under-determined redundant equation system which has four of its
ten field degrees of freedom up for grabs. However, with the details of the linear descriptor of the gravitational
potential’s dynamics in hand , adjunct stipulation of Feynman’s linear “Lorentz condition” for gravitation can

be carried out, and has, if anything, even more of a salutary effect on that ambiguous gravitational equation
than the electromagnetic Lorentz condition of Eq. (2b) has on the ambiguous electromagnetic four-vector
potential of Eq. (2a).

The Einstein equation as a Lorentz pure tensor theory

Following Weinberg [7] we extract from the Einstein tensor Gµν on the left-hand side of the Einstein equation

presented in Eq. (1a) the part G
(1)
µν of that tensor which is linear in (gµν − ηµν), where ηµν is the flat-space

Minkowski metric, and send that tensor’s nonlinear remainder to join the “matter” stress-energy tensor Tµν

on the equation’s right-hand side. The result of carrying those steps out is,

G
(1)
µν = −((8πG)/c4)τµν , (3a)
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where with the definition, ∂κ def
= ηκλ∂λ,

G
(1)
µν

def
= 1

2
[∂σ∂σgµν − ∂ν∂σgµσ − ∂µ∂σgνσ + ∂µ∂νηαβgαβ + ηµν(∂σ∂τgστ − ∂σ∂σηαβgαβ)], (3b)

and,

τµν
def
= Tµν − (c4/(8πG))(G

(1)
µν − Gµν). (3c)

It is readily verified from Eq. (3b) that G
(1)
µν is, like Gµν itself, symmetric in its two indices µν. With some

algebraic effort it can also be verified that,

∂µG
(1)
µν = 0, (3d)

is an identity . From Eq. (3a) this implies that,

∂µτµν = 0, (3e)

must also hold identically.
Eqs. (3d) and (3e) show that τµν , whose normal divergence vanishes, is the grand total stress-energy of

the entire system, which it indeed ought to be, since is has been constructed by combining the “matter”
stress-energy Tµν with the nonlinear part of the Einstein tensor that contains the stress-energy due to the
gravitational field by itself. This grand total stress-energy τµν is seen from Eq. (3a) to be the source that

feeds the linearized Einstein field tensor G
(1)
µν , which is a key descriptor of the dynamics of gµν .

Of course Eqs. (3d) and (3e) show that the Einstein equation reexpressed in the form of Eq. (3a) still
suffers from the very same solution nonuniqueness that we saw afflicted it when it was written in the very
much less transparent “generally covariant” form of Eq. (1a). But with the linear character of the key

descriptor G
(1)
µν of the dynamics of gµν now explicitly displayed , we are in a position to attempt to tackle

that issue with a well-chosen Lorentz-covariant linear adjunct stipulation.
For that purpose we of course select Feynman’s gravitational “Lorentz condition” [5],

∂µgµν = 1

2
∂ν(ηαβgαβ). (4a)

Insertion of this gravitational “Lorentz condition” into the six-term linearized Einstein tensor G
(1)
µν that is

explicitly given by Eq. (3b) veritably collapses the latter into just two terms, so that in conjunction with
the above Eq. (4a) gravitational “Lorentz condition” the Eq. (3a) Einstein equation becomes simply,

1

2
∂σ∂σ(gµν − 1

2
ηµνηαβgαβ) = −((8πG)/c4)τµν . (4b)

One can readily evaluate the contraction of both sides of Eq. (4b) with the Minkowski metric tensor ηµν .
Using that information enables one to reexpress the Eq. (4b) form of the Einstein equation as,

1

2
∂σ∂σgµν = −((8πG)/c4)(τµν − 1

2
ηµνηαβταβ), (4c)

which is the form preferred by Feynman.
Feynman [5] uses Fourier transformation to dissect the Eq. (4c) form of the Einstein equation in conjunc-

tion with its “Lorentz condition” of Eq. (4a). He shows the gµν potential which satisfies those two equations
to be a Lorentz pure-tensor dynamical field whose radiative part propagates at the speed of light and has
two polarizations in a plane transverse to its direction of propagation. Its nonradiative part astonishingly
has a more complicated structure than one would expect given the scalar character of Newtonian gravito-
statics. Electromagnetism has a scalar nonradiative part very similar to that of Newtonian gravitostatics,
but the Einstein equation’s nonradiative part is irreducibly tensor in character. However that prominent
tensor part of the static gravitational field negligibly affects non-relativistically moving probe masses; there
is a dynamical (v/c)2 suppression of its effect . But it certainly comes into its own for the deflection of light

by the sun, for which it doubles the refractive bending from what would be expected from a straightforward
extension of Newtonian gravitation.

Feynman also briefly considers just such a straightforward extension of Newtonian gravitation, which
would simplify the gravitational Lorentz condition of Eq. (4a) to merely ∂µgµν = 0 and would as well
remove the term ((8πG)/c4)( 1

2
ηµνηαβταβ) from the right-hand side of Eq. (4c). Feynman finds that such a

theory no longer has Lorentz pure-tensor character; its radiative part manifests three polarizations, the third
polarization arising from an admixture of scalar field. Of course this straightforward extension of Newtonian
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gravitation flunks the test of deflection of light by the sun by a factor of two, and it significantly deviates
from observations of planetary perihelion precession as well.

Finally to get a closed-form taste of what the now unique-solution “Lorentz-condition” Einstein gravi-
tational equations given by Eqs. (4a) and (4c) yield for gµν , we work out their approximate solution in a
simple static weak-field case. To keep matters simple we suppress all gravitational feedback by forcing the
stress-energy tensor to adhere to the static point-like energy density E(r) = msc

2δ(3)(r), which is achieved
in Eq. (4c) by taking,

τµν(r) = msc
2δ(3)(r)δ0

µδ0
ν . (5a)

In its static limit Eq. (4c) itself becomes,

− 1

2
∇2gµν(r) = −((8πG)/c4)(τµν(r) − 1

2
ηµνηαβταβ(r)). (5b)

Eqs. (5a) and (5b) together imply,

− 1

2
∇2gµν(r) = −((8πG)/c4)msc

2δ(3)(r)(δ0
µδ0

ν − 1

2
ηµν). (5c)

Since (δ0
µδ0

ν −
1

2
ηµν) is equal to 1

2
when µ = ν and to 0 otherwise, and we must impose the limiting flat-space

boundary conditions gµν(r) → ηµν as r → ∞, our result for gµν is,

g00(r) = 1 − ((2Gms)/(c2r)), g11(r) = g22(r) = g33(r) = −(1 + ((2Gms)/(c2r))) and gµν(r) = 0 if µ 6= ν.
(5d)

Through first perturbation order in G this gµν accords with the isotropic form of the Schwarzschild metric [8],
and its irreducibly tensor character is apparent as well through first order in G.

Conclusion

When contemplated strictly from the standpoint of local inertial frames, Einstein’s gravity theory makes a
strong impression of fragmented enormous complexity, with no overarching guideposts at all. But once we
realize that the linear terms of the Einstein tensor play a fundamentally different and much more impor-
tant physical role than its nonlinear terms, the entire picture changes—we can get to grips with what the
overarching global stress-energy actually is in the theory, including that it has vanishing normal divergence
and also understand that it logically enough is the driver and source of those linear terms of the Einstein
tensor. Furthermore, once these linear Einstein tensor terms are sharply physically distinguished from the
nonlinear ones, the solution nonuniqueness of Einstein’s gravity begins to appear no more inevitable than
solution nonuniqueness would be in electromagnetism. And the by far and away most natural way to break
the solution nonuniqueness, namely identification of the gravitational potential gµν as a Lorentz pure-tensor
dynamical field, which identification is actually implemented by adjunct stipulation along with the Einstein
equation of the Feynman gravitational Lorentz condition ∂µgµν = 1

2
∂ν(ηαβgαβ) that produces a breath-

taking simplification of the six-term linear Einstein tensor G
(1)
µν of Eq. (3b), has in fact been kicking about

in the theoretical underbrush for over half a century now.
Einstein never tired of labeling quantum theory as “incomplete”, notwithstanding the many extremely

cogent arguments that doing a “better” job with the reality of wave-particle duality is all but inconceivable.
But gravity as a classical theory with four-fold solution nonuniqueness? Where for that case did the so richly
merited Einstein sense of righteous outrage at physical measurement indeterminacy go?

Hopefully the days of gravitational solution nonuniqueness are now well and truly relegated to the past.
Is it even conceivable that anyone would actually want to argue that the gravitational potential ought to be
anything other than a Lorentz pure-tensor dynamical field?
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