
Commonsense local realism refutes Bell’s theorem

Gordon Watson∗

Abstract: With Bell (1964) and his EPR-based mathematics contradicted by ex-
periments, at least one step in his supposedly commonsense theorem must be false.
Defining commonsense local realism as the fusion of local-causality (no causal influence
propagates superluminally) and physical-realism (some physical properties change in-
teractively), we eliminate all such contradictions and make EPR correlations intelligible
by completing the quantum mechanical account in a classical way. Thus refuting the
famous inequality at the heart of Bell’s mathematics, we show that Bell’s theorem is
limited by Bell’s use of naive realism. Validating the classical mantra that correlated
tests on correlated things produce correlated results without mystery, we conclude that
Bell’s theorem and related experiments negate naive realism, not commonsense local
realism.

1 Notes to the Reader

a. Pre-reading: EPR and Bell (1964), available on-line, are taken as read; EPR to the start of
page 778, Bell to his equation (15). Other texts are also available via hyperlinks in References.
b. Notation: (~u,~v) denotes the angle between vectors ~u and ~v. ~u·~v is their inner product.
c. Results: All our results accord with the sound experimental findings of others, and no such
findings accord with Bell’s theorem or related inequalities.
d. Errors: Please report errors and typos; correspondence, suggestions, etc., are welcome.
e. Key words: equivalencies, operator Q, left-to-right precedence.

2 Introduction
Embracing commonsense local realism (CLR), the fusion of local-causality (no causal influence
propagates superluminally) and physical-realism (some physical properties change interactively),
we endorse EPR’s (1935:777) condition of completeness: Every element of the physical reality must
have a counterpart in our physical theory. But we reject the naive realism in Bell (1964; 2004) and
the nonlocality1 associated with Bell’s theorem and his impossibility proof.

“Indeed it was the explicit representation of quantum nonlocality [in de Broglie-Bohm theory]
which started a new wave of investigation in this area [of local causality]. Let us hope that
these analyses also may one day be illuminated, perhaps harshly, by some simple constructive
model. However that may be, long may Louis de Broglie continue to inspire those who suspect
that what is proved by impossibility proofs is lack of imagination,” (Bell 2004:167).

Believing that natural physical variables2 and their local interactions alone account for the cor-
related results produced by correlated tests on correlated things, we proceed as follows: After
∗e-mail eprb@me.com Ref: BTR2014; newfile20.lyx Date: 20140313
1 "Bell’s theorem asserts that if certain predictions of quantum theory are correct then our world is non-local,"

http://www.scholarpedia.org/article/Bell%27s_theorem. NB: We accept that those predictions are correct.
2 Unlike observables, natural physical variables are beables – elements of reality, things which exist, their existence

independent of measurement and observation – after Bell (2004:174).
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foreshadowing our case against a wholly mathematical version of Bell’s theorem, we define our
terms in the context of EPRB, our code for the experiment in Bell (1964). We then develop opera-
tor Q to formalize the equivalencies and elements of physical reality that we associate with EPRB
particle-device interactions. Bell’s theorem is then refuted mathematically before we discuss Q’s
significance and demonstrate Q’s utility in a 3-particle setting. We end with firm conclusions.

3 Bell’s theorem and our foreshadowing

Based on Bell’s equations 1964:(1)-(3), (12)-(14), with 〈AB〉 replacing P (~a,~b) to avoid confusion
with other functions, here’s a wholly mathematical version of Bell’s theorem:

If A(~a, λ) = A± = ±1; B(~b, λ) = B± = ±1 = −A(~b, λ);
´
dλ ρ(λ) = 1; (1)

then 〈AB〉 ≡
´
dλ ρ(λ)A(~a, λ)B(~b, λ) = −

´
dλ ρ(λ)A(~a, λ)A(~b, λ) 6= −~a·~b. (2)

(2) is based on treating λ as a single continuous parameter (Bell 1964:195), and the 6= in (2) is
Bell’s famous inequality,3 introduced via the impossibility-claim in the line following his 1964:(3).
This claim, based on his 1964:(15) and its dénouement, brings us to Bell’s (2004:147) explanation:

“To explain this dénouement without mathematics I cannot do better than follow
d’Espagnat (1979; 1979a).” Our paraphrase of d’Espagnat (1979:166) follows:

‘One can infer that in every particle-pair [every pair of twins], one particle has the
property A+ and the other has the property A−, one has property B+ and one B−.
Such conclusions require a subtle but important extension of the meaning assigned
to our notation A+ . Whereas previously A+ was merely one possible outcome of a
measurement made on a particle, it is converted by this argument into an attribute of
the particle itself.’

Concluding that Bell’s theorem is based on this restrictive assumption of naive realism, we reject
such a restriction when working to understand EPRB. We see no reason to accept that the ‘outcome
of a measurement’ here preexists (ie, exists before) the ‘measurement’. On the contrary, we allow
that the ‘outcome of a measurement’ or interaction may reveal the hidden preexisting equivalence
class to which the ‘system’ belongs: thereby revealing the hidden equivalencies of any pristine
correlates. Putting it simply: An operation on my twin (even an interview), may reveal something
about me; yet I remain unperturbed and unbloodied by the outcome of such interactions.

For: ‘There are no messages from one system to the other. EPRB correlations do
not give rise to signaling between noninteracting systems. Of course, however, such
correlations allow inferences from events in one system (eg, A+) to events in the other
(eg, B−),’ paraphrasing Bell (2004:208) in our terms.

Thus, in our micro-physics here, allowing that there may be “no infinitesimals by the aid of which
an observation might be made without appreciable perturbation,” after Heisenberg (1930:63), we
nevertheless allow that preexisting properties (beables; such as being a member of an equivalence
class) may be revealed by such perturbations. So, for us: If a test on a particle reveals an associated
equivalence class, then its twin, unperturbed and pristine, is (by birth)4 a member of a similar
class. Thus do we endorse EPR’s (1935:777) elements of physical reality, as we will later show.

We now show that Bell’s naive inference to naive realism (so different from our own, just given)
leads to contradictions. Subject only to our later showing that (2) is false based on (1) alone, but
as a consequence of such, we can represent Bell’s crucial 1964:(15) thus:

1 + 〈BC〉 = 1−~b · ~c ≥ |~a · ~c− ~a ·~b| = | 〈AB〉 − 〈AC〉 |; (3)
3 Famous because it is the first inequality in a family of relations collectively known as Bell inequalities.
4 Born, for example, in a spin-conserving decay.
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a relation that is certainly false over the range −π/2 < φ < π/2 if (~a,~b) = (~b,~c) = φ and (~a,~c) = 2φ.
To derive our (3), his pivotal 1964:(15), Bell goes beyond our (1)-(2) and invokes a third

unit-vector ~c in the unnumbered equations that follow his 1964:(14). It can be shown that Bell’s
theorem is limited to entities that satisfy his unnumbered equations.

So, having foreshadowed our case against Bell, and now on the way to formally refuting Bell’s
theorem from (1) and LHS (2) alone, we next study EPRB.

4 The EPRB context
“It is a matter of indifference ... whether λ denotes a single variable or a set, or even a
set of functions, and whether the variables are discrete or continuous,” Bell (1964:195).
λ may denote “any number of hypothetical additional complementary variables needed
to complete quantum mechanics in the way envisaged by EPR,” Bell (2004:242).

In (1), our shorthand A± (B±) denotes the result that experimentalist Alice (Bob) obtains by

testing a pristine spin-half particle p(λ) (p′(λ
′
))5 with a Stern-Gerlach device6 Â~a (B̂~b). ~a (~b), a

unit-vector in 3-space, denotes the freely-selected orientation of the principal axis; and, of course,
~a may equal ~b. Then, via the spherical symmetry associated with the pair-wise conservation of
spin in EPRB, we allow that λ+ λ

′
= 0 prior to any test. Thus Bob’s pristine particle p′(λ′

) may
also be represented by p′(−λ); noting that λ and λ′ are hidden variables.

Let Â~a • p(λ) denote the local interaction (disturbance, test, ‘measurement’) that transforms
λ to ±~a; ie, to a concluded transition (post-test orientation) denoting spin-up or spin-down with

respect to ~a. B̂~b • p′(λ′) similarly. Thus, with the widely-separated Â~a and B̂~b correlated by
the angle ~(a,~b), and with λ and λ′ anti-correlated at birth by spin conservation, we expect the
causally-independent A± and B± to be correlated, consistent with our classical mantra.

Then, in full accord with reciprocal causal independence and local-causality (ie, no causal
influence propagates superluminally), a boundary condition on our analysis is this: A± is causally

independent of B̂~b, B±, λ′ ; B± is causally independent of Â~a, A±, λ. Joining Bell, we are

“... careful not to assert that there is action at a distance,” Bell (1990: 13).

So we move to address the need for a mathematics that delivers the results of local particle-device
interactions and their equivalencies. We need a mathematical IF ... THEN ... that converts the
source of our inferences (reasoning) to physically significant consequences (what follows from that)
via the mathematical transmission of facts: independent of vague words and reasonings.

“Surely the big Â~a and the small p(λ) should merge smoothly with one another? And
surely in fundamental physical theory this merging should be described not just by
vague words but by precise mathematics?” after Bell (2004:190).

5 Operator Q
“One line of development towards greater physical precision would be to have the
[quantum] ‘jumps’ in the equations and not just in the talk – so it would come about as
a dynamical process in dynamically defined conditions,” Bell (2004:118). “The concept
of ‘measurement’ becomes so fuzzy on reflection that it is quite surprising to have it
appearing in physical theory at the most fundamental level. ... does not any analysis of
measurement require concepts more fundamental than measurement? And should not
the fundamental theory be about these more fundamental concepts?” Bell (2004:117-
118).

5 p′(λ′) and λ′ are used to helpfully distinguish Bob’s particle from Alice’s p(λ) and λ. In EPRB, λ′ = −λ.
6 SGD; a device with a suitable field, detector and printer.
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Allowing that a ‘measurement’ may reveal a once-hidden equivalence class to be a property of the
‘system’, we take transformation to be the concept ‘more fundamental than measurement’. So,
with g an arbitrary constant, δ a delta-function (since A± and B± are discrete), and with Λ the
space of λ and ~a, let Qa ≡ Q(λ→ ~a) = [λ→ ~a} be an operator with left-to-right precedence over
adjoining operators such that

[λ→ ~a} g ≡
ˆ

Λ

dλ δ(λ− ~a) g = g; (4)

[λ→ ~a} F (λ) ≡
ˆ

Λ

dλ δ(λ− ~a) F (λ) = F (~a); (5)

[λ→ ~a} F (λ) [λ→ ~b}G(λ) ≡ F (~a) [λ→ ~b}G[~a} = F (~a)G(~a). (6)

That is: The argument λ → ~a denotes Q’s transformation of λ to ~a, there being no requirement
that λ = ~a prior to Q’s action. In (6), in physical terms, [λ → ~a} has a local physical impact
on F (λ), thereby revealing a relevant equivalence class. Then, mathematically, Q brings related
equivalencies to the value of [λ→ ~b}G(λ) so that we have, as above, [λ→ ~b}G[~a} = G(~a). Thus,
sequentially, as Q’s operation on functions proceeds left-to-right, the first operation represents
local physical action on the related function.

Subsequent left-to-right operations then bring related equivalencies to the remaining functions.
For [λ→ ~a} is then identifying a beable: the property of ‘having an equivalence class’ [~a} = {λ ∈
Λ|λ ∼ ~a} with [.→ ~a}F (.) well-defined under the equivalence relation ∼ on Λ.

Let P (X|Z) denote the normalized prevalence (the ‘objective probability’, for some) of X given
Z; though the term ‘probability’ can be misleading in a theory devoid of subjectivity. Then the
above equivalencies reflect Bayesian-like updating in the expression

P [XY |Z) = P (X|Z) P (Y |XZ) = P (Y |Z) P (X|Y Z) (7)

when X and Y are causally independent: causally independent in the sense that neither exerts any
direct causal influence on the other. However, like the apple and pear crop, we expect a logical
connection because of the physical correlation between them. Just as here, with our Q, we expect
equivalencies because of physical correlations.

Then, allowing that there can be no preferred reference-frame in the study of widely separated
tests or disturbances, operator-precedence cannot imply operator preference here. That is, (6) may
be reversed to yield

[λ→ ~b}G(λ) [λ→ ~a)} F (λ) ≡ G(~b) [λ→ ~a} F [~b} = F (~b)G(~b). (8)

Then, from the symmetry in EPRB, the functions F (λ) and G(λ) in (6) and (8) must be such that
F (~a)G(~a) = F (~b)G(~b); a clue to the functions that justify Q’s left-to-right precedence under the
specified conditions. F (λ) = ~a · λ and G(λ) = ~b · λ are examples of such functions.

In short: Q reflects our validation of EPR’s elements of physical reality, defined as follows:

“We shall be satisfied with the following criterion, which we regard as reasonable. If,
without any way disturbing a system, we can predict with certainty (ie, with probability
equal to unity) the value of a physical quantity, then there exists an element of physical
reality [a beable] corresponding to this physical quantity,” EPR (1935:777).

That is, based on the foregoing: In testing A(~a, λ) in the context of EPRB, let Alice find A+; ie,
A+ = [λ→ ~a}~a ·λ = +1. Then, without any further disturbance anywhere, Alice can predict with
certainty that B(~a, λ′) = B− = −1. For we have, modifying (6),

[λ→ ~a}~a · λ[λ′ → ±~a}~a · (λ′) = [λ→ ~a}~a · λ[λ′ → ±~a}~a · (−λ) = [λ′ → ±~a}~a · [−~a} = −1. (9)
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So the EPR element of physical reality (the beable) in Bob’s test will be p′[−~a} via the equivalence
class to which the λ′ in his test belongs. Note that our result is not the result any nonlocality, nor
of wavefunction collapse. Rather, our mathematics has properly specified the physically significant
preexisting property [−~a} of the pristine λ′ that Bob will test; p′[−~a} being the EPR element of
physical reality (the beable) that corresponds to the physical quantity −1 in units of ~

2
where ~

is the reduced Planck constant. (Incidentally, later on, the 1/2 in the arguments of our prevalence
functions is the intrinsic spin s = 1/2 of spin-half particles.)

To be clear, let’s complement the EPR criterion with a CLR comment:

Unsurprisingly, without in any way disturbing particle p′(λ′) with its beable [−~a} —
ie, the particle p′[−~a} — we can predict with certainty the result B− of the particle’s
local interaction with (B̂~a) and its beable ~a.

6 Bell’s theorem refuted
Einstein argues that ‘EPR correlations can be made intelligible only by completing the
quantum mechanical account in a classical way,’ after Bell (2004:86). Let’s see.

We have λ relating to the spin of a pristine unpolarized7 spin-half particle p(λ). As such, λ will be
perturbed by p’s interaction with Â~a. Representing that interaction by Â~a • p(λ) ≡ [λ→ ±~a}, λ
will be transformed to±~a equiprevalently (ie, with equal prevalence) since λ is a random parameter.
So, expanding (1) in our terms:

A(~a, λ) = A± = ±1 = [λ→ ±~a}~a · λ, (10)

B(~b, λ) = B± = ±1 = −A(~b, λ) = −[λ→ ±~b}~b · λ, (11)

dλ = |λ|dΩ = dΩ; ρ(λ) =
1

4π
;

ˆ
dλ ρ(λ) =

1

4π

4πˆ

0

dΩ = 1, (12)

where Ω is a unit of solid-angle. Then, inserting (10)-(12) into LHS (2), and recalling (6):

〈AB〉 = − 1

4π

4πˆ

0

dΩ [λ→ ±~a)}~a · λ [λ→ ±~b}~b · λ = −(±1)(± [~a} ·~b) = −~a ·~b. QED; � (13)

Bell’s theorem, as represented in (2) above, is refuted. And the anticipated functions arising from
the required equality of (6) and (8) are here as F (λ) = ~a · λ and G(λ) = −~b · λ.

With (13) being a significant result, we next discuss Q’s significance before demonstrating its
utility in analyzing multiparticle experiments.

7 Q’s significance

From (1), the product AB = A(~a, λ)A(~b, λ) = ±1. So we now move to establish the consequential
distribution of ±1 as a function of ~a and ~b. That is, with Z denoting EPRB, we combine (10) with
(11) and equate the result to the prevalence relation for such binary (±1) outcomes:

AB = −[λ→ ±~a}~a · λ [λ→ ±~b}~b · λ = −(±1)~b · [±a} = ~−a ·~b (14)

= (+1)P (AB = +1|Z) + (−1)[1− P (AB = +1|Z)]. (15)
7 “Each particle, considered separately, is unpolarized here,” Bell (2004:82).
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∴ P (AB = +1|Z) = (1− ~a.~b)/2 = sin2 1
2
(~a,~b); P (AB = −1|Z) = cos2 1

2
(~a,~b). (16)

The ±1 distributions for AB and 〈AB〉 are thus:

P (AB = +1|Z) = sin2 1
2
(~a,~b) = P (〈AB〉 = +1|Z); (17)

P (AB = −1|Z) = cos2 1
2
(~a,~b) = P (〈AB〉 = −1|Z). (18)

In this way we resolve the concern of many about the opinion of Bell and others – eg, Bell (2004:243)
and Bell’s move there from his (9) to his (10) – that causal independence should equate to statistical
independence, seen as a consequence of local causality.

“One general issue raised by the debates over locality is to understand the connection
between stochastic independence (probabilities multiply) and genuine physical inde-
pendence (no mutual influence). It is the latter that is at issue in ‘locality,’ but it is
the former that goes proxy for it in the Bell-like calculations. We need to press harder
and deeper in our analysis here,” Arthur Fine, in Schlosshauer (2011:45).

Derived from first principles, (17)-(18) deliver: P (A+B+|Z) 6= P (A+|Z)P (B+|Z); etc. Thus
statistical independence does not equate to causal independence under local causality, given such
physical correlations as those in EPRB; nor with pear and apple crops. Rather, like the apple
and pear crop discussed above, there is a physical correlation and hence a mathematical relation
between them. Just as, with our Q, we have physical correlations and consequent equivalencies.

Comparing (14) with (13), we see that Q henceforth eliminates the need for the normalizing
integral in expressions like (13); for Q is a normalized operator when, as here, its arguments are
normalized. We next expand the order of operations in (13) to demonstrate Q’s correlative power
and its Bayesian-like updating:

〈AB〉 = P (B+|ZA+)− P (B−|ZA+)− P (B+|ZA−) + P (B−|ZA−) (19)

= 1
2

sin2 1
2
(~a,~b)− 1

2
cos2 1

2
(~a,~b)− 1

2
cos2 1

2
(~a,~b) + 1

2
sin2 1

2
(~a,~b) = −~a.~b. (20)

Or, reversing the operations in (13), and then expanding them:

〈AB〉 = 〈BA〉 = −[λ→ ±~b}~b · λ [λ→ ±~a}~a · λ = −(±1)(±~a · [~b} = −~a ·~b (21)

= P (A+|ZB+)− P (A−|ZB+)− P (A+|ZB−) + P (A−|ZB−) (22)

= 1
2

sin2 1
2
(~a,~b)− 1

2
cos2 1

2
(~a,~b)− 1

2
cos2 1

2
(~a,~b) + 1

2
sin2 1

2
(~a,~b) = −~a.~b. (23)

Similar analysis delivers the correct results for GHZ (1989), GHSZ (1990), CRB (1991), so we next
demonstrate Q’s utility via a related 3-particle experiment.

8 Q’s utility
We consider Mermin’s (1990, 1990a) 3-particle variant of GHZ. Respectively: Three spin-1/2
particles with spin parameters λ, µ, ν emerge from a spin-conserving decay such that

λ+ µ+ ν = π. (24)

Any parameter may thus be correlatedly represented in terms of the other two. The particles
separate along three straight lines in the y-z plane to interact with three SGDs that are orthogonal
to the related line of flight. Let a, b, c denote the azimuthal angles of each SGD’s principal axis
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relative to the positive x-axis; let the test results be A,B,C; and let ⊕ denote xor. Then extending
(6), (10), (11) and using (24)8, we have:

A(a, λ) = A± = ±1 = [λ→ a⊕ a+ π} cos(λ− a), (25)

B(b, µ) = B± = ±1 = [µ→ b⊕ b+ π} cos(µ− b), (26)

C(c, ν) = C± = ±1 = [ν → c⊕ c+ π} cos(ν − c). (27)

〈ABC〉 = [λ→ a⊕ a+ π} cos(λ− a)[µ→ b⊕ b+ π} cos(µ− b)[ν → c⊕ c+ π} cos(ν − c) (28)

= [µ→ b⊕ b+ π} cos(µ− b)[ν → c⊕ c+ π} cos(π − [a} − µ− c)⊕− cos(−[a} − µ− c) (29)

= [ν → c⊕ c+ π} cos(π − [a} − [b} − c)⊕− cos(−[a} − [b} − c)⊕− cos(−[a} − [b} − c)

⊕ cos(−[a} − [b} − c− π) (30)

= cos(π− [a}− [b}−c)⊕− cos(−[a}− [b}−c)⊕− cos(−[a}− [b}−c)⊕cos(−[a}− [b}−c−π) (31)

= cos(π − a− b− c⊕− cos(−a− b− c)⊕− cos(−a− b− c)⊕ cos(−a− b− c− π) (32)

= − cos(a+ b+ c). QED.� (33)
This is the correct result for the subject experiment; with Mermin’s (1990a:733) ‘crucial minus
sign’ properly delivered: For, from (33), 〈ABC〉 = −1 when a+ b+ c = 0.

9 Conclusions
We conclude that Bell’s theorem and related experiments negate naive realism, not commonsense
local realism; noting that prevalences may be derived from such beables as our equivalence classes.

Making EPR correlations intelligible by completing the quantum mechanical account in a clas-
sical way, our commonsense local realistic theory also corrects the view – eg, Bell (2004:243) and
Bell’s move there from his (9) to his (10) – that causal independence should equate to statistical
independence, seen as a consequence of local causality. Rather: A left-to-right chain of equivalence
based on physical correlations, not causal influences, links the causally independent outcomes in
(1) and in (10)-(11) and in (25)-(27) to the appropriate local-realistic expectations 〈.〉.

Working from first principles to show that Bell’s work is limited by his use of naive realism,
we also eliminate the source of Bell’s discomfort (expressed in Bernstein 1991:84). We therefore
appropriate and rephrase Bell’s words:

Perfect quantum correlations demand something like the ‘genetic’ hypothesis: like the
triplets linked by λ, µ, ν in (24). It’s so reasonable to assume that the particles carry
with them programs, correlated in advance, telling them how to behave. This is so
rational that when Einstein saw that, and the others refused to see it, he was the
rational man. The others were burying their heads in the sand. So it’s great that
Einstein’s idea of a classical locally-causal reality works. The reasonable thing works.

Thanks to John Bell.
8 Used in the move (28)-(29) to allow precedent operators to act on relevant variables.
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