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Abstract

We tested alternative cosmologies using Monte Carlo simulations based on the sampling method

of the zCosmos galactic survey. The survey encompasses a collection of observable galaxies with

respective redshifts that have been obtained for a given spectroscopic area of the sky. Using a

cosmological model, we can convert the redshifts into light-travel times and, by slicing the survey

into small redshift buckets, compute a curve of galactic density over time. Because foreground

galaxies obstruct the images of more distant galaxies, we simulated the theoretical galactic density

curve using an average galactic radius. By comparing the galactic density curves of the simulations

with that of the survey, we could assess the cosmologies. We applied the test to the expanding-

universe cosmology of de Sitter and to a dichotomous cosmology.

I. INTRODUCTION

We tested cosmological models using rel-

atively small simulations that can be run on

a home computer. Simulation is a promis-

ing and powerful tool for the field of cosmol-

ogy. For example, the Millennium Simula-

tion project at the Max Planck Institute for

Astrophysics, the largest N-body simulation

carried out so far, simulated the formation

of large structures in the universe using a

cluster of 512 processors. Our rationale was

to slice a galactic survey into small redshift

buckets. We then used cosmological models

to compute the volume of each bucket and

derived the galactic density curve versus the

redshift, or light-travel time. We used the

simulation to generate a uniform distribution

of galaxies for each redshift bucket. We then

computed the number of visible galaxies (i.e.,

those that were not covered by foreground

galaxies) to derive a simulated galactic den-

sity curve. Our method requires only a cos-

mological model, a behavior for the galactic

density, and the average galactic radius ver-

sus the redshift.

We are interested in a special class of cos-

mological models: cosmologies with a Hubble
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constant that does not vary over time to con-

form to the linear relationship between the

luminosity distance and the redshift observed

for Type Ia supernovae [1]. This choice was

motivated by the idea that the laws of nature

follow simple principles. There are two dis-

tinct cosmologies that satisfy this condition:

the de Sitter flat-universe cosmology and the

dichotomous cosmology introduced in [2].

The de Sitter cosmology is a solution to

the Friedmann equation for an empty uni-

verse, without matter, dominated by a repul-

sive cosmological constant Λ corresponding

to a positive vacuum energy density, which

sets the expansion rate H =
√

1
3
Λ. The

dichotomous cosmology consists of a static

material world and an expanding luminous

world. It is not difficult to envision a mech-

anism whereby light expands and matter is

static. For example, consider that the light

wavelength is stretched via a tired-light pro-

cess when photons lose energy. The number

of light wave cycles is constant, resulting in

an expanding luminous world and static ma-

terial world. In order to maintain a constant

speed of light, we would still have to intro-

duce a time-dilation effect [2].

The same equation relates light-travel

time to redshifts for both the dichotomous

and the de Sitter cosmologies, making it easy

to compare both models using our testing

framework.

II. METHOD

A. The cosmological model

Consider an expanding luminous world, or

an expanding universe, with a constant ex-

pansion rate H0. Because of the expansion,

the distance between two points is stretched.

Let us introduce the Euclidean distance y,

which is the equivalent distance measured if

there were no expansion. The Euclidean dis-

tance is also the proper distance at the time

light was emitted, which is the comoving dis-

tance times the scale factor at the time of

emission. Now, consider a photon at a Eu-

clidean distance y from the observer, moving

towards the observer. Hence, y must satisfy

the following differential equation:

dy

dt
= −c+H0y . (1)

where c is the speed of light.

By setting time zero at a reference Tb in

the past, with T the light travel time between

the photon and the observer, we get t = Tb−

T ; therefore, dt = −dT . Hence, (1) becomes:

dy

dT
= c−H0y , (2)

with boundary condition y(T = 0) = 0.

Integrating (2) between 0 and T , we get:

y =
c

H0

(1− exp(−H0T )) . (3)
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Because dt = da
H a

from da
dt

= Ha, where a

is the scale factor, and given the cosmologi-

cal redshift equation (1 + z) = 1
a
, the proper

light-travel time versus redshift is:

T =
∫ 1

1/(1+z)

da

H0 a
=

1

H0

ln(1 + z) . (4)

By substitution of (4) into (3), we get:

y =
c

H0

z

(1 + z)
, (5)

As T0 = y
c
, we finally get:

T0 =
1

H0

z

(1 + z)
, (6)

where T0 is the light-travel time in the

temporal reference frame of the observer, H0

the Hubble constant, and z the redshift. Eq.

(6) is our cosmological model relating light-

travel time to redshifts.

B. The sampling method

The zCosmos galactic survey [3] consists

of a collection of visible galaxies with respec-

tive redshifts obtained for a given spectro-

scopic area in the sky. Here we used Data

Release DR1, which contains galactic obser-

vations up to a redshift of 5.2. We sliced the

collection of galaxies into small redshift buck-

ets and counted the number of galaxies in

each bucket. Using our cosmological model,

we converted the redshifts into light-travel

times. The volume of each bucket is equal to

the volume of the slice for the whole sphere

contained between the lower and upper ra-

dius boundaries of the bucket multiplied by

the ratio of the spectroscopic area of the sur-

vey divided by the solid angle of the sphere.

For an observer at the center of a sphere,

the volume of a slice of the sphere is:

Vi =
4π

3

(
r3i − r3i−1

)
, (7)

where ri−1 and ri are the lower and upper

radius boundaries of the bucket, respectively.

The spectroscopic area of the zCosmos

galactic survey was determined to be 0.075

square degrees [4]. Hence, the ratio of the

survey spectroscopic area divided by the solid

angle of the sphere is as follows:

ηsurv =
0.075

4π(180/π)2
= 1.81806× 10−6 . (8)

Thus, the volume of the ith bucket of the

survey is ηsurvVi. The galactic density of the

bucket is the number of galaxies contained

within the redshift boundaries of the bucket

divided by the bucket volume. By computing

the galactic density for each bucket, we get

the galactic density curve of the survey versus

the redshift or light-travel time.

C. The simulation method

To simulate the galactic density curve,we

need in addition to a cosmological model,
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two other behaviors: the galactic density

versus redshift and the relationship between

the average galactic radius and redshifts.

For the sake of convenience, we used the

same redshift slicing that we used to com-

pute the survey galactic-density curve, say

z ∈ {0, z1, z2, ..., zn}, where zi+1 = zi + δz.

By iteration from redshifts z1 to zn, we gener-

ated Ni galaxies with a uniform distribution

in an isotropic universe and then determined

whether each galaxy is visible amongst the

foreground galaxies. We determined the po-

sition of each galaxy using the astronomical

spherical coordinates (r, θ, ϕ), where r is the

radial distance, θ ∈ [−π
2
, π
2
] is the declination,

and ϕ ∈ [0, 2π] is the right ascension. Each

galaxy also has an associated radius.

First, we fixed the spectroscopic area of

the simulation by taking boundaries for the

declination and right ascension, say ϕ ∈

[ϕmin, ϕmax] and θ ∈ [θmin, θmax]. The spec-

troscopic area of the simulation is:

specArea=
(

180

π

)2

(sin θmax − sin θmin)

×(ϕmax − ϕmin) , (9)

and the spectroscopic area of the simula-

tion to solid angle of the sphere is:

ηsim =
specArea

4π(180/π)2
. (10)

To determine the number of galaxies to

generate for a redshift bucket [zi−1, zi], we

computed the volume Vi of the spherical shell

using (7) and then multiplied the galactic

density by ηsimVi, hence:

Ni = ρi ηsimVi , (11)

where Ni is the number of galaxies gener-

ated, ρi is the galactic density at redshift zi,

and ηsim and Vi are as defined previously.

To generate a galaxy, we drew two inde-

pendent, uniform random variables, say X

and Y, on the interval [0, 1] and computed the

declination and right ascension of the galaxy

as follows:

θ = θmin +X(θmax − θmin) ,

ϕ = ϕmin + Y (ϕmax − ϕmin) . (12)

The newly generated galaxy was at-

tributed the radial distance corresponding to

the light-travel time at redshift zi.

Next, we determined whether each gener-

ated galaxy was hidden by foreground galax-

ies. As an example, consider the calculations

for galaxy B with galaxy A in the foreground.

We compute the distance between the pro-

jection of galaxy A on the plan of galaxy B

and galaxy B itself, which we call the ”pro-

jected distance”. If the projected distance is

smaller than or equal to the critical distance,

then galaxy B is determined to be not visible.

The projected distance is calculated as:
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projectedDist =
√
squareDist , (13)

where the square distance is:

squareDist= (xA − xB)2 + (yA − yB)2

+(zA − zB)2 , (14)

and (x, y, z) are the Cartesian coordinates

of both galaxies projected in the plan of

galaxy B, and subscripts A and B designate

the coordinates of galaxies A and B, respec-

tively.

The spherical coordinates are converted to

Cartesian coordinates as follows:

x = rB cos θ sinϕ ,

y = rB cos θ cosϕ ,

z = rB sin θ , (15)

where rB is the radial distance of galaxy

B required to project galaxy A into the plan

of galaxy B.

The critical distance is calculated as:

criticalDist =
rB
rA
RA +RB , (16)

where RA and RB are the respective radii

of galaxies A and B. The ratio of radial dis-

tances, rB
rA

, applied to the radius of galaxy A

represents the projection of galaxy A into the

plan of galaxy B according to Thales’ theo-

rem.

For the special case when the foreground

galaxy A is lies over galaxy B but covers it

only partially (see Fig. 1), we consider galaxy

B to be not visible. The zCosmos galac-

tic survey was obtained using an automated

device, and an algorithm cannot identify a

galaxy that is not isolated from other sources

of light. Still, galaxy B could hide more dis-

tant galaxies.

FIG. 1. A foreground galaxy partially covering

a more distant galaxy.

Finally, we count the visible galaxies in

each redshift bucket and multiply the counts

by the ratio of the survey area to the sim-

ulated spectroscopic area in order to have

numbers that are comparable between the

survey and the simulation.

To generate the declination and right as-

cension angles of a galaxy, we used the

Mersenne Twister algorithm [5], which is a
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pseudo-random number generator based on

the Mersenne prime 219937−1. The algorithm

has a very long period of 219937−1 and passes

numerous tests for statistical randomness.

D. Galactic density and radius func-

tion of redshifts

In the dichotomous cosmology, where the

material world is static and the luminous

world is expanding, the galactic density is

constant over time, but the image of galaxies

is dilated by a factor of (1 + z), because the

expanding luminous world acts like a mag-

nifying glass. Because light is stretched, the

apparent size of galaxies is also stretched by

the same factor, resulting in a lensing effect

across the whole sky. In contrast, in the ex-

panding universe theory, the galactic density

increases by a factor (1 + z)3 as we look back

in time.

The radius of a galaxy in an expanding

universe can be tackled in two different ways.

If we consider that the whole space expands,

then the galactic radius expands over time

and is divided by the factor (1 + z). Be-

cause the expanding universe has the same

magnifying effect as the expanding luminous

world, the galactic radius is also multiplied

by a factor of (1 + z). The net effect is that

the galactic radius is constant over time, as

in Expanding Cosmology A in Table 1. The

other approach is to consider that galaxies do

not expand in size, but because of the mag-

nifying effect of the expansion, the image of

the galaxies is dilated by a factor (1 + z), as

in Expanding Cosmology B in Table 1.

In Table 1, ρ0 is the present galactic den-

sity, and R0 is the present average galactic

radius. Because of the cluster of galaxies

around the Milky Way, the number of galax-

ies in the bucket with redshift 0.1 was gen-

erated to match the galactic density of the

survey. For buckets with redshifts above 0.1,

we used the functions in Table 1.

III. RESULTS AND DISCUSSION

A. Galactic density curves

For both the survey and simulated galac-

tic density curves, we used redshift buckets

of size δz = 0.1. We used 0.082 square de-

grees as the spectroscopic area for the di-

chotomous cosmology simulation. We used

a smaller value of 0.025 square degrees for

the expanding universe theory because of the

large number of galaxies generated. For the

Hubble constant employed in the cosmolog-

ical model (6), we used a value of H0 =

67.3 kms−1Mpc−1, or 2.16× 10−18sec−1 [1].

Figure 2 shows the simulated galactic den-

sity curve for the dichotomous cosmology ver-

sus the galactic density curve obtained from
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TABLE I. Galactic density and radius functions of redshifts for the dichotomous cosmology and

expanding universe theory.

Galactic density Galactic radius

Dichotomous Cosmology ρ0 R0(1 + z)

Expanding Cosmology A ρ0(1 + z)3 R0

Expanding Cosmology B ρ0(1 + z)3 R0(1 + z)

the survey. For this simulation, we used

a constant galactic density of ρ = 3 × 106

galactic counts per cubic Glyr (billion light

years) and an average galactic radius of R =

40, 000 (1 + z) light years. The factor (1 + z)

accounts for the magnifying effect of the ex-

panding luminous world in the dichotomous

cosmology (see section II.D).

The present average galactic radius of

40, 000 light years is within the range of

dwarf galaxies and large galaxies. In [6],

the galaxies were divided into two groups

based on their respective mass: a group with

M∗ ≈ 1011M�, corresponding to dwarf galax-

ies, and a group with M∗ > 1011.5M�, corre-

sponding to large galaxies. According to that

study, the present average radius of dwarf

galaxies is 20, 200 light years, whereas that of

large galaxies is 65, 200 light years. Because

dwarf galaxies are much more numerous than

large galaxies, we would expect the overall

average galactic radius to be smaller than

40, 000 light years. The gravitational lens-

ing effect that creates a halo around galaxies,

and some blurring effect from the luminosity

of galaxies, can be accounted for by the fact

that foreground galaxies obstruct the images

of distant galaxies over a larger area than

that of the circle defined by the intrinsic ra-

dius of the foreground galaxies. Furthermore,

a minimum distance must be observed be-

tween galaxies for the selection algorithm of

the telescope to be able to identify the galax-

ies as being distinct from one another.

Figure 3 shows the simulated galactic den-

sity curve for Expanding Cosmology A ver-

sus the galactic density curve obtained from

the survey. The galactic density used for this

simulation was ρ = 3 × 106 (1 + z)3 counts

per cubic Glyr. Two curves were simulated

with an average galactic radius of 48, 000 and

78, 000 light years, respectively. The grounds

for using a constant galactic radius in Ex-

panding Cosmology A are explained in Sec-

tion II D. In this cosmology, we can vary ρ0

and R0, and there is no solution such that

the simulated galactic density curve matches

the galactic density curve of the survey.

7



FIG. 2. Galactic density curve for the dichoto-

mous cosmology. Glyr are billion light years.

The solid triangles indicate densities based on

the zCosmos survey. The open dots indicate den-

sities obtained by Monte Carlo simulation for the

dichotomous cosmology with a galactic radius of

40,000 light years.

Figure 4 shows the simulated galactic den-

sity curve for Expanding Cosmology B versus

the galactic density curve obtained from the

survey. We again used a galactic density ρ =

3×106 (1+z)3 counts per cubic Glyr. The two

curves simulated for this cosmology have an

average galactic radius of R = 40, 000 (1 + z)

light years and R = 13, 000 (1+z) light years,

respectively. There is no solution for Expand-

ing Cosmology B such that the simulated

galactic density curve matches the galactic

density curve of the survey.

FIG. 3. Galactic density curve for Expanding

Cosmology A, where Glyr are billion light years.

The solid triangles indicate densities based on

the zCosmos survey. The open dots indicate den-

sities obtained by Monte Carlo simulation with

a galactic radius of 78,000 light years. The open

triangles are the simulated densities obtained

with a galactic radius of 48,000 light years.

B. Size-biased selection in galactic

surveys

As the redshift increases, the number of

foreground galaxies increases, leaving only

small areas where more distant galaxies can

be observed. This effect of increasing red-

shifts decreases the likelihood of selecting

large galaxies and smaller galaxies are pref-

erentially selected. This size-biased selection

could have a significant impact on studies of

the morphological evolution of galaxies. The

effect of size-biased selection can be quanti-

fied by using a Monte Carlo simulation to
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FIG. 4. Galactic density curve for Expanding

Cosmology B. Glyr are billion light years. The

solid triangles indicate densities based on the

zCosmos survey. The open dots indicate den-

sities obtained by Monte Carlo simulation with

a galactic radius of 40,000 light years. The open

triangles are the simulated densities obtained

with a galactic radius of 13,000 light years.

generate galactic radii with a size distribu-

tion obtained from galactic surveys at low

redshifts.

IV. CONCLUSION

We developed a Monte Carlo simulation

framework to test cosmologies. The frame-

work is based on the sampling method of the

zCosmos galactic survey. We used simula-

tions to generate a theoretical galactic den-

sity curve for a given cosmology. The theo-

retical density curve was then compared with

the galactic density curve obtained from the

galactic survey. We applied the test to the

flat-universe de Sitter cosmology and to a di-

chotomous cosmology.

The simulated galactic density curve of

the dichotomous cosmology matched the sur-

vey galactic density curve remarkably well.

For the expanding universe classes that we

considered, there was no solution such that

the simulated galactic density curve matched

the galactic density curve of the survey. On

the basis of this test, we conclude that the

dichotomous cosmology provides an accurate

description of the physics underlying cosmo-

logical redshifts.
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