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Abstract This paper aims to offer a testing framework for the structural
properties of the Brownian motion of the underlying stochastic process of a
time series. In particular, the test can be applied to financial time-series data
and discriminate among the lognormal random walk used in the Black-Scholes-
Merton model, the Gaussian random walk used in the Ornstein-Uhlenbeck
stochastic process, and the square-root random walk used in the Cox, Inger-
soll and Ross process. Alpha-level hypothesis testing is provided. This testing
framework is helpful for selecting the best stochastic processes for pricing con-
tingent claims and risk management.
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1 Introduction

One approach to testing for lognormality of financial time series is to analyze
the distribution of the returns. If a time series follows a lognormal random
walk, then the continuously compounded returns ln(St/St−1) where St is the
price process must be normally distributed. This approach has been used by
[1] for interest rate changes. There are many ways to test the normality of a
distribution such as the Kolmogorov-Smirnov test and the Anderson-Darling
test [5]. Such tests may be used to accept or reject the hypothesis of normally
distributed returns given a certain significance level.

Inferring lognormality from a normality test of the distribution of returns
has some weaknesses. For example, in many cases a Gaussian random walk or
square-root random walk may exhibit close to normally distributed returns.
Accordingly, testing for normality of returns is not enough to infer lognormality
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of a time series. In addition, returns of financial time series exhibit departures
from normality such as anomalies of the skewness and kurtosis, outliers and,
for equity and market indexes, fat tails [6,7]. Therefore, a normality test may
give a negative result at the same time that we accept that the underlying
process is lognormal overall. These weaknesses motivate the development of
tests that do not rely on the hypothesis that returns are normally distributed.

The present paper contributes to the literature by providing a testing
framework for the structural properties of the Brownian motion of the under-
lying stochastic process of a time series. Stochastic processes are used in proba-
bility theory to model the evolution of price processes over time and for option
valuation. The assumption used in the Black-Scholes-Merton model for option
pricing is that the underlying price process follows a lognormal random walk.
The lognormal random walk, which is expressed as dSt = µStdt+σStdWt, has
Brownian motion of the form σStdWt, where µ and σ are model parameter, and
Wt is the Wiener process. Another example is the Ornstein-Uhlenbeck stochas-
tic process, which is expressed as dSt = λ (µ− St) dt+ σdWt, where λ, µ, and
σ are model parameters. In this stochastic differential equation, the Brownian
motion is a Gaussian random walk of the form σdWt. In the Cox, Ingersoll
and Ross process, which is expressed as dSt = λ (µ− St) dt + σ

√
StdWt, the

Brownian motion is a square-root random walk of the form σ
√
StdWt. For the

general form of stochastic processes, dSt = µ(St, t)dt+ σkS
k
t dWt, the present

study proposes a method to estimate k which is the order of the Brownian
motion.

Section 2 introduces the modeling assumptions and the statistics that are
used for the present study’s testing framework. In this section, we discuss
the no-drift assumption used to analyze financial time series, and introduce
volatility estimators as the test is based on these measures. The linear model
with intercept that we use in our testing framework is presented, and a proof of
convergence of the estimator of the order of the Brownian motion is provided.
In section 3, we present the hypothesis-testing method used to accept or reject
the null hypothesis (lognormal random walk) and the alternative hypotheses
(Gaussian and square-root random walks). In section 4, we run some Monte
Carlo simulations to compare the usual method for testing lognormality based
on the normality of the returns and the present study’s testing framework. In
this section, we also assess the power of the testing framework (i.e. the rate
of type I and type II errors). In section 5, we apply the test to the S&P 500
and VIX indices and discuss the results. In this section, we also compare the
linear model with intercept and without intercept. In section 6, we offer our
conclusion.

2 Model

In our analysis, because daily time increments are generally used for the pur-
pose of analyzing time-series data, the drift term of the stochastic differential
equation is considered to be negligible. Under risk-neutral measure, the share
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price is equal to the discounted expectation of the share price. Option valua-
tion is based on an equivalent martingale measure where, in order to prevent
market arbitrage, the drift is equal to the risk-free rate. If we assume a risk-
free rate of 5% annual with 250 trading days per year, the daily drift would
be 2 basis points, which is very small compared to daily price variations. Also,
markets which are tested positive to mean reversion generally exhibit trends
that persist over longer periods of several weeks or months. Such a mean-
reversion effect may be considered negligible compared to price variations on
a daily basis. Hence, for a lognormal random walk, the stochastic differential
equation without drift is as follows:

dSt = σStdWt , (1)

where St is the asset price, σ is the volatility, and dWt (the Brownian term)
is a N (0, 1) variable.

Let us consider the expected value of the absolute value of dSt/St in eq.
(1). We get:

E
(∣∣∣∣dStSt

∣∣∣∣) = σE (|dWt|) . (2)

To evaluate E (|dWt|), we need to integrate the density function of N (0, 1)
multiplied by the absolute value of the integration variable between −∞ and
∞, which is equal to twice the integral of the density function multiplied by
the integration variable between 0 and ∞:

E (|dWt|) = 2

∫ ∞
0

x
1√
2π

exp

(
−x2

2

)
dx . (3)

Hence, the expected value of the absolute value of dWt is as follows:

E (|dWt|) =

√
2

π
. (4)

To develop a test for the structural properties of the Brownian motion
of the underlying stochastic process of a time series, we need to introduce
volatility estimators. The following estimator of the volatility is obtained from
eqs. (2) and (4):

σ̂1 =

√
π

2

1

n

n∑
i=1

|ri| , (5)

where σ̂1 is the volatility estimator for n returns ri = ln Si

Si−1
.

Eq. (5) estimates volatility based on the average value of absolute returns
assuming that the returns are normally distributed. In contrast, the usual
approach to computing volatility calculates a standard deviation from the
sum of squared returns:
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σ̂2 =

√√√√ 1

n− 1

n∑
i=1

r2i . (6)

Eq. (6) makes no assumptions about return distribution.
Because volatility is a measure of the variation of the price and infinitesimal

price variations are scaled by the price of the process for a lognormal random
walk (eq. 1), let us do a linear regression of the absolute value of the differences
|dSt| = |St − St−1| versus St. The regression model is |Si − Si−1| = α+βSi+εi,
where α is the intercept, β the slope, and εi is the error term with zero mean
and finite variance that is assumed to be Gaussian. Then let us compute the
following parameter:

σ3 =

√
π

2
β , (7)

where β is the slope of the linear regression.
The estimator σ̂3 =

√
π
2 β̂ is also an estimator of the volatility for a

lognormal random walk. The estimator of the slope of the linear regression
with intercept [4] is as follows:

β̂ =
n
∑
Si|dSi| −

∑
Si
∑
|dSi|

n
∑
S2
i − (

∑
Si)2

. (8)

For a lognormal random walk, σ3 will converge toward the volatility σ of
the time series (estimators σ̂1 or σ̂2); whereas for a Gaussian random walk
of the form dSt = σGaussdWt

1, σ3 will converge toward 0. For a square-root
random walk of the form dSt = σsqrt

√
StdWt

2, σ3 will converge toward half
of σ. The proof for convergence is provided below.

Let us show that for the general form of stochastic processes dSt = σkS
k
t dWt,

the ratio σ3/σ, where σ is the volatility of the time series, converges toward
k. Let us set y = |dS|; hence, the slope of |dS| versus S for arbitrary t is as
follows:

βk =
dy

dS
= kSk−1σk|dW | . (9)

From the scaling relationship:

Ski σk = Siσi , (10)

we get:

σk =
σ

E(Sk−1)
. (11)

1 σGauss is the volatility parameter of the Gaussian random walk which has been scaled
for a Brownian motion of order zero with eq. (11).

2 σsqrt is the volatility parameter of the square-root random walk which has been scaled
for a Brownian motion of order 1

2
with eq. (11).
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Hence:

βk = kSk−1
σ

E(Sk−1)
|dW | . (12)

Finally, the expected value of βk is as follows:

E(βk) = k

√
2

π
σ . (13)

Hence, E(σ3) = kσ and the ratio σ3/σ converges toward k, which is equal
to one for the lognormal random walk, 1

2 for the square-root random walk,
and zero for the Gaussian random walk.

3 Hypothesis testing

The parametric test of lognormality for a given time series and the alter-
natives (Gaussian and square-root random walks) is based on the Student’s
t-test for the slope of a linear regression [3]. The null hypothesis H0 is that
the underlying stochastic process of the time series is lognormal. The alterna-
tive hypothesis H1 is that the underlying stochastic process is a square-root
random walk. The alternative hypothesis H2 is that the underlying stochas-
tic process is a Gaussian random walk. Let us assume that the error terms
of the linear regression of |dSt| versus St used for the estimation of σ̂3 are
Gaussian, centered in zero, and of finite variance. If a time series is lognormal,

then the slope of the linear regression β must converge toward
√

2
πσ. For a

square-root random walk, the slope of the linear regression β must converge

toward 1
2

√
2
πσ; and, for a Gausian random walk, the slope converges toward

zero (see table 1).

Table 1 Hypothesis testing and the slope of the linear regression

Hypothesis tested β0

H0 β =
√

2
π
σ

√
2
π
σ

H1 β = 1
2

√
2
π
σ 1

2

√
2
π
σ

H2 β = 0 0

Hence, for each hypothesis, we compute the value of the test t-statistic as
follows:

t∗ =
β − β0
se (β)

, (14)

where the standard error of the slope of the linear regression β is as follows:
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se (β) =

√
MSE√∑n

i=1

(
Si − S̄

)2 , (15)

where S̄ is the average of the Si observations over the sample n, and MSE
is the mean square error of the linear regression, which is the sum of square
errors divided by n− 2:

MSE =

∑n
i=1 ε

2
i

n− 2
, (16)

where εi are the error terms of the linear regression yi = α+ βxi + εi, with n
observations.

To compute β0 in eq. (14), we shall use σ̂2 as this is the standard estimator
to compute the volatility of a time series. The p-value is determined by referring
to a Student’s t-distribution with tn−2 degrees of freedom. If the p-value is
smaller than the significance level α, we reject the corresponding hypothesis;
if it is larger than α, we accept the corresponding hypothesis at the significance
level α.

4 Simulations

To assess the present test, let us run some Monte Carlo simulations with
different stochastic processes, respectively the lognormal random walk, the
Gaussian random walk, and the square-root random walk. For comparability,
we need to scale the σGauss and σsqrt of the Gaussian and square-root random
walk. Let us take σGauss = S0σ, and σsqrt =

√
S0σ, where S0 is the initial asset

price of the simulation. For the Monte Carlo simulation, let us take S0 = 100,
σ = 0.15, over a time horizon T of 2 years with daily time increments.

Table 2 Simulated test statistical parameters over 100,000 paths

σ̂1 σ̂2 σ̂3
lognormal random walk 15.00% 14.99% 15.10%
Gaussian random walk 15.37% 15.43% -0.02%

square-root random walk 15.13% 15.14% 7.58%

In the simulations of table 2, the volatility estimators have been scaled
to annual basis using the

√
dt scaling factor assuming 250 trading days in

a year. The simulation shows that the parameter σ3 converges toward its
expected value in all three scenarios. Estimators σ̂1 and σ̂2 converge toward
the volatility in all three scenarios. Estimator σ̂2 is a consistent estimator, and
σ̂1 appears to converge toward the volatility for the Gaussian and square-root
random walks due to the law of large numbers. Estimator σ̂3 converges toward
the volatility for the lognormal random walk only; however, it is less efficient
than σ̂1 and σ̂2 as it requires a larger sample size in order to converge. For
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the purpose of running the simulations over longer time horizons (e.g. T 3 of
20 years), we must add a constraint on the minimum value that S can reach;
otherwise, the estimators σ̂1 and σ̂2 become unstable when S is close to zero
for the Gaussian and square-root random walk. A floor price of 1 unit when
S0 is equal to 100 would be adequate.

To show that testing for normality of the returns is not sufficient to make
inferences about the lognormality of a time series, let us run some Monte Carlo
simulations under different scenarios and compute the percentage rejection of
the null hypothesis (i.e. normally distributed returns) using the Kolmogorov-
Smirnov test at a significance level of 5% over 10,000 simulation paths with
daily time increments (see table 3).

Table 3 Rejection rate of the normally distributed return hypothesis with the Kolmogorov-
Smirnov test at 5% significance level

T of 2 yrs T of 20 yrs
lognormal random walk 0.0% 0.0%
Gaussian random walk 0.01% 42.5%

square-root random walk 0.0% 9.9%

For the simulations with the 2-year horizon, the test fails to reject the
normally distributed-return hypothesis for the Gaussian and square-root ran-
dom walks; whereas, for the 20-year horizon, the rejection rate is 9.9% for
the square-root random walk and 42.5% for the Gaussian random walk. What
accounts for this result is that, for the 2-year horizon, the variations of S are
small. Hence, returns from the stochastic differential equation are almost nor-
mally distributed for both the Gaussian and square-root random walks. For
the 20-year horizon, the variations of S are larger (S spans a larger range of
values); therefore, we start to observe some deviations from normality for the
returns.

To evaluate the power of the proposed hypothesis-testing framework, let us
run some Monte Carlo simulations under the different scenarios and compute
the percentage of type I 4 and type II 5 errors for H0, H1 and H2 with the
5-year and 20-year horizons at a significance level of 5% over 10,000 simulation
paths with daily time increments (see tables 4 and 5) . For these simulations,
we take S0 = 100, σ = 0.15, and use the linear model with intercept introduced
in the section 2. When applying the test to financial data, we also considered
the linear model without intercept (see section 5).

For the simulation with the 5-year horizon, type I errors are in a range
of 5.0 to 5.8% for the three stochastic processes. Type I error is the highest
for the square-root random walk with the 20-year horizon where it is 20.2%.
Type II errors are quite important for the simulations with the 5-year horizon.

3 T is the time horizon in years, and consists of 250 trading days per year for the sample
size.

4 A type I error is the incorrect rejection of a true hypothesis.
5 A type II error is a failure to reject a false hypothesis.
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Table 4 Rejection rate of H0, H1 and H2 hypotheses at 5% significance level with a horizon
T of 5 years

rejection rate H0 rejection rate H1 rejection rate H2

lognormal random walk 5.8% 73.4% 97.7%
Gaussian random walk 97.7% 72.9% 5.0%

square-root random walk 73.3% 5.6% 74.2%

Table 5 Rejection rate of H0, H1 and H2 hypotheses at 5% significance level with a horizon
T of 20 years

rejection rate H0 rejection rate H1 rejection rate H2

lognormal random walk 7.8% 100% 100%
Gaussian random walk 100% 100% 4.9%

square-root random walk 99.8% 20.2% 100%

In 26.6% of the cases in the simulation, the test failed to reject H1 for the
lognormal random walk. In case of the Gaussian random walk, that happened
27.1% of the time. For the square-root random walk, the simulation failed to
reject H0 26.7% of the time and H2 25.8% of the time. Type II errors are
always below 0.2% for the simulations with the 20-year horizon. We can see
that the power of the test is greatly improved when compared to the usual
approach based on the testing of the normality of the returns. The power of the
test is high enough in order to say one can accept H0 at the given significance
level provided the sample size is large, whereas in the usual test the power of
the test is not good enough to reject H0 in many cases.

5 Analysis with actual data on the S&P 500 and the VIX indices

Now, let us apply the present study’s hypothesis-testing framework to finan-
cial data for the Standard & Poor’s 500 (S&P 500) and VIX indices. The
S&P 500 is a U.S. stock index of 500 large companies having common stock
listed on the NYSE or NASDAQ. The stocks are selected by the S&P Index
Committee based on market capitalization, liquidity and industry grouping
(among other factors), and are weighted according to the total market value
of the outstanding shares.

The VIX is the trademark for the Chicago Board Options Exchange Market
Volatility Index which is a measure of the implied volatility of S&P 500 index
options. The VIX index was developed for hedging changes in volatility [2]. It
is calculated by the Chicago Board Options Exchange using at-the-money and
out-of-the-money put and call options for the front month and second month
of expiration. The VIX aims to measure the 30-day implied volatility of the
S&P 500 index.

For our purpose, let us compare the results with two distinct models for
the linear regression of |dSi| versus Si, respectively: the linear model with
intercept |Si − Si−1| = α + βSi + εi; and the linear model without intercept
|Si−Si−1| = βSi+εi, where α is the intercept, β the slope and εi the error term
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which has zero mean and finite variance. Note that the linear model without
intercept is not appropriate to test the Gaussian random walk hypothesis,
because for a Gaussian random walk the slope β should converge toward zero
and the absolute price differences are always lying above the x-axis.

For the analysis of the S&P 500, we used daily time series for the period
of 01/02/1980 to 12/31/2004. We excluded the data after 2004 as the present
study’s test shows some departure from lognormality for the last decade. Tak-
ing the full dataset up until the present time would lead to rejection of H0 at
5% significance level for the S&P 500 index; whereas the test accepts H0 for
the linear model without intercept for the period considered. For the analysis
of the VIX index, we used daily time series for the period of 01/02/1990 to
01/16/2015. The main statistical parameters for the linear regression, volatil-
ity measures and the order of the Brownian motion are displayed in table 6
for the S&P 500 index and in table 7 for the VIX index.

Table 6 Statistics for the S&P 500 index for the period of 01/02/1980 to 12/31/2004

Linear model with intercept Linear model without intercept
n (sample size) 6,510 6,510

α̂ −8.52 × 10−1 0

β̂ 9.21 × 10−3 8.24 × 10−3

se(β) 1.65 × 10−4 1.66 × 10−4

σ̂ annual 16.5% 16.5%
σ̂ daily 1.04% 1.04%
σ̂3 daily 1.15% 1.03%

k (order of B.M.) 1.10 9.85 × 10−1

Table 7 Statistics for the VIX index for the period of 01/02/1990 to 01/16/2015

Linear model with intercept Linear model without intercept
n (sample size) 6,311 6,311

α̂ −6.04 × 10−1 0

β̂ 7.78 × 10−2 5.16 × 10−2

se(β) 1.60 × 10−3 1.64 × 10−3

σ̂ annual 98.1% 98.1%
σ̂ daily 6.17% 6.17%
σ̂3 daily 9.74% 6.47%

k (order of B.M.) 1.58 1.05

The order k of the Brownian motion (see tables 6 and 7) is close to one for
both the S&P 500 and VIX indices with the linear model without intercept
which does suggest a lognormal random walk as the underlying stochastic pro-
cess. The t-statistic for the Student’s t-test of the slope of the linear regresion
is calculated for H0, H1 and H2 for the S&P 500 index in table 8 and for the
VIX index in table 9.
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Table 8 t-Statistics for the S&P 500 index for the period of 01/02/1980 to 12/31/2004

β̂0 t∗ linear. model with intercept t∗ linear model without intercept
H0 8.32 × 10−3 5.40 5.03 × 10−1

H1 4.16 × 10−3 30.6 24.6
H2 0 55.8 49.7

Table 9 t-Statistics for the VIX index for the period of 01/02/1990 to 01/16/2015

β̂0 t∗ linear. model with intercept t∗ linear model without intercept
H0 4.92 × 10−2 17.8 1.46
H1 2.47 × 10−2 33.16 16.46
H2 0 48.5 31.4

The t-critical statistic for the t-Student’s distribution for the large sample
size considered (n = 6,510 for the S&P 500 index test and n = 6,311 for the
VIX index test) at 5% significance level is 1.960 for both sets. Hence, the test
rejects all three hypotheses considered (H0, H1 and H2) for both the S&P
500 and the VIX index with the linear model with intercept. For the linear
model without intercept, the null hypothesis H0 (i.e. lognormal random walk
) is accepted (t∗ < t-critical) for both the S&P 500 and VIX indices at 5%
significance level; whereas, the alternative hypotheses H1 and H2 are rejected.

6 Conclusion

The present study presents a testing framework for the structural proper-
ties of the underlying stochastic process of a time series. This test aims to
discriminate among stochastic processes, in particular, among the lognormal
random walk used in the Black-Scholes-Merton model, the Gaussian random
walk used in the Ornstein-Uhlenbeck stochastic process, and the square-root
random walk used in the Cox, Ingersoll and Ross process. The test is based on
the statistical parameters σ3 (or equivalently the slope β of the linear model)
and the volatility σ of the time series estimated by σ̂1 and σ̂2. For a lognor-
mal random walk, σ3 converges toward σ. For a Gaussian random walk, σ3
converges toward zero; and, for a square-root random walk, σ3 converges to-
ward half of σ. Finally, an α-level hypothesis test is provided to test for the
lognormality of a time series versus the alternatives (Gaussian and square-
root random walks). We analyzed the S&P 500 and VIX indices. The test
accepted the lognormality hypothesis at 5% significance level for both indices
when using the linear model without intercept, while it rejected the alterna-
tive hypotheses. When using the linear model with intercept, the test rejected
all three hypotheses (lognormal, square-root and Gausian random walks) at
5% significance level. Non-stationary effect and volatility spikes may be re-
sponsible for the negative results with the linear model with intercept. For the
purpose of analyzing financial time series which do not follow a Gaussian ran-
dom walk, we suggest using the linear model without intercept. In conclusion,
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practitioners may find the present test useful for selecting which stochastic
processes they use for contigent-claim valuation and risk management. The
test can be applied to any asset class so long as we have an observable, as
shown for an equity and a volatility index.
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