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ABSTRACT

Hamiltonian Mechanics works for conserved systems. Quantum Mechanics is given in Hamilto-
nian language. In ,1;2;3 and recently in ,4 this idea was circumvented by complexifying the energy
and interpreting the dissipated energy as imaginary part. Based, on Dekker formalism, a following
interpretation is presented in Density-Operator language for Pseudo-Hermiticity. Proper forms of
Quantum Measures are provided, as there is need in this new formalism, namely correcting ,5;6.

NOTATION:

: h: Hermitian Hamiltonian

: H: Non Hermitian Hamiltonian

: η: Metric for inner product of the state space of H

: π: square root of η

: Hh and HH and HH† are state spaces of h and H and H† respectively

: Ah and AH are observables for h and H respectively.

: ρh and ρH are density matrices for h an H respectively.

: Ph and PH are projection operators for h and H respectively.

: V() is Von-Neumann entropy and E() is Entanglement entropy

: λ and λ′ are eigenvalues of H and H†

: Ξ and ξ are states for hermitian h, Ψ and ψ for Pseudo-Hermitian H and Φ and φ for Pseudo-Hermitian H†

1. INTRODUCTION:

Quantum Physicists has always known that a non-dissipating physical system can always be given by a Hermitian
Hamiltonian which has all the ingredients of reality of eigenvalues (as they represent energy) and norm preserving
time evolutions (as no particle or energy exchange is happening). In 1998 Bender et. al ,7;8;9 studied eigenvalues of
Non-Hermitian Hamiltonian, numerically. They found to their surprise that these Hamiltonians had a spectrum of Real
eigenvalues in a certain parameter range. Moreover, these Hamiltonians were PT (Parity, time reversal)-Symmetric.
However, the state space of such a system was not complete orthogonal (Hence, it couldn’t form a Hilbert space),
as it is needed to represent a non dissipative Quantum physical system ( which was until now always represented by
Hermitian Hamiltonians). Several attempts were made by people to solve this difficulty,10;11. It was however shown
by, Mostafazadeh,12 that rather than focussing on PT-Symmetry one should focus on the Non-Hermitian property
of these Hamiltonians, and he provided a ’general’ framework which showed that all Non-Hermitian Hamiltonians
in the real eigenvalue regime will show an exact behaviour like systems represented by Hermitian Hamiltonians, by
changing the metric of state space of these Hamiltonians. However, in the complex eigenvalue regime it can be
seen that the system does not have norm preserving time evolutions even after changing metric and has complex
eigenvalues, which is interpreted as onset of dissipation in this paper and ,1;2;4 and many others. Now, the use of Non-
Hermitian mathematical framework has been considered by ,13 where they have used it in classical optics by taking two
waveguides, one of it loosing and other gaining, but overall the system is non-dissipating. They have specifically taken
up the idea of symmetry breaking of non-hermitian systems, and used it in optical waveguide theory. We in this paper
follow that the formalism of Pseudo-Hermiticity can be used to describe non-dissipating regime of a system whose
dissipating nature depends on certain parameters ,1;2;4 and it has been verified in the experiment that by going above
certain threshold given by this theory ( which ,13 called optical gain/loss coefficient) , a Non-Hermitian system starts
dissipating. The outline of the paper is as follows, section 1,2,3,4,5 gives necessary and sufficient proofs for establishing
the iso-spectrality between a Pseudo-Hermitian system and a Hermitian Hamiltonian system and addresses important
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subtleties creating confusion regarding this theory. Section 6 establishes the theory of measurement in these systems
and Section 7,8 describes non-composite Pseduo-Hermitian systems in Density operator language. Section 8,9,10,11
describe Composite systems involving Pseudo-Hermitian systems and establish important Quantum measures and
clarifications to .5;6

We will first of all clarify certain ideas related to this field and direct to Appendix for particular examples of the
framework. There are certain ideas which need to be clarified using ’ Geometry of projection of state space of a 2×2
Non-Hermitian Quantum system with real eigenvalues’, which we have provided in Appendix. Also, hence forward we
will designate Non-Dissipating systems in real eigenvalue regime as Pseudo-Hermitian.

Here we give minimal amount of proofs needed to establish this theory consistently.

1.1. Theorem

Consider an operator H and H† s.t( such that) H 6= H† and they obey an eigenvalue problem, then the eigenvalues
of H and H†, denoted by λ and λ′ respectively are related as λ = λ′∗ ( where * denotes complex conjugation).

PROOF:

We know from given information that,
Hψn = λnψn (1)

and
H†φm = λ′mφm (2)

where ψ and φ are eigenvectors of H and H† respectively i.e ψ ∈ VH and φ ∈ VH† where VH and VH†are vector spaces
with inner product 〈| |〉.Now, taking conjugate transpose of (1)and then multiplying (1) by φn from right we have

ψ†nH
†φn = λ′∗nψ

†
nφn (3)

using (2) we see that
ψ†nφnλ

′
n = λ′∗nψ

†
nφn (4)

hence we can see that cancelling ψ†nφn that
λn = λ′∗n (5)

Hence we can see that when eigenvalues are real they are equal λn = λ′n

1.2. Theorem

In the real eigenvalue regime of H, H and H† are related by ηHη−1=H†; s.t.

η =

n∑
i=1

|φi〉 〈φi| (6)

where n is the dimension of H, |ψ〉 ∈ VH and |φ〉 ∈ VH† . Note: VH and VH† are just state space of H and H† and
they are not yet rendered into Hilbert space.

PROOF:

We know H† |φi〉=λ′i |φi〉 now conjugate transposing we get

〈φi|H = λ′∗i 〈φi|
as proved earlier in real eigenvalue regime,

λ′i = λi

we have
〈φi|H = λ′i 〈φi|

multiplying |φi〉 from left we have
|φi〉 〈φi|H = λ′i |φi〉 〈φi| (7)

also multiplying H† |φi〉=λ′i |φi〉 by 〈φi| from right we have equating with (7) that

|φi〉 〈φi|H = H† |φi〉 〈φi| (8)

summing over i=1 to n gives
ηH = H†η (9)

where

η =

n∑
i=1

|φi〉 〈φi|

Note: we have not yet proved η is invertible.We have not yet proved that HH i.e state space of H forms a Hilbert
space (Complete Orthogonal vector space).



3

1.3. Theorem:

If we have H 6= H† and eigenvalues of H are necessarily real, then (ψ,φ) will be orthogonal to each other under
sesquilinear form 〈| , |〉 as inner product and where, |ψ〉 ∈ VH and |φ〉 ∈ VH†

PROOF:

We know that ηHη−1=H† in real eigenvalue regime ∴

η |ψm〉 = |φm〉 (10)

previous theorem gives

η |ψm〉 =

n∑
i=1

|φi〉 〈φi| |ψm〉 (11)

Hence, by (10) we see that
n∑
i=1

|φi〉 〈φi| |ψm〉 = |φm〉 (12)

therefore, 〈φi| |ψm〉 has to be = δim so that,
n∑
i=1

δim |φi〉 = |φm〉

We can see that if we use the operator η which we previously saw was the operator relating H and H† by similarity
transform, that

〈ψk| η |ψm〉 = 〈ψk|
n∑
i=1

|φi〉 〈φi| |ψm〉 (13)

= δkiδim = δkm
Hence η renders the state space of H, VH to be now a complete orthonormal vector space, i.e a Hilbert space with

sesquilinear form 〈| η |〉 as the inner product. Let us now on denote it by HH . It can also be verified by example that
Gram-Schmidt Orthogonalisation will not work for Non-Hermitian systems if it uses identity as metric.

COROLLARY1:

We can easily see that η=η†:

η† = (

n∑
i=1

(|φi〉)(|φi〉)†)†

as (AB)†=B†A†, where A and B are Matrices. Hence, we have

η† =

n∑
i=1

|φi〉 〈φi| = η

COROLLARY2:

η is always invertible see ,14. As η has a full rank because, η =
∑n
i=1 |φi〉 〈φi| and all |φ〉 are linearly independent of

each other as they are eigenvectors of H†.

2. NOTE ON SQUARE ROOTS OF MATRICES IN FINITE DIMENSIONS:

Some emphasis has to be given to Square roots of matrices, because they will be useful to elaborate isospectrality.
A matrix has square root iff it is diagonalizable, and a Hermitian matrix is a always diagonalizable, hence square root
of a Hermitian matrix always exists s.t. A†A=B, where A is square root of B. A matrix has many roots. A point to
be noted is not all square roots of a Hermitian matrix need not be Hermitian ( not properly emphasized even in ,14),
example:

A =

(
ae−iθ b
b aeiθ

)
We can see that

A†A =

(
a2 + b2 2abeiθ

2abe−iθ a2 + b2

)
= B

A 6=A† but B=B† where a,b∈ R. Also, it can be easily checked that as η is always invertible it’s root is also always
invertible. This property has implications as we will see in Section 4.
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3. PSEUDO-UNITARITY:

We already saw that ηHη−1=H†; we define this property as Pseudo-Hermiticity, for hermitian H we see that η=1,
identity matrix. Analogous to Unitary matrix U†=U−1 similarly a matrix P we define Pseudo-Unitarity as

ηP−1η−1 = P † (14)

s.t.
〈ψ|P †ηP |ψ〉 = 〈ψ| ηP−1η−1ηP |ψ〉 = 〈ψ| η |ψ〉 (15)

Note: Unitary transformations preserve norm for Hermitian systems, then Pseudo-Unitary transformations preserve
norm for Pseduo-Hermitian systems.

4. ISO-SPECTRALITY OF PSEUDO-HERMITIAN HAMILTONIAN WITH HERMITIAN HAMILTONIAN:

We saw that η is Hermitian and hence it’s root always exists. ∴ We can always write η = π†π Suppose, we define
an operator ’h’ by a similarity transform on Pseudo-Hermitian Operator ’H’ then , πHπ−1=h

4.1. Theorem:

Prove that h is Hermitian.

PROOF

We know πHπ−1=h , then, h†=(π−1)†H†π†, but H†=ηHη−1 so

h† = (π−1)†π†πHπ−1π†−1π† (16)

∴ h† = πHπ−1 = h (17)

As, π always exists and hence h always will exist such that h is hermitian, H and h are isospectral partners because
similarity transformation always preserves the eigenvalue of the operator. Moreover, we will see that the observables
in Pseudo-Hermitian theory are different in form than that of Hermitian theory, but their values always exactly match
that of isospectral hermitian partner. Hence, there will be no way to distinguish such systems.

4.2. Consequence on observables:

In ’Conventional theory’ an observable is defined as an operator which provides real expectation values, moreover
adjointness of the operator is also important, usually in textbooks, Hermiticity and Self-Adjointness are synonymous
with each other but it is not true. An, operator A@

h is called adjoint of Ah if,

〈ζ| |Ahζ〉 = 〈Ah@ζ| |ζ〉

Moreover, Ah is called self-adjoint if Ah = Ah
@. So, as we see in Hermitian theory, H=H† and hence A is also self-

adjoint in hermitian theory. In Pseudo-Hermitian theory as ηHη−1=H†, H is called Pseudo-Hermitian, it is also called
as Pseudo-self-adjoint

〈ζ| η |Hζ〉 = 〈H†ζ| η |ζ〉
. In a similar fashion, all other observables in Pseudo-Hermitian theory are pseudo-self-adjoint i.e.

ηAHη
−1 = A†H

This, can be seen in the example of 2×2 matrix given in Appendix, that Pauli matrices do not remain usual Pauli
matrices in the Pseudo-Hermitian theory, otherwise we would get complex expectation values of spin. Now ,we will
see that the states of Pseudo-Hermitian Hamiltonian have same expectation values of observables as given by states
of it’s Hermitian iso-spectral partners. Similar to H it can be seen that all observables are related to their Hermitian
iso-spectral observables by transformation,

πAHπ
−1 = Ah

where ’AH ’ is an observable for a Pseudo-Hermitian Hamiltonian system while ’Ah’ is an observable for a Hermitian

Hamiltonian system, and Ah = A†h. As, we saw earlier, πHπ−1=h, where h=h† and π†π=η, η being the metric of
Hilbert space of H. So, π |φ〉 = |ξ〉, where |ψ〉 ∈ HH and |ξ〉 ∈ Hh.

〈ψ| ηAH |ψ〉 = 〈ξ|π−1†π†ππ−1Ahππ−1 |ξ〉 = 〈ξ|Ah |ξ〉
Hence, we can see that their expectation values match and there is no way to distinguish a Hermitian system from a
system with ’Non-Hermitian Hamiltonian’ in the real eigenvalue regime. However, as stated in Appendix the structure
of the state space might seem different from that of it’s Isospectral Hermitian partner, but it is not (see Appendix and
Section 8 of ,12).5 mentions that composite systems might provide a way to distinguish these systems, in this paper we
show that even in these kind of systems we can find an isospectral hermitian hamiltonian, also we provide an information
theoretic framework and show that ’Von-Neumann Entropy’ of H and it’s partner h provide same value provided the
form of ’Von-Neumann Entropy’ in Pseudo-Hermitian theory is changed in form just like the form of observables
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are changed. We also, show that Entanglement Entropy of composite systems of Hermitian⊗Pseudo-Hermitian and
Pseudo-Hermitian⊗Pseudo-Hermitian will not change if they are transformed to their Isospectral partners under
similarity transform. For this in later sections we will have to properly develop Pseudo-Hermiticity in Density operator
language and try to leave no room for error.

5. USAGE OF MATHEMATICS DEVELOPED BY PSEUDO-HERMITIAN THEORY:

The method given in ,1;2;4 to effectively describe a ’Dissipative system’ involves, Complex Hamiltonian

Hs = Hs1 − iΓ(θ) (18)

where, Hs denotes the Hamiltonian for the system and Hs1 is Hermitian part (hence always has real eigenvalues) and
−iΓ(θ) is the part through which we can control dissipation and is dependent on parameter θ. Now, for the bath the
Hamiltonian is given as, Hb = Hb1 + iΓ(θ) s.t.

H = Hs +Hb = Hs1 +Hb1

where H is Hermitian and has real eigenvalues (hence overall it is not dissipating).
It can be seen that if only the system Hamiltonian is considered, then it is given as (18), and in the real eigenvalue

regime as stated in previous two sections, the system acts like a Hermitian system. Note that it is not equivalent to
making θ = 0 but even if θ 6= 0 the system acts as if it is not dissipating. It can be seen using the example 2×2 matrix
given in Appendix. Also, it has been experimentally verified in .13

6. MEASUREMENTS IN PSEUDO-HERMITIAN THEORY

In Hermitian theory we have two major types of measurements i.e. PVM and POVMs.15 PVMs: These are measure-
ments where the observation does not destroy the observed state, repeated measurements provide same results. These
are idealised measurements and are extremely rare to create. Mathematically, in Hermitian theory, these measurements
are given by ’Projection’ operators which have following two important properties, Ph.

Ph = P †h

and

P 2
h = P †hPh = Ph

also
n∑
i=1

Phi
= 1

Now,

Ah =

n∑
i=1

ci |ξi〉 〈ξi|

where, |ξi〉 are basis of h; s.t. h=h†. If we define

Phi
= |ξi〉 〈ξi|

then

Ah =

n∑
i=1

ciPhi

all the above properties can be verified for Phi. Any state

|Ξ〉 =

n∑
i=1

|ξi〉 〈ξi| |Ξ〉 =

n∑
i=1

ci |ξi〉

where ci are the probability amplitudes for eigenvectors |ξi〉 of observable Ah and they have complex values. The
probability of obtaining particular ith state is .

| c2i |= Pr(i) =| 〈ξi| |Ξ〉 |2

After. the measurement Ξ changes to Ξ′, if a measurement in such a type of scheme is performed again we get Ξ′′

and it is same as Ξ′15. These types of measurements are called ’PVM’ or ’Projection operator valued Measurements’.

|Ξ′′〉 = |Ξ〉
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6.1. PVM prescription for Pseudo-Hermitian Theory:

As the inner products are changed the outer products also need to be changed for consistency. Hence, the Projection
operator for Pseudo-Hermitian Hamiltonian is given as

PHi
= |ψi〉 〈ψi| η (19)

s.t.

|Ψ〉 =

n∑
i=1

|ψi〉 〈ψi| η |Ψ〉 =

n∑
i=1

ci |ψi〉

ci ∈ C are probability amplitudes, and the probability of obtaining ith state, upon measurement, when a system is in
state |Ψ〉 is

Pr(i) =| 〈ψi| η |Ψ〉 |2= 〈Ψ| η |ψi〉 〈ψi| η |Ψ〉 = 〈Ψ| ηPHi
|Ψ〉 = Tr(PHi

|Ψ〉 〈Ψ| η)

Usually in Hermitian Theory we write P 2 = P but this statement is more subtle than this. The point is that for
Complex matrices we reserve the definition P 2

h for

P 2
h = P †hPh

and in Hermitian theory we have P †h = Ph hence

P 2
h = P †hPh = PhPh = Ph

as a fact of idempotency. However if we follow the same definition of P 2 in Pseudo-Hermitian theory it creates
ambiguities. But it can be seen that in Pseudo-Hermitian theory even if PH 6= PH

†

PHPH = |ψi〉 〈ψi| η |ψj〉 〈ψj | η = PH

and hence it can be seen that operating Projection operator PH twice does not affect the previous measurement result.
Note that PH is a Pseudo-Hermitian operator. We will see what happens when repeated measurements affect the state
after measurement.

6.2. POVM prescription for Pseudo-Hermitian Theory:

POVM (Positive Operator Valued Measure) are more general type of measurements than PVMs. Unlike, PVM
repeated measurements do not provide same measurement values, Ex: A photon falling on a photographic plate will
have been altered drastically to be measured again. Mathematically, these are represented by more general ’Positive

Semidefinite Operators’, which have following properties, Mhm
6= M†hm

Mhm
always, m is just the index for denoting

mth state. Post-measurement state is given by |Ξ′〉 = Mhm |Ξ〉 upto normalisation. but repeated measurement will
not give same value. For, Pseudo-Hermitian theory, MHm

are selected such that they do not from MHm
= MHm

MHm

.

7. DENSITY OPERATOR FORMALISM FOR PSEUDO-HERMITIAN THEORY:

First, we develop a ’Density Operator Formalism’ for Pseudo-Hermitian theory. This is done because this formal-
ism provides more flexibility to talk about mixed states. Later we consider,composite systems and quantify certain
properties of these Quantum systems, like entanglement. Under this formalism we see that , there is no way that
new phenomenon can emerge from composite systems of Pseudo-Hermitian⊗Hermitian systems(denoted H⊗h) and
Pseudo-Hermitian⊗Pseudo-Hermitian (denoted H1 ⊗H2) systems. Also, it is shown that the form of ’Entanglement
entropy’(E()) as well as of ’Von Neumann entropy’ (V()) has to be changed and under this new form it can be shown
( for both cases stated above) that the values E() of an entangled state in H and of an isospectral entangled state in
h will be same, hence the entanglement entropy does not reduce as stated in ,5 due to isospectrality. Also, it is easy
to prove that rate of entanglement of both of these types of systems will be same.

7.1. Pure states in Pseudo-Hermitian Theory:

Let us usually denote Hermitian systems by h and it’s eigenvectors as |ξ〉 which form an orthogonal basis for Hh
Hilbert space for h.

ρhp
= |Ξ〉 〈Ξ|

. ρhp is the density operator for pure states of h. See ,15. Where, |Ξz〉 = bz1 |ξ1〉+bz2 |ξ2〉+....+bzn |ξn〉, where ’z’ denotes

state of the system and second index denotes the basis vector of the system being considered, also b2z1+b2z2+.....+b2zn = 1,

are probability amplitudes. Following relations always hold for such systems, ρhp = ρ†hp
and Tr(ρhp) = 1, and

Tr(ρ2hp
) = 1, because ρ2hp

= ρhp . Also, expectation values of any observable Ah is given by < Ah >=Tr(Ahρhp) All

these properties can be checked taking a state as |Ξz〉 =
√

3/4 |0〉+
√

1/4 |1〉. For Pseudo-Hermitian system H, with
eigenvectors |ψ〉 and having a hilbert space HH with metric η, s.t. η =

∑n
i=1 |φi〉 〈φi| where |φ〉 ∈ HH† , n being

dimension of H.
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Analogously for pure states of Pseudo-Hermitian systems, we define

ρHp = |Ψz〉 〈Ψz| η (20)

sticking to this definition, we can see that ρ†Hp
= η |Ψz〉 〈Ψz|, where m denotes the state of system. Note, ρ†Hp

6= ρHp .

but it can be checked that
ρ†Hp

= ηρHpη
−1 (21)

i.e. it is Pseudo-Hermitian. Tr(ρHp
)=
∑n
i=1 | ci |2 〈ψi| η |ψi〉=1 this happens because

∑n
i=1 | ci |2=1 . Also,

ρ†Hp
ρHp
6= ρHp

,but

η−1ρ†Hp
ηρHp = ρHpρHp = ρHp (22)

The expectation value of an observable AH is given as

< AH >= Tr(AHρHP
) = 〈Ψm| ηAH |Ψm〉 (23)

Now, using the Iso-spectrality property we can see that, |Ψz〉 = π−1 |Ξz〉 where π is the similarity transformation
operator between Pseudo-Hermitian hamiltonian H to it’s iso-spectral Hermitian Hamiltonian h.

ρHp
= |Ψz〉 〈Ψz| η = π−1 |Ξz〉 〈Ξz| (π−1)†η = π−1ρhp

π (24)

and it can also be checked that, using cyclic property of trace, < AH >=< Ah >

< AH >= Tr(AHρHp) = Tr(π−1Ahππ
−1ρhpπ) = Tr(Ahρhp) =< Ah > (25)

H and h are indistinguishable.

7.2. Statistical mixtures containing Pseudo-Hermitian systems:

There are two cases which arise for statistical mixtures, (Pseudo-Hermitian and Pseudo-Hermitian) and (Pseudo-
Hermitian and Hermitian) mixtures. Firstly, revising Hermitian systems theory, state of mixtures cannot be written as
|Ψ〉 = c1 |ψ〉+ c2 |ψ〉 .... They are formed due to incomplete information. Example: A screen which is impinged upon
by 70% of vertically polarised light from one source and 30% from other being horizontally polarised. They can only

be written in Density Operator form. ρhm
=
∑l
i=1 pi |Ξi〉 〈Ξi| =

∑l
i=1 ρihm

, where pi denote probability of finding

a certain state forming the mixture and
∑l
i=1 pi = 1, ’l’ is the number of systems forming the mixture.(ex:ρhm

=
(3/4) |0〉 〈0| + (1/4) |1〉 〈1|). 75% are impinged upon from system 1 as |0〉 and other 30% from system 2 as |1〉.
Tr(ρhm) =

∑l
i=1 pi = 1 and Tr(ρ2hm

) =
∑l
i=1 p

2
i < 1.

7.2.1. Case 1:Statistical mixtures of only Pseudo-Hermitian Hamiltonians

Density operator in such conditions is given as

ρHm
=

l∑
i=1

pi |Ψi〉 〈Ψi| ηi =

l∑
i=1

ρiHm

where, ηi are the metric for corresponding systems of which mixture is made of,
∑l
i=1 pi = 1 where p denote the

percentage of the individual systems which make the mixture, l is the number of individual systems making up the
mixture and ρiHm

be individual density operators. Analogous to Hermitian case,

Tr(ρHm) =

l∑
i=1

pi 〈Ψi| η |Ψi〉 =

l∑
i=1

pi = 1

. Due to the Iso-Spectrality it can be seen that individual systems

ρiHm = πiρihmπ
−1
i

and we can write,

Aih = πiAiHπ
−1
i

and we get the expectation values, by substituting previous results

< AH >= Tr(

l∑
i=1

AiHρiHm
) = Tr(

l∑
i=1

Ahρihm
) =< Ah > (26)
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7.2.2. Case 2:Statistical Mixture of Pseudo-Hermitian and Hermitian Hamiltonians

Out of total ’l’ mixtures consider a mixture of ’e’ Pseudo-Hermitian systems and ’l-e’ Hermitian systems. Then, the
density operator is defined as,

ρHm =

e∑
i=1

pi |Ψi〉 〈Ψi| ηi +

l∑
j=e

pj |Ξj〉 〈Ξj | =
e∑
i=1

ρiHm +

l∑
j=e

ρjhm (27)

where |Ψi〉 ∈ HHi and |Ξj〉 ∈ Hhj and ηi are metric for corresponding Hilbert spaces of Pseudo-Hermitian systems.
Here, as in previous case we define ρiHm

and ρjhm
, also as usual notation H correspond to Non-Hermitian and h

correspond to Hermitian, also
e∑
i=1

pi +

l∑
j=e

pj = 1

It can also be easily checked that, Tr(ρHm
)=1. Also as we saw in previous section, AiH = πiAihπ

−1
i and and the

relation πi |Ψi〉 = |Ξi〉, where these new |Ξi〉 belong to Hermitian isospectral system of His. Now, we get using all
these results that,

< AH >=

e∑
i=1

pi 〈Ξi| (π−1)†π†ππ−1Aihππ
−1 |Ξi〉+

l∑
j=e

pj 〈Ξj |Ah |Ξj〉 (28)

=

l∑
i=1

pi 〈Ξi|Ah |Ξi〉

∴< AH >=< Ah > (29)

It can be seen in all the scenarios of a non-composite system,the open system in real eigenvalue regime acts like a
Hermitian system(Non-Dissipating system).

8. VON-NEUMANN ENTROPY:

As we changed the form of observables in a hermitian setting from Ah to AH , by relation πAHπ
−1 = Ah. An example

is properly elaborated in the Appendix that the representation of Pauli Matrices need to be changed to properly get
real expectation values of spin. It is a simple fact that due to isospectrality the values of entropy of H and h will be
same because the Von-Neumann Entropy is defined as

−
n∑
i=1

λi log λi

, where λi are the eigenvalues of ρH and ρh both. This happens due to similarity equivalence between them, and
similarity transformations preserve eigenvalues. This is contrast to ideas taken up by ,5;6 where they have ignored that
the two equivalent formulae for Von-Neumann entropy do not follow in the same way as in Pseudo-Hermitian theory.
This can be proved in Density matrix form using the iso-spectrality condition. In Hermitian setting, another way of
quantifying Von-Neumann entropy is given as −Tr(ρh log ρh) where logarithm is to the base 2. For, Pseudo-Hermitian
Hamiltonians however the proper form of Von-Neumann Entropy should be given as below, so that there is consistency
in definition of Von-Neumann entropy

V (ρH) = −Tr(πρHπ−1 log (πρHπ
−1)) (30)

Then it can be easily seen that due to the transformation. πρHπ
−1 = ρh, that

V (ρH) = V (ρh) (31)

9. COMPOSITE SYSTEMS IN HERMITIAN CASE

Let us first revise Composite systems in Hermitian theory. Usually if two systems are to be represented simulta-
neously, then these systems are to be represented using tensor product ⊗ of the matrices representing them. Let us
consider for simplicity of case of bipartite (i.e 2 systems) composite system, which can be generalized to many more
systems (multipartite) by generalization. As we are for revision considering bipartite hermitian composite system, we
denote the hamiltonians of these systems as, h1 and h2, which form a composite system h denoted by, h1⊗h2. We will
denote the dimensions of these systems by E and F. Any state residing in the Hilbert space of such a system is given
by,

|Ξ〉 =

E,F∑
i,j=1

cij |ξi〉1 ⊗ |ξj〉2 (32)
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where |ξ〉1 ∈ Hh1 and |ξ〉2 ∈ Hh2 andHh = Hh1⊗Hh2 and cij ∈ C are probability amplitudes as in
√

1/2 |0〉+
√

1/2 |1〉.
We will particularly focus on what happens to inner product metric for such systems, it is not always explic-

itly emphasized that metric of inner product of a bipartite systems is 1 = 11 ⊗ 12. These metrics are such that
1 〈ξi|11 |ξj〉1 = δij and 2 〈ξi|12 |ξj〉2 = δij .
|Ξ〉 is called ’seperable’ if it can be decomposed as,

|Ξ〉 =

E,F∑
i,j=1

cij |ξi〉1 ⊗ |ξj〉2 = (

E∑
i=1

ci |ξi〉1)⊗ (

F∑
j=1

cj |ξj〉2)

. If it cannot be decomposed as earlier then it is called ’Entangled’.
A few important results while using tensor products are as such,

(A1 ⊗B2)(C1 ⊗D2) = A1C1 ⊗B2D2

and
(A⊗B)† = A† ⊗B†

and
(A⊗B)−1 = A−1 ⊗B−1

and
A1 ⊗B2 6= B2 ⊗A1 (33)

A,B,C,D can be any column, row , square matrices.
Therefore,

〈Ξ,Ξ〉 = (

E,F∑
i,j=1

c∗ij 〈ξi|1 ⊗ 〈ξj |2)(11 ⊗ 12)(

E,F∑
i′,j′=1

ci′j′ |ξi′〉1 ⊗ |ξj′〉2) =

E,F∑
i,j=1

| ci,j |2 (34)

1 〈ξi|11 |ξj〉1 = δijand 2 〈ξi|12 |ξj〉2 = δij and using the properties stated above.

9.1. Density Matrix Formulation of Composite systems in hermitian case:

For simplicity, we will consider henceforward, that we are considering systems in pure states. Density matrix of a
composite system is given as,

ρhp
= |Ξ〉 〈Ξ| (11 ⊗ 12)

where, 11 ⊗ 12 = 1.
and

Tr(ρhp
) = 〈Ξ| (11 ⊗ 12) |Ξ〉 =

E,F∑
i.j=1

= |ci,j |2

Von Neumann entropy is given explicitly as

V (ρhp
) = −Tr(ρhp

log2(ρhp
)) = −Tr(|Ξ〉 〈Ξ| log2 |Ξ〉 〈Ξ|) = −(

S∑
i=1

κi log2 κi) (35)

where h = h1 ⊗ h2 and we are considering that ρh is density matrix for a pure state, it can easily be generalised for
mixed states and κi are eigenvalues of the density operator ρh. ’S’ is the dimension of the square density matrix where
E×F=S, where E is dimension of h1 and F is dimension of h2. Also, it is known that this quantity is invariant under
unitary similarity transformation.

9.1.1. Partial Trace Hermitian case:

Partial trace is a mathematical tool of describing individual properties of a composite system. Partial Trace of a
density matrix, ρh is denoted by ρh1

= Tr2(ρh12
) and ρh2

= Tr1(ρh12
), where h = h1 ⊗ h2. The prescription to find it

is given as

ρh1
= Tr2(ρh12

) = (

F∑
j′′=1

2 〈ξj′′ |12ρh |ξj′′〉2) =

EF∑
(i,i′),j′′=1

ci′,j′′c
∗
ij′′ |ξ′i〉1 1 〈ξi|11 (36)

where |ξj′′〉2 ∈ Hh2 Example: |Ξ〉 =
√

1
2 |0〉1 |1〉2 + |1〉1 |0〉2) here

|ξ1〉1 = |0〉1 and |ξ2〉1 = |1〉1
|ξ1〉2 = |1〉2 and |ξ2〉2 = |0〉2
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and
c12 = c21 = 0

and

c11 = c22 =

√
1

2

, E=F=2.

ρh1 =
1

2
|0〉1 1 〈0|+

1

2
|1〉1 1 〈1|

. Entanglement entropy of composite systems is defined as,

E(Ξ) = −Tr(ρh1
log2 ρh1

)

or another definition
E(Ξ) = −Tr(ρh2

log2 ρh2
)

where |Ξ〉 is an entangled state and ρh is the density operator for that state and, ρh1
and ρh2

are found by the
prescription given above.

In explicit way they can be written as,

E(Ξ) = Tr((
√
11
−1
ρh1

√
11)(log2

√
11
−1
ρh1

√
11))

This can be written due to the simple fact that
√
1 is always unitary and entropy is invariant under unitary transfor-

mations. It can also be equivalently given as,

E(Ξ) = Tr((
√
12
−1
ρh2

√
12)(log2

√
12
−1
ρh2

√
12))

. Writing Entanglement entropy this way provides clarification later.

10. COMPOSITE SYSTEMS INVOLVING PSEUDO-HERMITIAN SYSTEMS:

10.1. Case 1 H = H1 ⊗H2 :

Consider, case of a bipartite composite system of two Pseudo-Hermitian Hamiltonians given as H1⊗H2 and having
eigenvectors |ψi〉1 and |ψj〉2 s.t. (|ψi〉1 ⊗ |ψj〉2) form a biorthogonal basis under metric η = η1 ⊗ η2 (Analogous to
11 ⊗ 12).

η1 =

E∑
i=1

|φi〉1 1 〈φi|

and

η2 =

F∑
j=1

|φj〉2 2 〈φj |

where |φi〉1 ∈ HH†
1

and |φj〉2 ∈ HH†
2
. Any state of Hilbert space of such a system is given as,

|Ψ〉 =

EF∑
i,j=1

cij |ψi〉1 ⊗ |ψj〉2

where |ψi〉1 ∈ HH1
and |ψj〉2 ∈ HH2

. and HH = HH1
⊗HH2

. 1 〈ψi′ | η1 |ψi〉1 = δi′i and 2 〈ψj′ | η2 |ψj〉2 = δj′j . Now,

analogous to Hermitian case |Ψ〉 is called seperable if, |ψ〉 =
∑EF
i,j=1 cij |ψi〉1⊗|ψj〉2 = (

∑E
i=1 ci |ψi〉1)⊗(

∑F
j=1 cj |ψj〉2).

otherwise it is called entangled.

〈Ψ| η |Ψ〉 = (

EF∑
i,j=1

c∗ij1 〈ψi| ⊗ 2 〈ψj |)(η1 ⊗ η2)(

EF∑
i′,j′=1

ci′j′ |ψi′〉1 ⊗ |ψj′〉2)

as we know, 1 〈ψi′ | η1 |ψi〉1 = δi′i and 2 〈ψj′ | η2 |ψj〉2 = δj′j . we have,

〈Ψ| η |Ψ〉 =

EF∑
i.j=1

| cij |2

which applies to both entangled and seperable states.
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10.1.1. Density Matrix Formulation of case 1:

Density matrix of such a composite system is given as

ρH = |Ψ〉 〈Ψ| (η1 ⊗ η2)

s.t.

Tr(ρH) = 〈Ψ| (η1 ⊗ η2) |Ψ〉 =

EF∑
i.j=1

| cij |2

another important result is that as
η = η1 ⊗ η2

and as we already saw, η1 = π†1π1 and η2 = π†2π2 then we have already seen that for a particular non composite system
Hamiltonian, ρH = π−1ρhπ and π |Ψ〉 = |Ξ〉, where after transformation πHπ−1 = h we have h = h†. Now we check
for composite system, that ρH is equal to

(

EF∑
i,j=1

cij |ψi〉1 ⊗ |ψj〉2)(

EF∑
i′,j′=1

c∗i′j′2 〈ψj′ | ⊗ 1 〈ψi′ |)(η1 ⊗ η2)

as we know, (A1 ⊗B2)(C1 ⊗D2) = A1C1 ⊗B2D2. Then ρH becomes

(π−11 ⊗ π
−1
2 )(

EF∑
i,j=1

cij |ξi〉1 ⊗ |ξj〉2)(

EF∑
i′j′=1

c∗i′j′2 〈ξi′ | ⊗ 1 〈ξj′ |)(π−1
†

1 ⊗ π−1
†

2 )(π1
†π1 ⊗ π†2π2)

last two brackets become
(π−1

†

1 ⊗ π−1
†

2 )(π†1π1 ⊗ π
†
2π2) = π1 ⊗ π2

defining π1 ⊗ π2 = π and π−11 ⊗ π
−1
2 = π−1 we have

ρH = π−1ρhπ

. Hence, there exists a similarity transformation

(π1 ⊗ π2)(H1 ⊗H2)(π−11 ⊗ π
−1
2 ) = πHπ−1 = h

s.t. h = h†. Now, von neumann entropy as defined earlier gives

V (ρH) = −Tr(πρHπ−1 log2(πρHπ
−1))

substituting ρH = π−1ρhπ it gives
V (ρH) = −Tr(ρh log2(ρh)) = V (ρh)

Hence, we can see that given a composite system on Pseudo-Hermitian systems their entropies are same as that of
composite system made of isospectral partners of individual Pseudo-Hermitian systems. This can also be seen for
Entanglement entropy. For that we first need to formalise the act of partial tracing for such a theory.

10.1.2. Partial Tracing for Pseudo-Hermitian composite systems for case 1 :

The density matrix of a system making a composite system is found for a Pseudo-Hermitian system by partial tracing
as given below

ρH1
= Tr(ρH) =

F∑
j′′=1

2 〈ψj′′ | η2ρH |ψj′′〉2

as seen earlier for hermitian case it can be reduced to,

ρH1
=

EF∑
i,i′,j′′

ci′j′′c
∗
ij′′ |ψi′〉1 1 〈ψi| η1

and

ρH2
=

EF∑
i′′,j,j′

ci′′jc
∗
i′′j′ |ψj′〉2 2 〈ψj | η2

Using definition of Von Neumann entropy for single Pseudo-Hermitian systems as formalized earlier and defining
Entanglement entropy for case 1 of composite systems containing these systems we see that, Entanglement entropy
needs to be defined as

E(Ψ) = −Tr(π1ρH1π
−1
1 log2 π1ρH1π

−1
1 )
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as we have already seen that π1H1π
−1
1 = h1 and π1 |ψi〉1 = |ξi〉1 we have

ρH1
= π−11 ρh1

π1

where

ρh1 =

EF∑
i,i′,j′′=1

ci′j′′c
∗
ij′′ |ξi′〉1 1 〈ξi|11

and therefore, Entanglement entropy E(Ψ) becomes

E(Ψ) = −Tr(ρh1
log2 ρh1

) = E(Ξ)

Hence we can see that the value of entanglement entropy of an entangled state from composite system of 2 Pseudo-
Hermitian systems will be same as entangled entropy of an entangled state from a Hermitian isospectral system. All
of these properties can be checked using a bipartite composite system

H =

(
reiθ s
s re−iθ

)
⊗
(
r′eiθ

′
s′

s′ r′−iθ
′

)
(37)

10.2. Case2 : H = H1 ⊗ h2
Consider, the bipartite composite system of a Pseudo-Hermitian (H1) and a Hermitian (h2) Hamiltonian systems.

The eigenvectors of H = H1 ⊗ h2 will be |ψi〉1 ⊗ |ξj〉2 s.t. the, metric will be η1 ⊗ 12, where η1 =
∑E
i=1 |φi〉1 1 〈φ1| s.t.

|φ〉 ∈ HH† . Any arbitrary state of such a composite system is given as,

|Ψ〉 =

EF∑
i,j=2

cij |ψi〉1 ⊗ |ξj〉2

where |ψ〉1 ∈ HH1
and |ξ〉2 ∈ Hh2

and E and F are dimensions of H1 and h2.Also, HH = HH1
⊗Hh2

s.t.

1 〈ψi| η1 |ψi′〉1 = δii′

and
2 〈ξj |12 |ξj′〉2 = δjj′

|Ψ〉 is called ’seperable’ if , ,

|Ψ〉 = (

E∑
i=1

ci |ψi〉1)⊗ (

F∑
j=1

cj |ξj〉2)

otherwise it is entangled. Also, it can be seen that

〈Ψ, ηΨ〉 = (

E,F∑
i,j=1

c∗ij 〈ψi|1 ⊗ 〈ξj |2)(η1 ⊗ 12)(

E,F∑
i′,j′=1

ci′j′ |ψi′〉1 ⊗ |ξj′〉2) =

E,F∑
i,j=1

| ci,j |2 (38)

because, 1 〈ψi| η1 |ψi′〉1 = δii′ and 2 〈ξj |12 |ψj′〉2 = δjj′ .

10.2.1. Density Matrix Formulation for case 2:

Density matrix of such a composite system is given as

ρH = |Ψ〉 〈Ψ| (η1 ⊗ 1)

s.t.

Tr(ρH) = 〈Ψ| (η1 ⊗ 1) |Ψ〉 =

EF∑
i.j=1

| cij |2

another important result is that as
η = η1 ⊗ 12

and as we already saw, η1 = π†1π1 and 12 =
√
12
†√
12 then we have already seen that for a particular non composite

system Hamiltonian, ρH = π−1ρhπ and π |Ψ〉 = |Ξ〉, where after transformation πHπ−1 = h we have h = h†. Now we
check for composite system, we have ρH is equal to

(

EF∑
i,j=1

cij |ψi〉1 ⊗ |ξj〉2)(

EF∑
i′,j′=1

c∗i′j′2 〈ξj′ | ⊗ 1 〈ψi′ |)(η1 ⊗ 12)
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which becomes after using previous similarity transform π

(

EF∑
i,j=1

cij(π
−1
1 |ψi〉1)⊗ (

√
1
−1
2 |ξj〉2))(

EF∑
i′,j′=1

c∗i′j′(2〈ξj′ |
√
1
−1†

2 )⊗ (1〈ψi′ |π−1
†

1 ))

as we know, (A1 ⊗B2)(C1 ⊗D2) = A1C1 ⊗B2D2. Then ρH becomes

(π−11 ⊗
√
1
−1
2 )(

EF∑
i,j=1

cij |ξi〉1 ⊗ |ξj〉2)(

EF∑
i′j′=1

c∗i′j′2 〈ξi′ | ⊗ 1 〈ξi′ |)(π−1
†

1 ⊗
√
1
−1†

2 )(π†1π1 ⊗
√
1
†
2

√
12)

last two brackets become

(π−1
†

1 ⊗
√
1
−1†

2 )(π†1π1 ⊗
√
1
†
2

√
12) = π1 ⊗ 12

defining π1 ⊗
√
12 = π and π−11 ⊗

√
12
−1

= π−1 we have

ρH = π−1ρhπ

where h = h†. Now, the von neumann entropy as defined earlier gives

V (ρH) = −Tr(πρHπ−1 log2(πρHπ
−1))

substituting ρH = π−1ρhπ it gives
V (ρH) = −Tr(ρh log2(ρh)) = V (ρh)

Hence, we can see that given a composite system of Pseudo-Hermitian and a Hermitian system, their entropy values are
same as that of composite system made of their isospectral hermitian partner of Pseudo-Hermitian systems embedded
in it and of respective hermitian systems already present. This can also be seen for Entanglement entropy. For that
we again first need to formalise the act of partial tracing for such systems.

10.2.2. Partial Tracing for Pseudo-Hermitian composite systems for case 2:

The density matrix of a Pseudo-Hermitian part of Composite case 2 system is given by partial tracing, below as
seen earlier for hermitian case it can be reduced to,

ρH1
=

EF∑
i,i′,j′′

ci′j′′c
∗
ij′′ |ψi′〉1 1 〈ψi| η1

and

ρH2 =

EF∑
i′′,j,j′

ci′′jc
∗
i′′j′ |ξj′〉2 2 〈ξj |12

Using definition of Von Neumann entropy for single Pseudo-Hermitian systems as derived earlier and defining En-
tanglement entropy for case 2 of composite systems containing these individual systems we see that, Entanglement
entropy needs to be defined as

E(Ψ) = −Tr(π1ρH1
π−11 log2 π1ρH1

π−11 )

Using the case whichever maybe, also note that
√
1 is always unitary, instead it is equivalent definition of a unitary

matrix. For first definition it can be seen that π1H1π
−1
1 = h1 and π1 |ψi〉1 = |ξi〉1 and h1 = h†1we have

ρH1
= π−11 ρh1

π1

where

ρh1 =

EF∑
i,i′,j′′=1

ci′j′′c
∗
ij′′ |ξi′〉1 1 〈ξi|11

and therefore, Entanglement entropy E(Ψ) becomes

E(Ψ) = −Tr(ρh1
log2 ρh1

) = E(Ξ)

Where |Ξ〉 in h is now a isospectral entangled state of |Ψ〉 , an entangled state in H. Hence we can see that the value
of entanglement entropy of an entangled state from composite system of some Pseudo-Hermitian systems and some
hermitian systems will be same as entangled entropy of an entangled state from a Hermitian isospectral system of the
pseudo-hermitian and the already present hermitian systems. All of these properties can be checked using a bipartite
composite system

H =

(
reiθ s
s re−iθ

)
⊗
(
r′ s′

s′ r′

)
(39)
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11. RATE OF ENTANGLEMENT FOR SUCH COMPOSITE SYSTEMS :

It can now be seen that rate of entanglement of composite systems having Pseudo-Hermitian systems will have same
value as that of an equivalent Hermitian isospectral Composite system. As per the definition of Rate of entanglement
production by a particular composite system H for a particular entangled state Ψ we write

ΓH =
dE(Ψ)

dt

As we already saw,Entanglement entropies E(Ψ) = E(Ξ) where Ψ is an entangled state which belongs to Pseudo-
Hermitian composite system H and Ξ belongs to it’s isospectral composite hermitian system h. We have,

ΓH =
dE(Ψ)

dt
= Γh =

dE(Ξ)

dt

12. CONCLUSION:

We learnt that Theory of Pseudo-Hermiticity can be consistently applied to theory of open quantum systems under
Dekker Formalism ,1;2;3;4. It was presented in Density Operator language, which has it’s own pros and cons. A
few clarifications on ,5were provided. We see that Non-Hermitian Hamiltonians represent Non-dissipating quantum
systems, they only start dissipative behaviour when the eigenvalues become complex as verified in .13

APPENDIX

Here we will give examples of the results obtained earlier. Firstly we give the example of a 2×2 Non-Hermitian matrix
in the real eigenvalue regime, and show how it is related to an isospectral-hermitian hamiltonian, both algebraically
and geometrically. Next we will see by analogy the geometry of a composite Pseudo-Hermitian system. The following
Appendix is based on ,16;17;18;19.

Consider a 2× 2 Hermitian Hamiltonian as given below(
s r
r s

)
(40)

it’s eigenvectors are √
1

2

(
1
1

)
and

√
1

2

(
1
−1

)
and eigenvalues are real hamiltonian is hermitian.

When (41) is unitarily transformed it becomes (
s re−iθ

reiθ s

)
(41)

which has eigenvectors √
1

2

(
eiθ/2

e−iθ/2

)
and

√
1

2

(
eiθ/2

−e−iθ/2
)

We can see in both cases eigenvectors are orthogonal to each other. As we know the state space of a Hermitian 2×2
system can be projected onto a Bloch Sphere, always. we can see that geometrically the act of unitary transformation
just rotates the Bloch sphere. It can be seen as follows, by calculating the Bloch vector, it shows that for the eigenvector
of Hamiltonian in eq(41)

S̄ = 1x̂

and for eq(42) it is
S̄ = cos(θ)x̂+ sin(θ)ŷ

which shows that their Bloch vectors are only rotated by θ angle. It can also be seen that the geodesic distance between
both eigenvectors of eq(41) and of eq(42) have distance π and hence they are orthogonal to each other. The geodesic
distance between ξi and ξj is given as

δ = arccos(

√√√√ (ξ†i ξj)(ξ
†
j ξi)

(ξ†i ξi)(ξ
†
j ξj)

)

. Moreover, the Eigenvalues and expectation values of the observables of these systems will be real as is already known.
However, the Hamiltonian

H =

(
reiθ s
s re−iθ

)
(42)
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is not Unitarily equivalent to eq(41) or eq(42) Hamiltonian. Instead, if a matrix is untarily equivalent to one matrix
then it is unitarily equivalent to all other matrices which are unitarily equivalent to the first matrix. This, Hamiltonian
is Non-Hermitian with eigenvalues

λ± = rcos(θ)±
√
s2 − r2sin2(θ)

The eigenvectors for λ+ and λ− in the real eigenvalue regime (i.e. when
s2 − r2sin2(θ) > 0) respectively, are

ψ± =

√
1

2cos(α)

(
eiα/2

e−iα/2

)
and

√
1

2cos(α)

(
e−iα/2

−eiα/2
)

where, sinα = r
ssinθ and eigenvalues become λ± = rcosθ ± scosα. It can be easily seen that the eigenvectors are not

orthonormal to each other and if we find the eigenvectors of H† in the real eigenvalue regime then they turn out to be.

φ± =

√
1

2cos(α)

(
e−iα/2

eiα/2

)
and

√
1

2cos(α)

(
−eiα/2
e−iα/2

)
It can be seen that ψ†±φ± = 1 and ψ†∓φ± = 0, we can create an operator η = φ+φ+

† + φ−φ
†
− s.t we get all the

eigenvectors of eq(43) be orthogonal to each other i.e. ψ†±(ηψ±) = 1 and ψ†∓(ηψ±) = 0 where, now representation of
η =

1

cosα

(
1 −isinα

isinα 1

)
(43)

and square root of η which is found by diagonalizing η and then taking square roots of the diagonal elements of η
and then again transforming the root diagonal form to root non-diagonal form. We, get

π =
1

2

(
(a+ b) −i(a− b)
i(a+ b) (a+ b)

)
(44)

Where a =
√
secα+ tanα and b =

√
secα− tanα it can be easily be seen that π is not unitary (π† 6= π−1).

π−1 =
1

2

(
(a+ b) i(a− b)
−i(a+ b) (a+ b)

)
(45)

It can now be checked that H can be transformed to an isospectral Hermitian hamiltonian by a similarity transform
using π s.t. πHπ−1 = h and h = h†. For, this case the Hamiltonian turns out to be

h =

(
rcosθ scosα
scosα rcosθ

)
(46)

with eigenvectors,

ξ+ =

√
1

2

(
1
1

)
andξ− =

√
1

2

(
1
−1

)
(47)

It can be easily seen that it’s eigenvalue is same as H, the eigenvectors ξ being, πψ± = ξ± s.t. ψ†±ηψ± =

ξ†±π
−1†ηπ−1ξ± = ξ†±ξ± = 1 and ξ†∓ξ± = 0. Hence the Geodesic distance between ψ∓ and ψ± is π as their val-

ues are same as the orthogonal eigenvectors of h and it is well known that the geodesic distance between orthogonal
vectors under metric 1 is π, where π here is angle in radians. This can also be checked by using the formula for
geodesic distance between two states in the projective space of the state space of a Pseudo-Hermitian system, given
by,

δ = arccos(

√√√√ (ψ†i ηψj)(ψ
†
jηψi)

(ψ†iψi)(ψ
†
jψj)

)

Check ,19.
Note now if we try to find the Bloch Vectors of corresponding eigenvectors of eq(43) using usual Pauli matrices then

ψ†+ησzψ+ gives value itan(α) which is a complex value. Hence, the expectation value of spin will be complex, so the
observables need to be changed. We will see that indeed we just changed the representation of the observables however
they will give same expectation values for corresponding isospectral states. As, we already saw the observable given
by Hamiltonian is changed as πHπ−1 = h the Pauli matrices will also change as π−1σ̄π = σ̄new s.t. now it can be
easily seen that Sψ+

= x̂ and hence the projective space of H is same as that of h, which is Hermitian. We can check
that only the arrangement of the state space has changed between the Pseudo-Hermitian and isospectral Hermtian
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system. All the expectation values will match between the systems. All of the above properties can be visualised as
given by Fig.1.

X

Y

Z

X

Y

Z

Fig. 1.— The dark lines represent
√

1
2

(|0〉 ± |1〉), but note they are not equivalent to each other after similarity transformation with π

Using all this it can be easily visualised that for a composite system, for example consider

H =

(
reiθ s
s re−iθ

)
⊗
(
r′eiθ

′
s′

s′ r′e−iθ
′

)
(48)

We will have for a seperable state of such a composite system that the Complex projective space of it can be
decomposed into two individual Bloch spheres representing the two states making up this seperable state. Also, an
Entangled state will be represented by an S7( Unit sphere in 8 dimensions) as is done in Hermitian case.
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