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Abstract

Recently, novel physical consequences of the Extended Relativity Theory in C-
spaces (Clifford spaces) were explored and which provided a very different physical
explanation of the phenomenon of “relativity of locality” than the one described by
the Doubly Special Relativity (DSR) framework. An elegant nonlinear momentum-
addition law was derived that tackled the “soccer-ball” problem in DSR. Generalized
photon dispersion relations allowed also for energy-dependent speeds of propagation
while still retaining the Lorentz symmetry in ordinary spacetimes, but breaking
the extended Lorentz symmetry in C-spaces. This does not occur in DSR nor
in other approaches, like the presence of quantum spacetime foam. In this work
we show why a minimal length (say the Planck scale) follows naturally from the
Extended Relativity principle in Clifford Spaces. Our argument relies entirely on
the Physics behind the extended notion of Lorentz transformations in C-space,
and does not invoke quantum gravity arguments, nor quantum group deformations
of Lorentz/Poincare algebras, nor other prior arguments displayed in the Physics
literature. The Extended Relativity Theory in Clifford Phase Spaces requires also
the introduction of a maximal scale which can be identified with the Hubble scale.
It is found also that C-space physics favors a choice of signature (−,+,+, ....,+).

Keywords : Clifford algebras; Extended Relativity in Clifford Spaces; Doubly Special
Relativity; Quantum Clifford-Hopf algebras.
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1 Introduction

1.1 Novel Consequences of the Extended Relativity Theory in
Clifford Spaces

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces) and
Clifford-Phase spaces were developed [1], [2]. The Extended Relativity theory in Clifford-
spaces (C-spaces) is a natural extension of the ordinary Relativity theory whose general-
ized coordinates are Clifford polyvector-valued quantities which incorporate the lines, ar-
eas, volumes, and hyper-volumes degrees of freedom associated with the collective dynam-
ics of particles, strings, membranes, p-branes (closed p-branes) moving in a D-dimensional
target spacetime background. C-space Relativity permits to study the dynamics of all
(closed) p-branes, for different values of p, on a unified footing. Our theory has 2 fun-
damental parameters : the speed of a light c and a length scale which can be set equal
to the Planck length. The role of “photons” in C-space is played by tensionless branes.
An extensive review of the Extended Relativity Theory in Clifford spaces can be found
in [1]. The polyvector valued coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are now linked to the basis
vectors generators γµ, bi-vectors generators γµ ∧ γν , tri-vectors generators

γµ1 ∧ γµ2 ∧ γµ3 , ... of the Clifford algebra, including the Clifford algebra unit element
(associated to a scalar coordinate). These polyvector valued coordinates can be inter-
preted as the quenched-degrees of freedom of an ensemble of p-loops associated with the
dynamics of closed p-branes, for p = 0, 1, 2, ..., D−1, embedded in a target D-dimensional
spacetime background.

The C-space polyvector-valued momentum is defined as P = dX/dΣ where X is the
Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in four-dimensions, for
example,

X = s 1 + xµ γµ + xµν γµ ∧ γν + xµνρ γµ ∧ γν ∧ γρ + xµνρτ γµ ∧ γν ∧ γρ ∧ γτ (1)

where we have omitted combinatorial numerical factors for convenience in the expansion
(1). It can be generalized to any dimensions, including D = 0. The component s is the
Clifford scalar component of the polyvector-valued coordinate and dΣ is the infinitesimal
C-space proper “time” interval which is invariant under Cl(1, 3) transformations which
are the Clifford-algebra extensions of the SO(1, 3) Lorentz transformations [1]. One should
emphasize that dΣ, which is given by the square root of the quadratic interval in C-space

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (2)

is not equal to the proper time Lorentz-invariant interval dτ in ordinary spacetime (dτ)2 =
gµνdx

µdxν = dxµdx
µ. In order to match units in all terms of eqs-(1,2) suitable powers

of a length scale (say Planck scale) must be introduced. For convenience purposes it
is can be set to unity. For extensive details of the generalized Lorentz transformations
(poly-rotations) in flat C-spaces and references we refer to [1].
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Let us now consider a basis in C-space given by

EA = γ, γµ, γµ ∧ γν , γµ ∧ γν ∧ γρ, ... (3)

where γ is the unit element of the Clifford algebra that we label as 1 from now on. In (3)
when one writes an r-vector basis γµ1∧γµ2∧...∧γµr we take the indices in ”lexicographical”
order so that µ1 < µ2 < .... < µr. An element of C-space is a Clifford number, called also
Polyvector or Clifford aggregate which we now write in the form

X = XAEA = s1 + xµγµ + xµνγµ ∧ γν + ... (4)

A C-space is parametrized not only by 1-vector coordinates xµ but also by the 2-
vector coordinates xµν , 3-vector coordinates xµνα, ..., called also holographic coordinates,
since they describe the holographic projections of 1-loops, 2-loops, 3-loops,..., onto the
coordinate planes . By p-loop we mean a closed p-brane; in particular, a 1-loop is closed
string. In order to avoid using the powers of the Planck scale length parameter Lp in the
expansion of the polyvector X (in order to match units) we can set it to unity to simplify
matters. In a flat C-space the basis vectors EA, EA are constants. In a curved C-space
this is no longer true. Each EA, EA is a function of the C-space coordinates

XA = { s, xµ, xµ1µ2 , ....., xµ1µ2.....µD } (5)

which include scalar, vector, bivector,..., p-vector,... coordinates in the underlying D-dim
base spacetime and whose corresponding C-space is 2D-dimensional since the Clifford
algebra in D-dim is 2D-dimensional.

Defining

EA ≡ γA, J AB ≡ 1

2
(γA ⊗ γB − γB ⊗ γA), J A ≡ 1

2
(γA ⊗ 1− 1⊗ γA) 6= 0 (6)

for arbitrary polyvector valued indices A,B, .... and after using the relations

[ γA ⊗ γB, γC ⊗ γD ] =
1

2
[ γA, γC ]⊗ {γB, γD } +

1

2
{ γA, γC } ⊗ [ γB, γD ] (7)

{ γA ⊗ γB, γC ⊗ γD } =
1

2
[ γA, γC ]⊗ [ γB, γD ] +

1

2
{ γA, γC } ⊗ { γB, γD } (8)

yields, for example, the commutator relation involving the boost generator J 01 (along
the X1 direction) and the area-boost generator J 0 12 (along the bivector X12 direction)
in C-space

[ J 0 12, J 01 ] =
1

4
[ γ0 ⊗ γ12 − γ12 ⊗ γ0, γ01 ⊗ 1− 1⊗ γ01 ] =

− 1

8
g11 (γ20 ⊗ γ0 − γ0 ⊗ γ20) − 1

8
g00(γ1 ⊗ γ12 − γ12 ⊗ γ1) (9)

The (anti) commutators of all the gamma generators are explicitly given in the Appendix.
One requires to use the expressions in the Appendix in order to arrive at the last terms
of eq-(9). Hence, from the definitions in eqs-(6) one learns that
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[ J 0 12, J 01 ] =
1

4
g00 J 12 1 +

1

4
g11 J 02 0 (10)

A careful study reveals that the commutators obtained in eq-(10) (after using the expres-
sions in eqs-(7,8) and in those in the Appendix) do not obey the relations

[ J AB, J C ] ∼ − GAC J B + GBC J A (11)

[ J AB, J CD ] ∼ − GAC J BD + GAD J BC − GBD J AC + GBC J AD (12)

where the C-space metric is chosen to be GAB = 0 when the grade A 6= grade B. And
for the same-grade metric components g[a1a2...ak] [b1b2...bk] of GAB, the metric can decom-
posed into its irreducible factors as antisymmetrized sums of products of ηab given by the
following determinant [17]

GAB ≡ det


ηa1b1 . . . . . . ηa1bk

ηa2b1 . . . . . . ηa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
ηakb1 . . . . . . ηakbk

 (13)

The spacetime signature is chosen to be (−,+,+, ....,+).
It would be tempting to suggest that the C-space generalization of the Poincare algebra

could be given by the commutators in eq-(12) and

[ J AB, PC ] ∼ − GAC PB + GBC PA, [PA, PB] = 0 (14)

where PA is the poly-momentum and J AB are the generalized Lorentz generators. A
more careful inspection suggests that this is not the case. The actual commutators are
more complicated as displayed by eq-(10). One always must use the relations in eqs-(7,8)
and in the Appendix in order to determine the [J AB,J CD], [J AB,J C ] commutators. In
this way one will ensure that the Jacobi identities are satisfied.

Let us provide some examples of the generalized Lorentz relativistic transformations
in C-space. Performing an area-boost transformation along the bivector X12 direction
and followed by a boost transformation along the X1 direction one arrives after some
laborious but straightforward algebra at

X ′′0 = ( X0 coshβ + L−1 X12 sinhβ ) coshα + X1 sinhα (15a)

X ′′1 = ( X0 coshβ + L−1 X12 sinhβ ) sinhα + X1 coshα (15b)

X ′′12 = L X0 sinhβ + X12 coshβ (15c)

X ′′2 = X2, X ′′01 = X01, X ′′02 = X02, X ′′012 = X012 (15d)

the Clifford scalar parts of the polyvectors are trivially invariant s′′ = s as they should.
The parameter α is the standard Lorentz boost parameter and β is the area-boosts one.
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Due to the identities cosh2α − sinh2α = 1 and cosh2β − sinh2β = 1, a straightforward
algebra leads to

− (X ′′0 )2 + (X ′′1 )2 + L−2 (X ′′12)
2 = − (X0)

2 + (X1)
2 + L−2 (X12)

2 (16)

which is a consequence of the invariance of the norm in C-space [1]

< X† X > = XA X
A = s2 + Xµ X

µ + Xµ1µ2 X
µ1µ2 + ...... Xµ1µ2.....µD X

µ1µ2....µD (17)

where X† denotes the reversal operation obtained by reversing the order of the gamma
generators in the wedge products. The symbol < .... > denotes taking the scalar part in
the Clifford geometric product.

In the particular case when the spacetime dimension is chosen to be D = 3 for sim-
plicity, one has in addition to the transformations provided by eqs-(15) that the other
remaining coordinates remain invariant under boosts along the X1 direction and area-
boosts along X12,

Performing, instead, a boost transformation along the X1 direction and then followed
by an area-boost transformation along the bivector X12 direction one arrives at

X ′′0 = ( X0 coshα + X1 sinhα ) coshβ + L−1 X12 sinhβ (18a)

X ′′1 = X0 sinhα + X1 coshα (18b)

X ′′12 = X12 coshβ + L ( X0 coshα + X1 sinhα ) sinhβ (18c)

straightforward algebra leads again to

− (X ′′0 )2 + (X ′′1 )2 + L−2 (X ′′12)
2 = − (X0)

2 + (X1)
2 + L−2 (X12)

2 (19)

We may notice the mixing of polyvector valued coordinates under generalized Lorentz
transformations in C-space. Stringy (area coordinates) Xµν and point particle coordinates
Xµ in eqs-(15,18) appear mixed with each other under the C-space transformations.

Because [ J 0 12, J01 ] 6= 0 the order in which one performs the generalized
boosts transformations matters. In ordinary Relativity the commutator of two boosts
[M0i,M0j] ∼ η00 M ij gives a rotation. This is the reasoning behind the Thomas preces-
sion. In C-space, one will arrive at different results if one first performs an area-boost
followed by an ordinary boost, compared if we perform an ordinary boost followed by an
area boost. This is the reason why eqs-(15) differ from eqs-(18) although both of them
lead to the same invariance property of the C-space interval (17) .

There are more general areal X12 boosts transformations defined in terms of two
parameters α, β and involving the temporal bivector X01 and temporal trivector X012

coordinates as follows

X ′12 = (X12 coshα + L−1 X012 sinhα) coshβ + X01 sinhβ (20a)

X ′01 = X01 coshβ + (X12 coshα + L−1 X012 sinhα) sinhβ (20b)

X ′012 = X012 coshα + L X12 sinhα
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X ′0 = X0, X ′1 = X1, X ′2 = X2, X ′02 = X02 (20c)

the transformations leave invariant the following subinterval of the full interval in C-space
when the 3D spacetime signature is (−,+,+)

L2 (X ′12)
2 − L2 (X ′01)

2 − (X ′012)
2 = L2 (X12)

2 − L2 (X01)
2 − (X012)

2 (20c)

we may notice that the spatial variables and temporal ones appear with opposite signs in
(20d) , as they should, and hence the transformations in eqs-(20) are valid boosts.

The C-space rotations like those mixing the area-bivector X12 with the X1 vector
component are of the form

X ′1 = X1 cosθ − L−1 X12 sinθ; X ′12 = L X1 sinθ + X12 cosθ (21)

such that

L−2 (X ′12)
2 + (X ′1)

2 = L−2 (X12)
2 + (X1)

2 (22)

Due to the fact that g11 = g22 = 1 this explains why (X12)
2 appears with a plus sign in

all the above equations.
Recently, novel physical consequences of the Extended Relativity Theory in C-spaces

(Clifford spaces) were explored in [4]. The latter theory provides a very different phys-
ical explanation of the phenomenon of “relativity of locality” than the one described
by the Doubly Special Relativity (DSR) framework. Furthermore, an elegant nonlinear
momentum-addition law was derived in order to tackle the “soccer-ball” problem in DSR.
Neither derivation in C-spaces requires a curved momentum space nor a deformation of
the Lorentz algebra. While the constant (energy-independent) speed of photon propaga-
tion is always compatible with the generalized photon dispersion relations in C-spaces,
another important consequence was that the generalized C-space photon dispersion re-
lations allowed also for energy-dependent speeds of propagation while still retaining the
Lorentz symmetry in ordinary spacetimes, while breaking the extended Lorentz symmetry
in C-spaces. This does not occur in DSR nor in other approaches, like the presence of
quantum spacetime foam.

We learnt from Special Relativity that the concept of simultaneity is also relative. By
the same token, we have shown in [4] that the concept of spacetime locality is relative
due to the mixing of area-bivector coordinates with spacetime vector coordinates under
generalized Lorentz transformations in C-space. In the most general case, there will be
mixing of all polyvector valued coordinates. This was the motivation to build a unified
theory of all extended objects, p-branes, for all values of p subject to the condition p+1 =
D.

In [5] we explored the many novel physical consequences of Born’s Reciprocal Relativ-
ity theory [7], [9], [10] in flat phase-space and generalized the theory to the curved phase-
space scenario. We provided six specific novel physical results resulting from Born’s Recip-
rocal Relativity and which are not present in Special Relativity. These were : momentum-
dependent time delay in the emission and detection of photons; energy-dependent notion
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of locality; superluminal behavior; relative rotation of photon trajectories due to the
aberration of light; invariance of areas-cells in phase-space and modified dispersion rela-
tions. We finalized by constructing a Born reciprocal general relativity theory in curved
phase-spaces which required the introduction of a complex Hermitian metric, torsion and
nonmetricity.

We should emphasize that no spacetime foam was introduced, nor Lorentz invariance
was broken, in order to explain the time delay in the photon emission/arrival. In the con-
ventional approaches of DSR (Double Special Relativity) where there is a Lorentz invari-
ance breakdown [13], a longer wavelength photon (lower energy) experiences a smoother
spacetime than a shorter wavelength photon (higher energy) because the higher energy
photon experiences more of the graininess/foamy structure of spacetime at shorter scales.
Consequently, the less energetic photons will move faster (less impeded) than the higher
energetic ones and will arrive at earlier times.

However, in our case above [5] the time delay is entirely due to the very nature of Born’s
Reciprocal Relativity when one looks at pure acceleration (force) boosts transformations of
the phase space coordinates in flat phase-space. No curved momentum space is required
as it happens in [13]. The time delay condition in Born’s Reciprocal Relativity theory
implied also that higher momentum (higher energy) photons will take longer to arrive
than the lower momentum (lower energy) ones.

Superluminal particles were studied within the framework of the Extended Relativity
theory in Clifford spaces (C-spaces) in [6]. In the simplest scenario, it was found that it is
the contribution of the Clifford scalar component P of the poly-vector-valued momentum
P which is responsible for the superluminal behavior in ordinary spacetime due to the
fact that the effective mass

√
M2 − P 2 can be imaginary (tachyonic). However from

the point of view of C-space there is no superluminal behaviour (tachyonic) because
the true physical mass still obeys M2 > 0. As discussed in detailed by [1], [3] one can
have tachyonic (superluminal) behavior in ordinary spacetime while having non-tachyonic
behavior in C-space. Hence from the C-space point of view there is no violation of
causality nor the Clifford-extended Lorentz symmetry. The analog of “photons” in C-
space are tensionless strings and branes [1].

Long ago [18] we showed how the quadratic Casimir invariant in C-space given by
eq-(25) leads to modified wave equations, dispersion laws and to the generalizations of
the stringy-uncertainty principle relations. One is able to arrive at the energy-dependent
speed of propagation while still retaining the Lorentz symmetry. This does not occur in
DSR nor in other approaches. For further details we refer to [4].
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2 On Areal Velocities, Multiple Times and Minimal

Length

2.1 Addition Law of Areal Velocities

Setting α = 0 in eqs-(15,18) and differentiating gives

dX ′′0 = dX0 coshβ + L−1 dX12 sinhβ, dX ′′1 = dX1 (23a)

dX ′′12 = dX12 coshβ + L dX0 sinhβ (23b)

such that

dX ′′12
dX ′′0

=
dX12 coshβ + L dX0 sinhβ

dX0 coshβ + L−1 dX12 sinhβ
=

dX12

dX0
+ L tanhβ

1 + L−1 dX12

dX0
tanhβ

(23c)

Using the following definitions of the areal velocities (in c = 1 units)

V12 ≡
dX12

dX0

, V ′12 ≡ L tanhβ (24)

corresponding to the areal velocity of a polyparticle as measured in a given frame of
reference, and the areal velocity associated with an areal boost transformation of the
reference frame, respectively, one can rewrite eq-(23c) as

V ′′12 =
V12 + V ′12

1 +
V12 V ′12
L2

(25)

leading to the addition law of the areal velocities. In particular, one can see that if the
maximal areal velocity is identified with the quantity Lc, after restoring the speed of light
that was set to unity, we have that the addition/subtraction law of the maximal areal
velocities Lc yields always the maximal areal velocity

V ′′12 =
V12 ± V ′12

1 ± V12 V ′12
L2c2

=
Lc ± Lc

1 ± Lc Lc
L2c2

= Lc
1 ± 1

1 ± 1
= Lc (26)

so that the maximal areal velocity Lc is never surpassed and it is a C-space relativistic
invariant quantity. Meaning that if the areal velocities of two polyparticles in a given
reference frame is maximal Lc, their relative areal-velocity is also maximal Lc and is
obtained from the subtraction law in eq-(26).

Let us take the spacetime signature to be (−,+,+,+, ......,+) and factorize the C-
space interval (2) as follows by bringing the c2(dt)2 factor outside the parenthesis

(dΣ)2 = c2(dt)2
(
L2

c2
(
ds

dt
)2 − 1 +

1

c2
(
dXi

dt
)2 +

1

L2c2
(
dXij

dt
)2 − 1

L2c2
(
dX0i

dt
)2 ........

)
(27)
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where the spatial index i range is 1, 2, ..., D − 1. The Clifford space associated with the
Clifford algebra in 4D is 16-dimensional and has a neutral/split signature of (8, 8) [3], [1].
For example, the terms (dX0i)

2, (dX0ij)
2, (dX0123)

2 will appear with a negative sign, while
the terms (dXij)

2, (dXijk)
2 will appear with a positive sign.

There are many possible combination of numerical values for the 16 terms inside
the parenthesis in eq-(27). As explained in [3], [1], superluminal velocities in ordinary
spacetime are possible, while retaining the null interval condition in C-space (dΣ)2 = 0,
associated with tensionless branes. The null interval in C-space (dΣ)2 = 0 can be
attained, for example, if each term inside the parenthesis is ±1 respectively. Since there
are 8 positive ( +1) terms and 8 negative ( −1) terms one has that 8− 8 = 0 and the null
interval condition (dΣ)2 = 0 is still satisfied despite having superluminal speeds.

A very different combination of numerical values, as compared to the previous one,
leading also to a null interval condition in C-space (dΣ)2 = 0, occurs when one does
not exceed the maximal magnitudes for the linear, areal, volume, ... velocities. It is
given by the following combination

1

c2

(
(
dX1

dt
)2 + (

dX2

dt
)2 + (

dX3

dt
)2
)

= 1 (28a)

1

L2c2

(
(
dX12

dt
)2 + (

dX13

dt
)2 + (

dX23

dt
)2
)

=

1

L2c2

(
(
dX01

dt
)2 + (

dX02

dt
)2 + (

dX03

dt
)2
)

= 1 (28b)

1

L4c2

(
(
dX012

dt
)2 + (

dX013

dt
)2 + (

dX023

dt
)2
)

=
1

L4c2
(
dX123

dt
)2 = 1 (28c)

1

L6c2
(
dX0123

dt
)2 = 1,

L2

c2
(
ds

dt
)2 = 1 (28d)

In this fashion from eqs-(28) one can have the analog of a C-space “photon” which cor-
responds to a polyparticle whose magnitudes of the spatial and temporal components
of the linear, areal, volume, ... velocities are respectively given by their maximal val-
ues c, Lc, L2c, L3c, ..... One must also include the velocity component associated with the
Clifford scalar component of the polyvector given by ds/dt and whose maximal value is
set to be c/L.
• Effective Time and Another Description of C-space Photons

From now on, in order to simplify matters let us work with D = 3 instead of D = 4.
The effective temporal variable T is defined as

c2(dT )2 ≡ c2(dt)2 +
1

c2
(
dX01

dt
)2 +

1

c2
(
dX02

dt
)2 +

1

L2c2
(
dX012

dt
)2 (29)
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so that the C-space interval can be rewritten, after factoring out the c2(dT )2 term, as

(dΣ)2 = − c2(dT )2
(

1 − L2

c2
(
ds

dT
)2 − 1

c2
(
dX1

dT
)2 − 1

c2
(
dX2

dT
)2 − 1

L2c2
(
dX12

dT
)2
)

(30)
The last expression has the same functional form as the ordinary spacetime interval in
MInkowski space. Namely one can write the C-space interval (dΣ)2 in the form

(dΣ)2 = − c2(dT )2 ( 1 − V 2

c2
) (31)

where the generalization of the magnitude-squared of the spatial velocity divided by c2 is

V 2

c2
≡ L2

c2
(
ds

dT
)2 +

1

c2
(
dX1

dT
)2 +

1

c2
(
dX2

dT
)2 +

1

L2c2
(
dX12

dT
)2 (32)

Another description of C-space Photons is obtained from the null C-space interval condi-
tion (dΣ)2 = 0 which is equivalent to setting V 2/c2 = 1 in eq-(32) and where the velocity
squared is defined with respect to the effective temporal variable T .

2.2 On Minimal Length from Addition Law of Areal Velocities

An ordinary spacetime boost along the spatial direction X1 can be seen as a “rotation”
in the X0 − X1 plane. Rotations with a purely imaginary angle behave like boosts.
Therefore, a more general areal-boost transformation should be such that it “rotates” the
spatial areal-bivector coordinate X12 into a linear combination of the ordinary temporal
coordinate X0, the temporal bivector coordinates X01, X02, and the temporal trivector
coordinate X012. A simplified areal boost transformation is given, for example, by

X ′12 = X12 coshβ + X01 sinhβ

X ′01 = X01 coshβ + X12 sinhβ

X ′0 = X0, X ′1 = X1, X ′2 = X2

X ′02 = X02, X012 = X012 (33)

In doing so the subinterval

(X ′12)
2 − (X ′01)

2 = (X12)
2 − (X01)

2 (34)

remains invariant, irrespective of the spacetime signature. In this special case for eq-(34),
changing the spacetime signature does not alter the overall signs in eq-(34). The signs
remain the same whether the signature is (−,+,+) or (+,−,−). This is not the case in
general as we shall see.

The areal-velocity is now defined with respect to the temporal bivector coordinate
X01, instead of the ordinary temporal variable X0,
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dX ′12
dX ′01

=
dX12 coshβ + dX01 sinhβ

dX01 coshβ + dX12 sinhβ
=

dX12

dX01
+ tanhβ

1 + dX12

dX01
tanhβ

(35)

leading to the addition law of areal velocities defined with respect to the temporal bivector
coordinate X01

V ′′12 =
V ′12 + V12

1 + V ′12 V12
,
dX ′12
dX ′01

≡ V ′′12,
dX12

dX01

≡ V ′12, V12 ≡ tanhβ (36)

where V12 = tanhβ is the areal velocity of the old frame of reference with respect to the
new one. When β = ∞ one reaches the maximal areal velocity V12 = 1 in natural units
of c = 1. If one can restores c the addition law of areal velocities is given by

V ′′12 =
V ′12 + V12

1 +
V ′12 V12
c2

, c
dX ′12
dX ′01

= V ′′12, c
dX12

dX01

= V ′12, V12 = c tanhβ (37)

leading to the maximal areal velocity (defined with respect to the temporal bivector
coordinate X01) given by c, as in ordinary Special Relativity. As a reminder, X0 has units
of length, like ct so one needs to divide by c in order to obtain units of time. X01 has
units of (length)2 so dividing by c yields units of time × length; etc...

An areal boost transformation defined with respect to the temporal trivector compo-
nent X012, instead of the ordinary temporal X0 coordinate and the temporal bivector X01

one, is given for example by

X ′12 = X12 coshβ + L−1 X012 sinhβ

X ′012 = X012 coshβ + L X12 sinhβ

X ′0 = X0, X ′1 = X1, X ′2 = X2

X ′01 = X01, X ′02 = X02 (38)

Upon doing so the subinterval

L2 (X ′12)
2 − (X ′012)

2 = L2 (X12)
2 − (X012)

2 (39)

remains invariant, for the 3D spacetime signature (−,+,+), under the transformations
(38).

However, if one uses instead the signature (+,−,−) it leads to

L2 (X ′12)
2 + (X ′012)

2 6= L2 (X12)
2 + (X012)

2 (40)

and the latter subinterval (40) is not invariant under the boosts provided by eq-(38).
We see how transformations in C-space are signature sensitive. The reason being that
in the combination L2(X12)

2 + (X012)
2 both the spatial areal components (X12)

2 and
the trivector temporal (X012)

2 ones appear with the same sign. Whereas in the former
combination L2 (X12)

2 − (X012)
2 the spatial bivector and temporal trivector components

appear with opposite sign, as they should. Hence we arrive at an important conclusion :
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transformations in C-space favor one signature over another. This is not surprising since
Clifford algebras distinguish the signatures. The real Clifford algebras Cl(p, q), Cl(q, p)
where p+ q = D are not isomorphic in general, except in some very special cases.

Now we are going to provide a physical argument as to why the length parameter L ad-
mits the minimal length scale physical interpretation. The argument relies entirely on the
physics behind the extended notion of Lorentz transformations in C-space, and does not
invoke Quantum Gravity arguments nor quantum group deformations of Lorentz/Poincare
algebras.

Fixing the signature (−,+,+), after using the areal boosts transformations of eq-(38)
associated with the trivector temporal coordinate X012 , and taking similar steps as those
provided in eqs-(23,35,36,37), the addition law of areal velocities becomes in this case

V ′′12 =
V ′12 + V12

1 +
V ′12 V12
L−2c2

, c
dX ′12
dX ′012

= V ′′12, c
dX12

dX012

= V ′12, V12 = L−1c tanhβ (41)

Therefore, from the addition law (41) one can infer that if themaximum values of the areal
velocities c dX12/dX012 (measured with respect to the temporal trivector coordinates) and
the areal velocity of the new frame of reference V12 = L−1c tanhβ, are not infinite but
have an upper bound given by c/L, then we must have that L has to be a minimal
length scale, because c is the upper maximum speed in ordinary Special Relativity. Such
minimal scale L can be set equal to the Planck scale LP . As β → ∞ one has that
V12 = L−1c tanhβ → c/L, and the addittion/subtraction law (41) when V ′12 = V12 = c/L
gives V ′′12 = c/L as expected.

Concluding, from the areal velocity addition law (41) we have shown why the length
parameter L needed to be introduced in the C-space interval (2), in order to match
physical units, has the physical interpretation of a minimal length. The physics of the
Extended Relativity theory in C-spaces requires the introduction of the speed of light
and a minimal scale. In [2] we have shown how the construction of an Extended Rel-
ativity Theory in Clifford Phase Spaces requires the introduction of a maximal scale
which can be identified with the Hubble scale and leads to Modifications of Gravity at
the Planck/Hubble scales. Born’s Reciprocal Relativity demands that a minimal length
corresponds to a minimal momentum that can be set to be pmin = h̄/RHubble. For full
details we refer to [2].

APPENDIX

In this Appendix we shall write the (anti) commutator relations for the Clifford algebra
generators.

1

2
{ γa, γb } = gab 1;

1

2
[ γa, γb ] = γab = − γba, a, b = 1, 2, 3, · · · ,m (A.1)

[ γa, γbc ] = 2 gab γc − 2 gac γb, { γa, γbc } = 2 γabc (A.2)

[ γab, γcd ] = − 2 gac γbd + 2 gad γbc − 2 gbd γac + 2 gbc γad (A.3)
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In general one has [11]

pq = odd, [γm1m2....mp , γ
n1n2....nq ] = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ
[n1n2

[m1m2
γ
n3....nq ]
m3......mp]

+

2p!q!

4!(p− 4)!(q − 4)!
δ
[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp]

− ............ (A.4)

pq = even, { γm1m2....mp , γ
n1n2....nq } = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ
[n1n2

[m1m2
γ
n3....nq ]
m3......mp]

+

2p!q!

4!(p− 4)!(q − 4)!
δ
[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp]

− ............ (A.5)

pq = even, [γm1m2....mp , γ
n1n2....nq ] =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[n1

[m1
γ
n2....nq ]
m2....mp]

−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp]

+ ....... (A.6)

pq = odd, { γm1m2....mp , γ
n1n2....nq } =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[n1

[m1
γ
n2....nq ]
m2....mp]

−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp]

+ ....... (A.7)

The generalized Kronecker delta is defined as the determinant

δa1a2.....akb1b2.....bk
≡ det


δa1b1 . . . . . . δa1bk
δa2b1 . . . . . . δa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
δakb1 . . . . . . δakbk

 (A.8)
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