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On the Causal Structure of the Universe 

Blazej Kot*
 

Abstract 

I suggest we treat causality, not matter, as the fundamental constituent of reality. I 
introduce a unit of causality named toma and outline how the resulting framework 
leads naturally to general relativity, quantum electrodynamics and quantum 
chromodynamics. This novel framework is the first to show how to derive GR, QED and 
QCD from first principles and as such holds promise for being a Grand Unified Theory. 
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Introduction 

The theory of atomism - that the universe is made up of fundamental units of matter - is 
considered well supported experimentally. However, the stage we have reached in 
physics by following this model seems not to lead naturally to a unification of the forces 
of the nature into one coherent theory. 

I am therefore presenting an alternative model based not on atoms - units of matter - 
but on tomas - units of causality. Instead of focusing on what is interacting at a 
fundamental scale, I focus on the pattern of interactions at all scales. 

I first introduce a mathematical model of interacting tomas and then argue that the 
general relativity, QED and QCD all naturally follow from it. 

Tomas 

I consider the fundamental nature of the universe to be causality - the ability of things to 
cause other things to happen. 

By "things" I am not referring merely to physical objects, but to anything at all. For 
example, my being cold may cause me to turn on the heater. Or two cars crashing may 
cause a wreck. This definition of "thing" may seem unusual, so I use the special word 
toma instead. The implications of treating an idea on the same basis as a material object 
are philosophical and I will not discuss them here. However, if for now we ignore these 
philosophical aspects, we can still look at the interaction of tomas from a purely 
mathematical viewpoint. 

It is natural to consider that multiple tomas may come together to cause any particular 
toma - just as bacon, lettuce and tomato come together to cause (create) a sandwich. 
Likewise, a toma may cause multiple tomas - as a sandwich may cause a decrease in 
one's hunger, income for the cafe at which it was purchased, and crumbs on the floor. 

We can model a toma as the set of all tomas caused by it. We can then represent a toma 
in a diagram by a point connected to the tomas it causes with an arrow. For example:  
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Each toma in this example can be written as a set, as follows: 

bacon = {sandwich} 

lettuce = {sandwich} 

tomato = {sandwich} 

sandwich = {hunger, income, crumbs} 

hunger = ∅ 

income = ∅ 

crumbs = ∅ 

Obviously, not all tomas relevant to the example are shown. As the structure of tomas 
even for a simple event are complex, we often will only draw a subset, or view, of all the 
tomas actually at work. 

This type of structure is known in computer science as a multitree - each node (toma) 
has multiple parent tomas (ones that it is caused by) and children nodes (ones it 
causes). By studying the properties of multitrees we can therefore understand how 
causality works in general. This I turn to in the next section. 

Spacetime 

Two tomas can be directly connected within a multitree in one of two ways: 

 

On the left, one toma causes the other toma - an asynchronous connection. On the right, 
two tomas mutually cause each other - a synchronous connection.  

OR 

bacon lettuce tomato 

hunger income crumbs 

sandwich 
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For clarity of diagrams, the latter case may be drawn in a simplified fashion: 

 

There is nothing preventing a toma from being able to cause itself: 

 

Any multitree, and hence any causality structure, can be built using just these three 
elements: 

 

Let us first consider the element: 

 

This means B is caused by A and A is not caused by B. Hence, B comes after A - hence the 
term asynchronous for such a connection. If we link a number of these elements 
together: 

 

we obtain an axis of time dimension - each toma to the right of the first happens 
successively later. 

The element: 

 

corresponds to when A and B mutually cause each other, meaning they happen 
simultaneously. As they happen at the same time, but are different, they can be thought 
of as happening in different places. 

We can combine a series of these elements to create an axis of space dimension: 

  

B A 

B A 

= 
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We can then combine the two axes as follows: 

 

Tomas A and B occur simultaneously, at different locations. Toma C happens after A in 
the same spatial location as A. So we have constructed a spacetime of one time and one 
spatial dimension. 

Two spatial axes are not orthogonal if they have a direct connection between them: 

 

In this case, two steps along x from 0 are equivalent to one step along y and one along 
the connection. When axes are orthogonal, steps along one are under no circumstances 
equivalent to steps along the other. This supports the common sense notion that 
measurements along orthogonal axes should be independent. 

How many orthogonal spatial dimensions does a multitree in general have? As we are 
only looking at spatial dimensions, we can ignore all asynchronous connections. The 
result is what is known in computer science as a graph - a set of nodes with undirected 
links between them. We know that there are nonplanar graphs - ones that cannot be 
embedded in two dimensional space - but all graphs can be embedded in three 
dimensions. It follows that in general a multitree has exactly one time dimension and 
three orthogonal spatial dimensions. 

Therefore, any causality structure can be interpreted as a four dimensional spacetime. 
Next I turn to studying the properties of this spacetime.  

0 y 
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General Relativity 

Consider the following diagram: 

 

This diagram shows two sets of spacetime axes, sourced at points (observers) O1 and O2. 
From each observer's origin time axes radiate outwards and spatial axes connect them. 
O1 sees events A, B and C as simultaneous, as all three are two time steps from the 
observer's origin, while O2 sees C, D and E as being simultaneous. However, O1 does not 
in general agree with O2 that C, D and E are simultaneous. We also see that in general the 
time axes and spatial axes of the two observers will not be parallel, so the observers will 
not in general agree on spacetime coordinates of events. 

Let us say, however, that we wish to create a new system of coordinates shared by both 
observers such that they can meaningfully compare their measurements. In this system, 
the observers should agree that A, B, C, D and E are all simultaneous. In O1 events are 
simultaneous if 

𝑥1
2 +  𝑦1

2 +  𝑧1
2 =  𝑐𝑡1 

2                                                                        (1) 

That is, all simultaneous events - those occurring at time t - lie on a sphere of radius ct, 

where c is a constant. Rearranging, we obtain: 

𝑥1
2 + 𝑦1

2 +  𝑧1
2 − 𝑐2𝑡1

2 = 0                                                                  (2) 

Likewise, for simultaneous events in O2: 

𝑥2
2 + 𝑦2

2 +  𝑧2
2 − 𝑐2𝑡2

2 = 0                                                                  (3) 

Combining the last two equations, we obtain: 

𝑥1
2 +  𝑦1

2 +  𝑧1
2 − 𝑐2𝑡1

2 = 𝑥2
2 +  𝑦2

2 +  𝑧2
2 − 𝑐2𝑡2

2                             (4) 

which is the generalized Lorentz transformation upon which general relativity is built 
[1]. 

Hence, the curved spacetime of general relativity is simply a framework of absolute 
coordinates built upon reality which consists only of relative coordinates.  

O2 O1 

A C E 

D B x1 x2 

t1 t1 t2 t2 
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Quantum Electrodynamics 

Thus far we have ignored the self-loop element: 

 

Consider the following scenarios: 

 

On the left is a standard axis of time. Each step along it increases the time coordinate by 
1. On the right, the axis loops back on itself so that the point at t = 2 is the same point as 
at t = 3. 

Comparing the two scenarios, we can see a self-loop acts to shift the time coordinates 
after it: 

 

The dashed line connects corresponding time coordinates. After the self-loop, the 
bottom axis has been shifted by 1 unit. We can refer to this shift as ϕ(t), which is 0 for 
t = 0, 1, 2 and 1 for t greater than 2 in this case. 

The following illustrates a part of spacetime: 

 

Since time is a continuum, between two points A and C there is at least one point B. In 
fact, there is an infinity of points between A and C. If we consider AC to be an 
infinitesimal unit of time dt, so that both A and C have valid space coordinates, it follows 
that in the interval dt = AC we can find n, for any n, points with time coordinates but no 
space coordinates. 

We have established a unit of time dt may enclose n points with no space coordinates. If 
one of these n points has a self-loop, the overall shift will not be an integer: ϕ = 1/n in 
this case. This provides a mechanism for interpreting fractional shifts.  

B C A 

4 5 

5 0 1 2 3 4 

0 1 2,3 

0 1 2 3 4 0 1 2,3 4 5 
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Note that for any integer shift ϕ = 1, 2, 3 .., n the points after the shift line up with, indeed 
are the same points as, those before the shift. An integer shift leaves the points within 
the same spatial continuum. However, a noninteger shift does not. If the shift is not an 
integer, the subsequent points disappear from the spatial dimension, and exist 
in between the original space's points. 

The cyclical nature of ϕ allows us to think of a phase angle 2πϕ as an additional 
dimension for each axis or path. Indeed, it is obvious that the result of two phase shifts 
in sequence is equivalent to one phase shift of angle equal to the sum of the two original 
phase angles. 

Consider a path in spacetime. This is just a sequence of tomas linked asynchronously: 

 

The fundamental unit of a path is two tomas linked by an arrow as above. Each path 
element has an associated duration in time t and a distance in space x. 

Consider an infinitesimal path dx, dt: 

 

The path from A to B is associated with a phase shift α = dx/dt. Travelling along this path 
shifts the phase angle by dx/dt as the phase is measured relative to the element dt 
which itself rotates by -α: 

𝛼 =  
𝑑𝑥

𝑑𝑡
=  

𝑥

𝑡
= 𝑣                                                                                  (5) 

Where v is the velocity, constant over the path element. 

The path from A to B may also contain self-loops itself. This may be interpreted as a 
spinning of whatever is travelling along the path. If the rate of spin is M, such that the 
phase velocity is M, the total phase gained over a path of distance x, duration t is: 

𝛥𝜙 𝑥, 𝑡 =   𝑀𝑑𝜙

𝑥 ′ = 𝑥

𝑥 ′ = 0

                                                                             (6) 

  

α 

α 

dx 

dt 

B 

A 

t 

x 
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Now, as  𝑑𝜙 = 𝑣 𝑑𝑥′ , 

𝛥𝜙 𝑥, 𝑡 =   𝑀𝑣𝑑𝑥′ =  𝑀𝑣𝑥′  
𝑥 ′ = 0
𝑥 ′ = 𝑥  

𝑥 ′ = 𝑥

𝑥 ′ = 0

= 𝑀𝑣𝑥 =
𝑀𝑥2

𝑡
                (7) 

Let P(X), where  X = eiϕ, be a uniform probability distribution of phase angle such that: 

 𝑃 𝑒𝑖𝜙  𝑑𝜙 = 1                                                                                  (8)

2𝜋

0

 

Let us say we observe a particle or toma at spacetime point A. We do not know what its 
phase is, only that it certainly has a phase. Therefore, its phase angle is described 
completely by P(X). 

Let us say we are interested in following the particle to point B, a distance x, time t, 
away. We know the phase is shifted by Δϕ(x,t) so that the angular probability 
distribution is now: 

𝑃 𝑒𝑖𝜙+𝑖𝛥𝜙 (𝑥 ,𝑡) = 𝑃(𝑤𝑋)                                                                    (9) 

where: 

𝑤 = 𝑒𝑖𝛥𝜙 (𝑥 ,𝑡)                                                                                           (10) 

is the winding factor. Let us now say the particle may have arrived at point B from either 
point A, or a new point Z, corresponding to paths (x1, t1) and (x2, t2) to B. The angular 
probability distribution is now: 

𝑃 𝑤1𝑋 + 𝑃(𝑤2𝑋)                                                                              (11) 

where: 

𝑤1 = 𝑒𝑖𝛥𝜙 (𝑥1 ,𝑡1)                                                                                    (12) 

𝑤2 = 𝑒𝑖𝛥𝜙 (𝑥2 ,𝑡2)                                                                                    (13) 

And it follows, from the fact that P(x) is a uniform angular distribution, that: 

𝑃 𝑤1𝑋 + 𝑃 𝑤2𝑋 = 𝑃 𝑤𝑋                                                            (14) 

where: 

𝑤 = 𝑤1 + 𝑤2                                                                                       (15) 

Now, the probability distribution of finding the particle at point B with any phase is: 

𝑃 𝐵 =  𝑃 𝑤𝑋 𝑑𝑤𝑋

𝜙=2𝜋

𝜙=0
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=  𝑃 |𝑤|𝑒𝑖𝜙+𝑖𝐴𝑅𝐺 (𝑤) |𝑤|𝑑𝑒𝑖𝜙+𝑖𝐴𝑅𝐺 (𝑤)   

𝜙=2𝜋

𝜙=0

  

= |𝑤|  𝑃 |𝑤|𝑒𝑖𝜙+𝑖𝐴𝑅𝐺 (𝑤) 𝑑𝑒𝑖𝜙+𝑖𝐴𝑅𝐺 (𝑤)   

𝜙=2𝜋

𝜙=0

 

= |w|2 = |w1 + w2|2                                                                               (16) 

So, if there are multiple paths for reaching a point with associated winding factors 
w1 .. wn , the probability of observing a particle or toma at that point is proportional to 
|w|2 = |w1+ .. +wn|2. This mechanism is identical to Feynman's formulation of QED [2]. 

Quantum Chromodynamics 

QCD and the Standard Model follow from creating a quantum field theory with the 
symmetry group U(1) ⨯ SU(2) ⨯ SU(3)  [3]. The previous section outlined how QED and 
thus QFT arose naturally in the tomatic approach by considering phase shift. This 
section explains the origin of the symmetry group thus yielding QCD. 

Consider a point p on a path P: 

 

We know that the point p has a complex coordinate r such that r = distance along P from 
origin and arg(r) = phase shift. As phase is relative, it can be measured with an arbitrary 
reference at p, yielding the U(1) symmetry. 

Consider the local coordinate system at p, especially the time axis for which x = y = z = 0. 

 

Clearly, the physics is independent of the choice of Θ, and as P and t are both complex, 
this yields SU(2). 

Lastly, consider the three orthogonal space axes at p. They may be rotated in any 
direction while remaining mutually orthogonal, thus yielding SU(3). 

Therefore, the combined local symmetry of a tomatic multitree is that of the group 
U(1) ⨯ SU(2) ⨯ SU(3), corresponding to the foundation of the Standard Model. 

  

p 

P 

Θ 

tx=y=z=0 

p 

P 



10 
 

Conclusion 

I have presented a novel non-atomic model of physics which allows one to derive GR, 
QED and QCD together from first principles. This is the first approach that allows one to 
do so successfully, and as such is a candidate for being a Grand Unified Theory of 
physics. 

The tomatic model has applications to other fields of study, such as philosophy, 
cognitive science and computer science. 

 

The world has no substance of its own. It is simply a vast concordance of causes and 
conditions that have had their origin, solely and exclusively, in the activities of the mind 
that has been stimulated by ignorance, false imagination, desires and infatuation. 

Buddha [4] 
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