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Abstract:

We argue that the main reason of crisis in quantum physics is that nature, which is
fundamentally discrete, is described by continuous mathematics. Moreover, no ulti-
mate physical theory can be based on continuous mathematics because, as follows
from Gödel’s incompleteness theorems, that mathematics is not self-consistent. In
the first part of the work we discuss inconsistencies in standard approach to quan-
tum theory and reformulate the theory such that it can be naturally generalized
to a formulation based on discrete mathematics. It is shown that the cosmological
acceleration and gravity can be treated simply as kinematical manifestations of de
Sitter symmetry on quantum level (i.e. for describing those phenomena the notions
of dark energy, space-time background and gravitational interaction are not needed).
In the second part of the work we argue that fundamental quantum theory should
be based on a Galois field with a large characteristic p. In this approach the de Sit-
ter gravitational constant depends on p and disappears in the formal limit p → ∞,
i.e. gravity is a consequence of finiteness of nature. The application of the approach
to particle theory gives the following results: a) no neutral elementary particles can
exist; b) the electric charge and the baryon and lepton quantum numbers can be
only approximately conserved (i.e. the notion of a particle and its antiparticle is only
approximate). We also consider a possibility that only Dirac singletons can be true
elementary particles.
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Chapter 1

Introduction

1.1 What is the main reason of crisis in physics?

The discovery of atoms and elementary particles indicates that at the very funda-
mental level nature is discrete. As a consequence, any description of macroscopic
phenomena by continuous mathematics can be only approximate. For example, the
water in the ocean can be described by equations of hydrodynamics but we know
that this is only an approximation since matter is discrete. Analogously, the notion
of continuous geometry has originated from macroscopic experience but this geometry
cannot be used for describing physics at the fundamental level. It is also obvious that
the notion of infinitely small is based on our everyday experience that any macro-
scopic object can be divided by two, three and even a million parts. But is it possible
to divide by two or three the electron or neutrino? It seems obvious that the very
existence of elementary particles indicates that standard division has only a limited
meaning. Indeed, consider, for example, the gram-molecule of water having the mass
18 grams. It contains the Avogadro number of molecules 6 · 1023. We can divide
this gram-molecule by ten, million, billion, but when we begin to divide by numbers
greater than the Avogadro one, the division operation loses its meaning.

It is interesting to note that even the name ”quantum theory” reflects a
belief that nature is quantized, i.e. discrete. Nevertheless, when quantum theory was
created it was based on continuous mathematics developed mainly in the 19th century
when people did not know about atoms and elementary particles and believed that
every macroscopic object can be divided by any number of parts. One of the greatest
successes of the early quantum theory was the discovery that the discrete spectrum
of the hydrogen atom can be described in the framework of continuous mathematics
by using the Schrödinger equation. The discovery is based on the fact that a large
class of differential operators has a discrete spectrum. This and many other successes
of quantum theory were treated as indications that all problems of the theory can be
solved by using continuous mathematics.

As a consequence, even after almost 90 years of the existence of quantum
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theory it is still based on continuous mathematics. Although the theory contains
divergencies and other inconsistencies, physicists persistently try to resolve them in
the framework of continuous mathematics. For example, many physicists believe that
M theory or string theory will become the ”theory of everything”. In those theories
physics depends on topology at Planck distances (10−35m). Meanwhile the lessons
of quantum theory tell us that at such distances (and even much greater ones) no
continuous topology or geometry can describe physics.

It is also very important to note that even continuous mathematics by itself
has its own foundational problems. Indeed, as follows from Gödel’s incompleteness
theorems, no system of axioms can ensure that all facts about natural numbers can be
proved. Moreover, the system of axioms in standard mathematics cannot demonstrate
its own consistency.

The reason why modern quantum physics is based on continuity, differ-
entiability etc. is probably historical: although the founders of quantum theory and
many physicists who contributed to it were highly educated scientists, discrete math-
ematics was not (and still is not) a part of standard physics education.

The main problem is the choice of strategy for constructing a new quantum
theory. Since no one knows for sure what strategy is the best one, different approaches
should be investigated. Dirac’s advice given in Ref. [1] is: ”I learned to distrust
all physical concepts as a basis for a theory. Instead one should put one’s trust in a
mathematical scheme, even if the scheme does not appear at first sight to be connected
with physics. One should concentrate on getting an interesting mathematics.”

I understand this advice such that our macroscopic experience and physical
intuition do not work on quantum level and hence here we can rely only on solid
mathematics. However, many physicists do not think so and believe that Dirac was
”The Strangest Man” (this is the title of the book by Graham Farmelo about Dirac).

In view of the above remarks and Dirac’s advice it seems natural that
fundamental quantum physics should be based on discrete mathematics. Beginning
from Chap. 6 we consider an approach where quantum theory is based on a Galois
field rather than the field of complex numbers. At the same time, one of the key
principles of physics is the correspondence principle. It means that at some conditions
any new theory should reproduce results of the old well tested theory with a good
accuracy. Usually the correspondence principle is applied such that the new theory
contains a parameter and reproduces results of the old theory in a formal limit when
the parameter is infinitely large or infinitely small. Well-known examples are that
nonrelativistic theory is a special case of relativistic one in the formal limit c → ∞
and classical (i.e. nonquantum) theory is a special case of quantum one in the formal
limit h̄→ 0 (see however a discussion in Sec. 1.4).

Hence one should find such a formulation of standard continuous physics
which can be naturally generalized to a formulation based on discrete mathematics.
This problem is discussed in the first part of this work. Beginning from Chap. 6
we consider a quantum theory over a Galois field (GFQT) which is not only discrete
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but even finite. In particular, GFQT does not contain infinitely small and infinitely
large quantities and here divergencies cannot exist in principle since any Galois field
is finite. Standard theory can be treated as a special case of GFQT in a formal limit
p→ ∞ where p is the characteristic of the Galois field in GFQT.

1.2 Does quantum theory need space-time?

The phenomenon of quantum field theory (QFT) has no analogs in the history of sci-
ence. There is no branch of science where so impressive agreements between theory
and experiment have been achieved. At the same time, the level of mathematical
rigor in QFT is very poor and, as a result, QFT has several well-known difficulties
and inconsistencies. The absolute majority of physicists believe that agreement with
experiment is much more important than the lack of mathematical rigor, but not
all of them think so. For example, Dirac wrote in Ref. [1]: ”The agreement with
observation is presumably by coincidence, just like the original calculation of the hy-
drogen spectrum with Bohr orbits. Such coincidences are no reason for turning a blind
eye to the faults of the theory. Quantum electrodynamics is rather like Klein-Gordon
equation. It was built up from physical ideas that were not correctly incorporated into
the theory and it has no sound mathematical foundation.” In addition, QFT fails in
quantizing gravity since the gravitational constant has the dimension (length)2 (in
units where c = h̄ = 1), and as a result, quantum gravity is not renormalizable.

Usually there is no need to require that the level of mathematical rigor
in physics should be the same as in mathematics. However physicists should have a
feeling that, at least in principle, mathematical statements used in the theory can be
substantiated. The absence of a well-substantiated QFT by no means can be treated
as a pure academic problem. This becomes immediately clear when one wants to work
beyond perturbation theory. The problem arises to what extent the difficulties of QFT
can be resolved in the framework of QFT itself or QFT can only be a special case
of a more general theory based on essentially new ideas. The majority of physicists
believe that QFT should be treated [2] ”in the way it is”, but at the same time it
is [2] a ”low energy approximation to a deeper theory that may not even be a field
theory, but something different like a string theory”.

One of the key ingredients of QFT is the notion of space-time background.
We will discuss this notion in view of the measurability principle, i.e. that a definition
of a physical quantity is a description of how this quantity should be measured. In
particular, the Copenhagen interpretation is based on this principle. In this interpre-
tation the process of measurement necessarily implies an interaction with a classical
object. This interpretation cannot be universal since it does not consider situations
when the world does not have classical objects at all. Meanwhile in cosmological
theories there were no classical objects at the early stages of the world. The problem
of interpretation of quantum theory is still open but it is commonly accepted that at
least at the present stage of the world the measurability principle is valid.
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Since physics is based on mathematics, intermediate stages of physical
theories can involve abstract mathematical notions but any physical theory should
formulate its final results only in terms of physical (i.e. measurable) quantities. Typi-
cally the theory does not say explicitly how the physical quantities in question should
be measured (a well-known exclusions are special and general theories of relativity
where the distances should be measured by using light signals) but it is assumed
that in principle the measurements can be performed. In classical (i.e. nonquantum)
theory it is assumed that any physical quantity in the theory can be measured with
any desired accuracy. In quantum theory the measurability principle is implemented
by requiring that any physical quantity can be discussed only in conjunction with an
operator defining this quantity. However, quantum theory does not specify how the
operator of a physical quantity is related to the measurement of this quantity.

In classical nonrelativistic mechanics, the space-time background is the
four-dimensional Galilei space, the coordinates (t, x, y, z) of which are in the range
(−∞,∞). The set of all points of Galilei space is treated as a set of possible events
for real particles in question and the assumption is that at each moment of time t
the spatial coordinates (x, y, z) of any particle can be measured with the absolute
accuracy. Then a very important observation is that, from the point of view of the
measurability principle, Galilei space has a physical meaning only as a space of events
for real particles while if particles are absent, the notion of empty Galilei space has no
physical meaning. Indeed, there is no way to measure coordinates of a space which
exists only in our imagination. In mathematics one can use different spaces regardless
of whether they have a physical meaning or not. However, in physics spaces which
have no physical meaning can be used only at intermediate stages. Since in classical
mechanics the final results are formulated in terms of Galilei space, this space should
be physical.

In classical relativistic mechanics, the space-time background is the four-
dimensional Minkowski space and the above remarks can be applied to this space as
well. The distances in Minkowski space are defined by the diagonal metric tensor
ηµν such that µ, ν = 0, 1, 2, 3 and η00 = −η11 = −η22 = −η33 = 1. Minkowski space
is also the space-time background in classical electrodynamics. Here the Maxwell
equations make it possible to calculate the electric and magnetic fields, E(t, x, y, z)
and B(t, x, y, z), at each point of Minkowski space. These fields can be measured
by using test bodies at different moments of time and different positions. Hence in
classical electrodynamics, Minkowski space can be physical only in the presence of
test bodies but not as an empty space.

In General Relativity (GR) the range of the coordinates (t, x, y, z) and the
geometry of space-time are dynamical. They are defined by the Einstein equations

Rµν +
1

2
gµνRc + Λgµν = (8πG/c4)Tµν (1.1)

where Rµν is the Ricci tensor, Rc is the scalar curvature, Tµν is the stress-energy
tensor of matter, gµν is the metric tensor, G is the gravitational constant and Λ is the
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cosmological constant (CC). In modern quantum theory space-time in GR is treated
as a description of quantum gravitational field in classical limit. On quantum level
each field is a collection of particles; in particular it is believed that the gravitational
field is a collection of gravitons. From this point of view the following question
arises. Why does Tµν describe the contribution of electrons, protons, photons and
other particles but gravitons are not included into Tµν and are described separately
by a quantized version of Rµν? In any case, quantum theory of gravity has not been
constructed yet and gravity is known only at macroscopic level. Here the coordinates
and the curvature of space-time are the physical quantities since the information
about them can be obtained from measurements using (macroscopic) test bodies.
Since matter is treated as a source of the gravitational field, in the formal limit when
matter disappears, the gravitational field should disappear too. Meanwhile, in this
limit the solutions of Eq. (1.1) are Minkowski space when Λ = 0, de Sitter (dS) space
when Λ > 0 and anti-de Sitter (AdS) space when Λ < 0. Hence in GR, Minkowski,
dS or AdS spaces can be only empty spaces, i.e. they are not physical. This shows
that the formal limit of GR when matter disappears is nonphysical since in this limit
the space-time background survives and has a curvature - zero curvature in the case
of Minkowski space and a nonzero curvature in the case of dS or AdS spaces.

To avoid this problem one might try to treat the space-time background
as a reference frame. In standard textbooks (see e.g., Ref. [3]) the reference frame
in GR is defined as a collection of weightless bodies, each of which is characterized
by three numbers (coordinates) and is supplied by a clock. Such a notion (which
resembles ether) is not physical even on classical level and for sure it is meaningless
on quantum level. In some approaches (see e.g. Ref. [4]), when matter disappears,
the metric tensor becomes not the Minkowskian one but zero, i.e. the space-time
background disappears too. Also, as argued in Ref. [5], the metric tensor should
be dimensionful since gµνdx

µdxν should be scale independent. In this approach the
absolute value of the metric tensor is proportional to the number of particles in the
World.

In approaches based on holographic principle it is stated that the space-
time background is not fundamental but emergent. For example, as noted in Ref. [6],
”Space is in the first place a device introduced to describe the positions and movements
of particles. Space is therefore literally just a storage space for information...”. This
implies that the emergent space-time background is meaningful only if matter is
present. The author of Ref. [6] states that in his approach one can recover Einstein
equations where the coordinates and curvature refer to the emergent space-time.
However, it is not clear how to treat the fact that the formal limit when matter
disappears is possible and the space-time background formally remains although, if
it is emergent, it cannot exist without matter.

As noted above, from the point of view of quantum theory, any physical
quantity can be discussed only in conjunction with an operator defining this quantity.
As noted by Pauli (see p. 63 of Ref. [7]), at early stages of quantum theory some
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authors treated time t as an operator commuting with the Hamiltonian as [H, t] = ih̄.
However, such a treatment is not correct. For example, one cannot construct the
eigenstate of the time operator with the eigenvalue 5000 BC or 2014 AD. It is usually
assumed that in quantum theory the quantity t can be only a classical parameter
describing evolution of a quantum system by the time dependent Schrödinger equation
(see e.g. Refs. [7, 8]). This poses a problem why the principle of quantum theory
that every physical quantity is defined by an operator does not apply to time.

As noted by several authors, (see e.g. Refs. [9, 10]), t cannot be treated
as a fundamental physical quantity. The reason is that all fundamental physical laws
do not require time and the quantity t is obsolete on fundamental level. A hypothesis
that time is an independently flowing fundamental continuous quantity has been first
proposed by Newton. However, a problem arises whether this hypothesis is compatible
with the principle that the definition of a physical quantity is a description of how
this quantity can be measured.

Consider first the problem of time in classical mechanics. A standard
treatment of this theory is that its goal is to solve equations of motion and get clas-
sical trajectories where coordinates and momenta are functions of t. In Hamiltonian
mechanics the action can be written as S = S0 −

∫

Hdt where S0 does not depend
on t and is called the abbreviated action. Then, as explained in textbooks, the de-
pendence of the coordinates and momenta on t can be obtained from a variational
principle with the action S. Suppose now that one wishes to consider a problem
which is usually treated as less general: to find not the dependence of the coordinates
and momenta on t but only possible forms of trajectories in the phase space without
mentioning time at all. If the energy is a conserved physical quantity then, as de-
scribed in textbooks, this problem can be solved by using the Maupertuis principle
involving only S0.

However, the latter problem is not less general than the former one. For
illustration we first consider the one-body case. Suppose that by using the Maupertuis
principle one has solved the problem with some initial values of coordinates and
momenta. Let s be a parameter characterizing the particle trajectory, i.e. the particle
radius-vector r, the momentum p and the energy E are functions of s. The particle
velocity v in units c = 1 is defined as v(s) = p(s)/E(s). At this stage the problem
does not contain t yet. One can define t by the condition that dt = |dr|/|v| and hence
the value of t at any point of the trajectory can be obtained by integration. In the
case of many bodies one can define t by using the spatial trajectory of any body and
the result does not depend on the choice of the body. Hence the general problem of
classical mechanics can be formulated without mentioning t while if for some reasons
one prefers to work with t then its value can flow only in the positive direction since
dt > 0.

In this work we will consider only the case of free particles. Then, as
shown in Sec. 5.7, classical equations of motion can be obtained even without using
variational principles, Hamilton equations etc. Namely, equations of motion can be
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derived by using conservation laws and assuming that t is defined such that the
coordinates and momenta of each particle are related to each other such that

dr = vdt =
p

E
dt (1.2)

where E = (m2 + p2)1/2 and m is the particle mass.
Consider now the problem of time in quantum theory. In the case of one

strongly quantum system (i.e. the system which cannot be described in classical
theory) a problem arises whether there exists a quantum analog of the Maupertuis
principle and whether time can be defined by using this analog. This is a difficult
unsolved problem. A possible approach for solving this problem has been proposed
in Ref. [9]. However, one can consider a situation when a quantum system under
consideration is a small subsystem of a big system where the other subsystem - the
environment, is strongly classical. Then one can define t for the environment as
described above. The author of Ref. [10] considers a scenario when the system as a
whole is described by the stationary Schrödinger equation HΨ = EΨ but the small
quantum subsystem is described by the time dependent Schrödinger equation where
t is defined for the environment as t = ∂S0/∂E.

One might think that this scenario gives a natural solution of the problem
of time in quantum theory. Indeed, in this scenario it is clear why a quantum system
is described by the Schrödinger equation depending on the classical parameter t which
is not an operator: because t is the physical quantity characterizing not the quantum
system but the environment. This scenario seems also natural because it is in the spirit
of the Copenhagen interpretation of quantum theory: the evolution of a quantum
system can be characterized only in terms of measurements which in the Copenhagen
interpretation are treated as interactions with classical objects. However, this scenario
encounters several problems. For example, the environment can be a classical object
only in some approximation and hence t can be only an approximately continuous
parameter. In addition, as noted above, the Copenhagen interpretation cannot be
universal in all situations.

As noted in Ref. [10], the above scenario also does not solve the problem
of quantum jumps. For illustration, consider a photon emitted in the famous 21cm
transition line between the hyperfine energy levels of the hydrogen atom. The phrase
that the lifetime of this transition is of the order of τ = 107 years should be understood
such that the width of the level is of the order of h̄/τ i.e. the uncertainty of the photon
energy is h̄/τ . In this situation a description of the system (atom + electric field) by
the wave function (e.g. in the Fock space) depending on a continuous parameter t has
no physical meaning (since roughly speaking the quantum of time in this process is
of the order of 107 years). If we accept this explanation then we should acknowledge
that in some situations a description of evolution by a continuous classical parameter
t is not physical. This is in the spirit of the Heisenberg S-matrix program that in
quantum theory one can describe only transitions of states from the infinite past when
t→ −∞ to the distant future when t→ +∞.
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While no operator can be associated with time, a problem arises whether
it is possible to consistently define the position operator. This problem is discussed
in detail in Chap. 2. However, QFT operates not with position operators for each
particle but with local quantum fields. A non-quantized quantum field ψ(x) = ψ(t,x)
combines together two irreducible representations (IRs) with positive and negative
energies. The IR with the positive energy is associated with a particle and the IR with
the negative energy is associated with the corresponding antiparticle. From mathe-
matical point of view, a local quantum field is described by a reducible representation
induced not from the little algebra IRs are induced from but from the Lorenz alge-
bra. The local fields depend on x because the factor space of the Poincare group
over the Lorentz group is Minkowski space. In that case there is no physical operator
corresponding to x, i.e. x is not measurable. Since the fields describe nonunitary
representations, their probabilistic interpretation is problematic. In addition, as it
has been shown for the first time by Pauli [11] (see also textbooks on QFT, e.g. Chap.
2 in Ref. [12]), in the case of fields with an integer spin it is not possible to construct
a positive definite charge operator and in the case of fields with a half-integer spin it
is not possible to construct a positive definite energy operator. It is also known that
the description of the electron in the external field by the Dirac spinor is not accurate
(e.g. it does not take into account the Lamb shift).

Hence a problem arises why we need local fields at all. They are not
needed if we consider only systems of noninteracting particles. Indeed, such systems
are described by tensor products of IRs and all the operators of such tensor products
are well defined. Local fields are used for constructing interacting Lagrangians which
in turn, after quantization, define the representation operators of the Poincare algebra
for a system of interacting particles under consideration. Hence local fields do not
have a direct physical meaning but are only auxiliary notions.

It is known (see e.g. the textbook [13]) that quantum interacting local
fields can be treated only as operatorial distributions. A well-known fact from the
theory of distributions is that their products at the same point are poorly defined.
Hence if ψ1(x) and ψ2(x) are two local operatorial fields then the product ψ1(x)ψ2(x) is
not well defined. This is known as the problem of constructing composite operators. A
typical approach discussed in the literature is that the arguments of the field operators
ψ1 and ψ2 should be slightly separated and the limit when the separation goes to zero
should be taken only at the final stage of calculations. However, no universal way
of separating the arguments is known and it is not clear whether any separation
can resolve the problems of QFT. Physicists often ignore this problem and use such
products to preserve locality (although the operator of the quantity x does not exist).
As a consequence, the representation operators of interacting systems constructed in
QFT are not well defined and the theory contains anomalies and infinities. Also, one
of the known results in QFT is the Haag theorem and its generalizations (see e.g.
Ref. [14]) that the interaction picture in QFT does not exist. We believe it is rather
unethical that even in almost all textbooks on QFT this theorem is not mentioned
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at all.
While in renormalizable theories the problem of infinities can be somehow

circumvented at the level of perturbation theory, in quantum gravity infinities cannot
be excluded even in lowest orders of perturbation theory. One of the ideas of the
string theory is that if products of fields at the same points (zero-dimensional objects)
are replaced by products where the arguments of the fields belong to strings (one-
dimensional objects) then there is hope that infinities will be less singular. However,
the problem of infinities in the string theory has not been solved yet. As noted above,
in spite of such mathematical problems, QFT is very popular since it has achieved
great successes in describing many experimental data.

In quantum theory, if we have a system of particles, its wave function
(represented as a Fock state or in other forms) gives the maximum possible informa-
tion about this system and there is no other way of obtaining any information about
the system except from its wave function. So if one works with the emergent space,
the information encoded in this space should be somehow extracted from the system
wave function. However, to the best of our knowledge, there is no theory relating
the emergent space with the system wave function. Typically the emergent space is
described in the same way as the ”fundamental” space, i.e. as a manifold and it is
not clear how the points of this manifold are related to the wave function. The above
arguments showing that the ”fundamental” space is not physical can be applied to
the emergent space as well. In particular, the coordinates of the emergent space are
not measurable and it is not clear what is the meaning of those coordinates where
there are no particles at all.

In Loop Quantum Gravity (LQG), space-time is treated on quantum level
as a special state of quantum gravitational field (see e.g. Ref. [15]). This construction
is rather complicated and one of its main goals is to have a quantum generalization of
space-time such that GR should be recovered as a classical limit of quantum theory.
However, so far LQG has not succeeded in proving that GR is a special case of LQG
in classical limit.

In view of this discussion, it is unrealistic to expect that successful quan-
tum theory of gravity will be based on quantization of GR or on emergent space-time.
The results of GR might follow from quantum theory of gravity only in situations
when space-time coordinates of real bodies is a good approximation while in general
the formulation of quantum theory should not involve the space-time background
at all. One might take objection that coordinates of space-time background in GR
can be treated only as parameters defining possible gauge transformations while final
physical results do not depend on these coordinates. Analogously, although the quan-
tity x in the Lagrangian density L(x) is not measurable, it is only an auxiliary tool for
deriving equations of motion in classical theory and constructing Hilbert spaces and
operators in quantum theory. After this construction has been done, one can safely
forget about background coordinates and Lagrangian. In other words, a problem is
whether nonphysical quantities can be present at intermediate stages of physical theo-
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ries. This problem has a long history discussed in a vast literature. Probably Newton
was the first who introduced the notion of space-time background but, as noted in a
paper in Wikipedia, ”Leibniz thought instead that space was a collection of relations
between objects, given by their distance and direction from one another”. As noted
above, the assumption that space-rime exists and has a curvature even when matter
is absent is not physical. We believe that at the fundamental level unphysical notions
should not be present even at intermediate stages. So Lagrangian can be at best
treated as a hint for constructing a fundamental theory. As stated in Ref. [16], local
quantum fields and Lagrangians are rudimentary notion, which will disappear in the
ultimate quantum theory. Those ideas have much in common with the Heisenberg
S-matrix program and were rather popular till the beginning of the 1970s. In view of
successes of gauge theories they have become almost forgotten.

In summary, there are no physical arguments showing that the notions of
space-time background and local quantum fields are needed in quantum theory. On
the other hand, since this theory is treated as more general than the classical one, in
quantum theory it is not possible to fully avoid space-time description of real bodies
in semiclassical approximation. Indeed, quantum theory should explain how photons
from distant stars travel to the Earth and even how one can recover the motion
of macroscopic bodies along classical trajectories (see Chap. 2 for a more detailed
discussion).

Let us make a few remarks about the terminology of quantum theory. The
terms ”wave function” and ”particle-wave duality” have arisen at the beginning of
quantum era in efforts to explain quantum behavior in terms of classical waves but
now it is clear that no such explanation exists. The notion of wave is purely classical;
it has a physical meaning only as a way of describing systems of many particles by
their mean characteristics. In particular, such notions as frequency and wave length
can be applied only to classical waves, i.e. to systems consisting of many particles. If
a particle state vector contains exp[i(px−Et)/h̄] then by analogy with the theory of
classical waves one might say that the particle is a wave with the frequency ω = E/h̄
and the (de Broglie) wave length λ = 2πh̄/p. However, such defined quantities ω and λ
are not real frequencies and wave lengths measured e.g. in spectroscopic experiments.
The term ”wave function” might be misleading since in quantum theory it defines
not amplitudes of waves but only amplitudes of probabilities. So, although in our
opinion the term ”state vector” is more pertinent than ”wave function” we will use
the latter in accordance with the usual terminology, and the phrase that a photon
has a frequency ω and the wave length λ will be understood only such that ω = E/h̄
and λ = 2πh̄/p.

In classical theory the notion of field, as well as that of wave, is used for
describing systems of many particles by their mean characteristics. For example, the
electromagnetic field consists of many photons. In classical theory each photon is not
described individually but the field as a whole is described by the quantities E(x) and
B(x) which, as noted above, can be measured (in principle) by using macroscopic test
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bodies. However, QFT is based on quantized field operators ψ(x) which contain the
information about the state vector of every particle and, as noted above, there is no
well defined operator of the four-vector x. In particular, the notions of electric and
magnetic fields of an elementary particle have no physical meaning. In view of these
observations and the above remarks about quantum fields we believe that the term
”quantum field”, as well as the term ”wave function” might be misleading.

1.3 Symmetry on quantum level

In relativistic quantum theory the usual approach to symmetry on quantum level
is as follows. Since Poincare group is the group of motions of Minkowski space,
quantum states should be described by representations of the Poincare group. In
turn, this implies that the representation generators should commute according to
the commutation relations of the Poincare group Lie algebra:

[P µ, P ν] = 0 [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ)

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (1.3)

where P µ are the operators of the four-momentum and Mµν are the operators of
Lorentz angular momenta. This approach is in the spirit of Klein’s Erlangen program
in mathematics. However, as we argue in Refs. [17, 18] and in the preceding section,
quantum theory should not be based on classical space-time background and the
approach should be the opposite. Each system is described by a set of independent
operators. By definition, the rules how these operators commute with each other
define the symmetry algebra. In particular, by definition, Poincare symmetry on
quantum level means that the operators commute according to Eq. (1.3). This
definition does not involve Minkowski space at all. Such a definition of symmetry on
quantum level is in the spirit of Dirac’s paper [19].

For understanding this definition the following example might be useful. If
we define how the energy should be measured (e.g., the energy of bound states, kinetic
energy etc.), we have a full knowledge about the Hamiltonian of our system. In par-
ticular, we know how the Hamiltonian commutes with other operators. In standard
theory the Hamiltonian is also interpreted as an operator responsible for evolution
in time, which is considered as a classical macroscopic parameter (see the preceding
section). In situations when this parameter is a good approximate parameter, macro-
scopic transformations from the symmetry group corresponding to the evolution in
time have a meaning of evolution transformations. However, there is no guaranty that
such an interpretation is always valid (e.g., at the very early stage of the World or
in the example with the 21cm transition line discussed in the preceding section). In
general, according to principles of quantum theory, self-adjoint operators in Hilbert
spaces represent observables but there is no requirement that parameters defining a
family of unitary transformations generated by a self-adjoint operator are eigenvalues
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of another self-adjoint operator. A well-known example from standard quantum me-
chanics is that if Px is the x component of the momentum operator then the family
of unitary transformations generated by Px is exp(iPxx/h̄) where x ∈ (−∞,∞) and
such parameters can be identified with the spectrum of the position operator. At
the same time, the family of unitary transformations generated by the Hamiltonian
H is exp(−iHt/h̄) where t ∈ (−∞,∞) and those parameters cannot be identified
with a spectrum of a self-adjoint operator on the Hilbert space of our system. In
the relativistic case the parameters x can be formally identified with the spectrum
of the Newton-Wigner position operator [20] but, as noted in the preceding section
and shown in Chap. 2, this operator does not have all the required properties for
the position operator. So, although the operators exp(iPxx/h̄) and exp(−iHt/h̄) are
formally well defined, their physical interpretation as translations in space and time
is questionable.

Analogously, the definition of the dS symmetry on quantum level should
not involve the fact that the dS group is the group of motions of the dS space. Instead,
the definition is that the operators Mab (a, b = 0, 1, 2, 3, 4, Mab = −M ba) describing
the system under consideration satisfy the commutation relations of the dS Lie algebra
so(1,4), i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (1.4)

where ηab is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 =
−η44 = 1. The definition of the AdS symmetry on quantum level is given by the
same equations but η44 = 1.

With such a definition of symmetry on quantum level, dS and AdS sym-
metries look more natural than Poincare symmetry. In the dS and AdS cases all the
ten representation operators of the symmetry algebra are angular momenta while in
the Poincare case only six of them are angular momenta and the remaining four op-
erators represent standard energy and momentum. If we define the operators P µ as
P µ = M4µ/R where R is a parameter with the dimension length then in the formal
limit when R → ∞, M4µ → ∞ but the quantities P µ are finite, the relations (1.4)
become the relations (1.3). This procedure is called contraction and a general notion
of contraction has been proposed in Ref. [21]. In the given case the contraction pro-
cedure is the same regardless of whether the relations (1.4) are considered for the dS
or AdS symmetry. Note also that the above definitions of the dS and AdS symmetries
has nothing to do with dS and AdS spaces and their curvatures.

In view of the above remarks, one might think that the dS analog of the
energy operator isM40. However, in dS theory all the operatorsMa0 (a = 1, 2, 3, 4) are
on equal footing. This poses a problem whether a parameter describing the evolution
defined by the Hamiltonian is a fundamental quantity even on classical level.

In the existing quantum theory, problems with nonphysical notions and
infinities arise as a result of describing interactions in terms of local quantum fields.
In the present work local quantum fields are not used at all and we apply the notion
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of symmetry on quantum level only to systems of free particles. One might think
that such a consideration can be only of academic interest. Nevertheless, we will
see below that there is a class of problems where such a consideration gives a new
perspective on fundamental notions of quantum theory. We will consider applications
of our approach to the cosmological constant problem, gravity and particle theory.

Finally, let us define the notion of elementary particle. Although theory
of elementary particles exists for a rather long period of time, there is no commonly
accepted definition of elementary particle in this theory. In the spirit of the above
definition of symmetry on quantum level and Wigner’s approach to Poincare symme-
try [22], a general definition, not depending on the choice of the classical background
and on whether we consider a local or nonlocal theory, is that a particle is elementary
if the set of its wave functions is the space of an IR of the symmetry algebra in the
given theory. In particular, in Poincare invariant theory an elementary particle is
described by an IR of the Poincare algebra, in dS or AdS theory it is described by an
IR of the dS or AdS algebra, respectively, etc.

1.4 Remarks on the cosmological constant prob-

lem

The discovery of the cosmological repulsion (see e.g. Refs. [23, 24]) has ignited a vast
discussion on how this phenomenon should be interpreted. The majority of authors
treat this phenomenon as an indication that Λ is positive and therefore the space-
time background has a positive curvature. According to Refs. [23, 24, 25, 26], the
observational data on the value of Λ indicate that it is non-zero and positive with a
confidence of 99%. Therefore the possibilities that Λ = 0 or Λ < 0 are practically
excluded. In the approach discussed in Ref. [27], the ”fundamental” quantity Λ is
negative while effectively Λ > 0 only on classical level. In our approach the notion
of ”fundamental” Λ does not exist since we proceed from the commutation relations
(1.4) which do not contain space-time characteristics. We will see below that in
our approach Λ arises only in classical approximation. The majority of works dealing
with the CC problem proceed from the assumption that G is the fundamental physical
quantity, the goal of the theory is to express Λ in terms of G and to explain why Λ
is so small.

To consider the CC problem in greater details, we first discuss the following
well-known problem: how many independent dimensionful constants are needed for
a complete description of nature? A paper [28] represents a trialogue between three
well-known scientists: M.J. Duff, L.B. Okun and G. Veneziano (see also Ref. [29]
and references therein). The results of their discussions are summarized as follows:
LBO develops the traditional approach with three constants, GV argues in favor of at
most two (within superstring theory), while MJD advocates zero. According to Ref.
[30], a possible definition of a fundamental constant might be such that it cannot
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be calculated in the existing theory. We would like to give arguments in favor of
the opinion of the first author in Ref. [28]. One of our goals is to argue that the
cosmological and gravitational constants cannot be fundamental physical quantities.

Consider a measurement of a component of angular momentum. The result
depends on the system of units. As shown in quantum theory, in units h̄/2 = 1 the
result is given by an integer 0,±1,±2, .... But we can reverse the order of units and
say that in units where the angular momentum is an integer l, its value in kg ·m2/sec
is (1.05457162 · 10−34 · l/2)kg ·m2/sec. Which of those two values has more physical
significance? In units where the angular momentum components are integers, the
commutation relations between the components are

[Mx,My] = 2iMz [Mz,Mx] = 2iMy [My,Mz] = 2iMx

and they do not depend on any parameters. Then the meaning of l is clear: it shows
how big the angular momentum is in comparison with the minimum nonzero value 1.
At the same time, the measurement of the angular momentum in units kg ·m2/sec
reflects only a historic fact that at macroscopic conditions on the Earth in the period
between the 18th and 21st centuries people measured the angular momentum in such
units.

The fact that quantum theory can be written without the quantity h̄ at
all is usually treated as a choice of units where h̄ = 1/2 (or h̄ = 1). We believe that a
better interpretation of this fact is simply that quantum theory tells us that physical
results for measurements of the components of angular momentum should be given in
integers. Then the question why h̄ is as it is, is not a matter of fundamental physics
since the answer is: because we want to measure components of angular momentum
in kg ·m2/sec.

Our next example is the measurement of velocity v. Let (E,p) be a particle
four-momentum defined by its energy and momentum. Then in special relativity the
quantity I2P = E2 − p2c2 is an invariant which is denoted as m2c4. The reason is
that in usual situations I2P ≥ 0 and m coincides with the standard particle mass.
However, if we deal only with four-momenta and don’t involve classical space-time
then the mathematical structure of Special Relativity does not impose any restrictions
on the values of observable quantities E and p; in particular it does not prohibit the
case I2P < 0. Particles for which this case takes place are called tachyons and their
possible existence is widely discussed in the literature. The velocity vector v is defined
as v = pc2/E. The fact that any relativistic theory can be written without involving
c is usually described as a choice of units where c = 1. Then for known particles the
quantity v = |v| can take only values in the range [0,1] while for tachyons it can take
values in the range (1,∞). However, we can again reverse the order of units and say
that relativistic theory tells us that for known particles the results for measurements
of velocity should be given by values in [0,1] while in general they should be given
by values in [0,∞). Then the question of why c is as it is, is again not a matter of
physics since the answer is: because we want to measure velocity in m/sec.
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One might pose a question whether or not the values of h̄ and cmay change
with time. As far as h̄ is concerned, this is a question that if the angular momentum
equals one then its value in kg ·m2/sec will always be 1.05457162 · 10−34/2 or not.
It is obvious that this is not a problem of fundamental physics but a problem of
definition of the units (kg,m, sec). In other words, this is a problem of metrology
and cosmology. At the same time, the value of c will always be the same since the
modern definition of meter is the length which light passes during (1/(3 · 108))sec.

It is often stated that the most fundamental constants of nature are h̄, c
and G. The units where h̄ = c = G = 1 are called Planck units. Another well-known
notion is the ch̄G cube of physical theories. The meaning is that any relativistic theory
should contain c, any quantum theory should contain h̄ and any gravitational theory
should contain G. However, the above remarks indicates that the meaning should
be the opposite. In particular, relativistic theory should not contain c and quantum
theory should not contain h̄. The problem of treating G is one of key problems of this
work and will be discussed below.

A standard phrase that relativistic theory becomes non-relativistic one
when c → ∞ should be understood such that if relativistic theory is rewritten in
conventional (but not physical!) units then c will appear and one can take the limit
c → ∞. A more physical description of the transition is that all the velocities in
question are much less than unity. We will see in Section 3.6 that those definitions
are not equivalent. Analogously, a more physical description of the transition from
quantum to classical theory should be that all angular momenta in question are very
large rather than h̄→ 0.

Consider now what happens if one assumes that dS symmetry is funda-
mental. As explained in the preceding section, in our approach dS symmetry has
nothing to do with dS space but now we consider standard notion of this symmetry.
The dS space is a four-dimensional manifold in the five-dimensional space defined by

x21 + x22 + x23 + x24 − x20 = R2 (1.5)

In the formal limit R → ∞ the action of the dS group in a vicinity of the point
(0, 0, 0, 0, x4 = R) becomes the action of the Poincare group on Minkowski space. In
the literature, instead of R, the CC Λ = 3/R2 is often used. The dS space can be
parameterized without using the quantity R at all if instead of xa (a = 0, 1, 2, 3, 4)
we define dimensionless variables ξa = xa/R. It is also clear that the elements of the
SO(1,4) group do not depend on R since they are products of conventional and hyper-
bolic rotations. So the dimensionful value of R appears only if one wishes to measure
coordinates on the dS space in terms of coordinates of the flat five-dimensional space
where the dS space is embedded in. This requirement does not have a fundamental
physical meaning. Therefore the value of R defines only a scale factor for measuring
coordinates in the dS space. By analogy with c and h̄, the question of why R is as
it is, is not a matter of fundamental physics since the answer is: because we want to
measure distances in meters. In particular, there is no guaranty that the CC is really
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a constant, i.e. does not change with time. It is also obvious that if dS symmetry is
assumed from the beginning then the value of Λ has no relation to the value of G.

If one assumes that the space-time background is fundamental regardless
of whether matter is present or not, then in the spirit of GR it is natural to think
that the empty space-time background is flat, i.e. that Λ = 0 and this was one of the
subjects of the well-known debate between Einstein and de Sitter. However, as noted
above, it is now accepted that Λ 6= 0 and, although it is very small, it is positive
rather than negative. If we accept parameterization of the dS space as in Eq. (1.5)
then the metric tensor on the dS space is

gµν = ηµν − xµxν/(R
2 + xρx

ρ) (1.6)

where µ, ν, ρ = 0, 1, 2, 3, ηµν is the Minkowski metric tensor, and a summation over
repeated indices is assumed. It is easy to calculate the Christoffel symbols in the
approximation where all the components of the vector x are much less than R: Γµ,νρ =
−xµηνρ/R2. Then a direct calculation shows that in the nonrelativistic approximation
the equation of motion for a single particle is

a = rc2/R2 (1.7)

where a and r are the acceleration and the radius vector of the particle, respectively.
Suppose now that we have a system of two noninteracting particles and

(ri, ai) (i = 1, 2) are their radius vectors and accelerations, respectively. Then Eq.
(1.7) is valid for each particle if (r, a) is replaced by (ri, ai), respectively. Now if we
define the relative radius vector r = r1 − r2 and the relative acceleration a = a1 − a2

then they will satisfy the same Eq. (1.7) which shows that the dS antigravity is
repulsive. It terms of Λ it reads a = Λrc2/3 and therefore in the AdS case we have
attraction rather than repulsion.

The fact that even a single particle in the World has a nonzero acceleration
might be treated as contradicting the law of inertia but, as already noted, this law has
been postulated only for Galilean or Poincare symmetries and we have a = 0 in the
limit R → ∞. A more serious problem is that, according to standard experience, any
particle moving with acceleration necessarily emits gravitational waves, any charged
particle emits electromagnetic waves etc. Does this experience work in the dS world?
This problem is intensively discussed in the literature (see e.g. Ref. [31] and references
therein). Suppose we accept that, according to GR, the loss of energy in gravitational
emission is proportional to the gravitational constant. Then one might say that in
the given case it is not legitimate to apply GR since the constant G characterizes
interaction between different particles and cannot be used if only one particle exists
in the world.

In textbooks on gravity written before 1998 (when the cosmological ac-
celeration was discovered) it is often claimed that Λ is not needed since its presence
contradicts the philosophy of GR: matter creates curvature of space-time, so in the
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absence of matter space-time should be flat (i.e. Minkowski) while empty dS space is
not flat. As noted above, such a philosophy has no physical meaning since the notion
of empty space-time is unphysical. That’s why the discovery of the fact that Λ 6= 0
has ignited many discussions. The most popular approach is as follows. One can move
the term with Λ in Eq. (1.1) from the left-hand side to the right-hand one. Then the
term with Λ is treated as the stress-energy tensor of a hidden matter which is called
dark energy: (8πG/c4)TDE

µν = −Λgµν . With such an approach one implicitly returns
to Einstein’s point of view that a curved space-time cannot be empty. In other words,
this is an assumption that the Poincare symmetry is fundamental while the dS one
is emergent. With the observed value of Λ this dark energy contains approximately
75% of the energy of the World. In this approach G is treated as a fundamental
constant and one might try to express Λ in terms of G. The existing quantum theory
of gravity cannot perform this calculation unambiguously since the theory contains
strong divergences. With a reasonable cutoff parameter, the result for Λ is such that
in units where h̄ = c = 1, GΛ is of the order of unity. This result is expected from
dimensionful considerations since in these units, the dimension of G is length2 while
the dimension of Λ is 1/length2. However, this value of Λ is greater than the observed
one by 122 orders of magnitude. In supergravity the disagreement can be reduced
but even in best scenarios it exceeds 40 orders of magnitude.This problem is called
the CC problem or dark energy problem.

Several authors criticized this approach from the following considerations.
GR without the contribution of Λ has been confirmed with a good accuracy in ex-
periments in the Solar System. If Λ is as small as it has been observed then it can
have a significant effect only at cosmological distances while for experiments in the
Solar System the role of such a small value is negligible. The authors of Ref. [32]
titled ”Why All These Prejudices Against a Constant?”, note that it is not clear why
we should think that only a special case Λ = 0 is allowed. If we accept the theory
containing a constant G which cannot be calculated and is taken from the outside
then why can’t we accept a theory containing two independent constants?

In Secs. 3.6 and 5.1 we show by different methods that, as a consequence
of dS symmetry on quantum level defined in the preceding section, the CC problem
does not exist and the cosmological acceleration can be easily and naturally explained
from first principles of quantum theory.

Concluding this section we note the following. As follows from Eq. (1.7),
the quantity R can be extracted from measurements of the relative acceleration in the
dS world. However, as follows from this equation, the acceleration is not negligible
only if distances between particles are comparable to R. Hence at present a direct
measurement of R is impossible and conclusions about its value are made indirectly
from the data on high-redshift supernovae by using different cosmological models.
Probably the most often used model is the ΛCDM one which is based on six param-
eters. It assumes that GR is the correct theory of gravity on cosmological scales and
uses the FLRW metric (see e.g. Ref. [33]). Then the result of Refs. [25, 26] is that
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with the accuracy of 5% Λ is such that R is of the order of 1026m. This value is
also obtained in other cosmological models. For example, in the Netchitailo World-
Universe model [34] which is based on two parameters, it is adopted that the average
density of the world always equals the critical density in GR. Then R is also of the
order of 1026m. On the other hands, in the literature several alternative models are
discussed where R considerably differs from 1026m. It is also important to note that
if Λ is treated only as an effective cosmological constant (arising e.g. due to dark
energy) then the radius of the world does not define the curvature of the dS space.
In summary, in what follows we will treat the fact that Λ > 0 as a manifestation of
dS symmetry on quantum level. On the other hand, the numerical value of R is still
an open problem.

1.5 Is the notion of interaction physical?

The fact that problems of quantum theory arise as a result of describing interactions in
terms of local quantum fields poses the following dilemma. One can either modify the
description of interactions (e.g. by analogy with the string theory where interactions
at points are replaced by interactions at strings) or investigate whether the notion of
interaction is needed at all. A reader might immediately conclude that the second
option fully contradicts the existing knowledge and should be rejected right away. In
the present section we discuss a question whether gravity might be not an interaction
but simply a kinematical manifestation of dS symmetry on quantum level.

Let us consider an isolated system of two particles and pose a question of
whether they interact or not. In theoretical physics there is no unambiguous criterion
for answering this question. For example, in classical (i.e. nonquantum) nonrela-
tivistic and relativistic mechanics the criterion is clear and simple: if the relative
acceleration of the particles is zero they do not interact, otherwise they interact.
However, those theories are based on Galilei and Poincare symmetries, respectively
and there is no reason to believe that such symmetries are exact symmetries of nature.

In quantum mechanics the criterion can be as follows. If E is the energy
operator of the two-particle system and Ei (i = 1, 2) is the energy operator of particle
i then one can formally define the interaction operator U such that

E = E1 + E2 + U (1.8)

Therefore the criterion can be such that the particles do not interact if U = 0, i.e.
E = E1 + E2.

In QFT the criterion is also clear and simple: the particles interact if they
can exchange by virtual quanta of some fields. For example, the electromagnetic
interaction between the particles means that they can exchange by virtual photons,
the gravitational interaction - that they can exchange by virtual gravitons etc. In that
case U in Eq. (1.8) is an effective operator obtained in the approximation when all
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degrees of freedom except those corresponding to the given particles can be integrated
out.

A problem with approaches based on Eq. (1.8) is that the answer should
be given in terms of invariant quantities while energies are reference frame dependent.
Therefore one should consider the two-particle mass operator. In standard Poincare
invariant theory the free mass operator is given byM =M0(q) = (m2

1+q2)1/2+(m2
2+

q2)1/2 where the mi are the particle masses and q is the relative momentum operator.
In classical approximation q becomes the relative momentum and M0 becomes a
function of q not depending on the relative distance r between the particles. Therefore
the relative acceleration is zero and this case can be treated as noninteracting.

Consider now a two-particle system in dS invariant theory. As explained
in Sec. 1.3, on quantum level the only consistent definition of dS invariance is that the
operators describing the system satisfy the commutation relations of the dS algebra.
This definition does not involve GR, QFT, dS space and its geometry (metric, con-
nection etc.). A definition of an elementary particle given in that section is that the
particle is described by an IR of the dS algebra (see also Secs. 3.2 and 9.1). Therefore
a possible definition of the free two-particle system can be such that the system is
described by a representation where not only the energy but all other operators are
given by sums of the corresponding single-particle operators. In representation theory
such a representation is called the tensor products of IRs.

In other words, we consider only quantum mechanics of two free particles
in dS invariant theory. In that case, as shown in Refs. [35, 36, 37] and others (see
also Sect. 3.6 of the present work), the two-particle mass operator can be explicitly
calculated. It can be written as M = M0(q) + V where V is an operator depending
not only on q. In classical approximation V becomes a function depending on r.
As a consequence, the relative acceleration is not zero and the result for the relative
acceleration describes a well-known cosmological repulsion (sometimes called dS anti-
gravity). From a formal point of view this result coincides with that obtained in GR
on dS space-time (see the preceding section). However, our result has been obtained
without involving Riemannian geometry, metric, connection and dS space-time.

One might argue that the above situation contradicts the law of inertia
according to which if particles do not interact then their relative acceleration must
be zero. However, this law has been postulated in Galilei and Poincare invariant
theories and there is no reason to believe that it will be valid for other symmetries.
Another argument might be such that dS invariance implicitly implies existence of
other particles which interact with the two particles under consideration. Therefore
the above situation resembles a case when two particles not interacting with each
other are moving with different accelerations in a nonhomogeneous field and therefore
their relative acceleration is not zero. This argument has much in common with the
discussion of whether the empty space-time background can have a curvature and
whether a nonzero curvature implies the existence of dark energy or other fields (see
the preceding section). However, as argued in the preceding sections, fundamental
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quantum theory should not involve the empty space-time background at all. Therefore
our result demonstrates that the cosmological constant problem does not exist and the
cosmological acceleration can be easily (and naturally) explained without involving
dark energy or other fields.

In QFT interactions can be only local and there are no interactions at
a distance (sometimes called direct interactions), when particles interact without
an intermediate field. In particular, a potential interaction (when the force of the
interaction depends only on the distance between the particles) can be only a good
approximation in situations when the particle velocities are much less than c. The
explanation is such that if the force of the interaction depends only on the distance
between the particles and the distance is slightly changed then the particles will feel
the change immediately, but this contradicts the statement that no interaction can
be transmitted with the speed greater than the speed of light. Although standard
QFT is based on Poincare symmetry, physicists typically believe that the notion of
interaction adopted in QFT is valid for any symmetry. However, the above discussion
shows that the dS antigravity is not caused by exchange of any virtual particles. In
particular a question about the speed of propagation of dS antigravity in not physical.
In other words, the dS antigravity is an example of a true direct interaction. It is
also possible to say that the dS antigravity is not an interaction at all but simply an
inherent property of dS invariance.

In quantum theory, dS and AdS symmetries are widely used for investi-
gating QFT in curved space-time background. However, it seems rather paradoxical
that such a simple case as a free two-body system in dS invariant theory has not been
widely discussed. According to our observations, such a situation is a manifestation
of the fact that even physicists working on dS QFT are not familiar with basic facts
about IRs of the dS algebra. It is difficult to imagine how standard Poincare in-
variant quantum theory can be constructed without involving well-known results on
IRs of the Poincare algebra. Therefore it is reasonable to think that when Poincare
invariance is replaced by dS one, IRs of the Poincare algebra should be replaced by
IRs of the dS algebra. However, physicists working on QFT in curved space-time
argue that fields are more fundamental than particles and therefore there is no need
to involve commutation relations (1.4) and IRs. In other words, they treat dS sym-
metry on quantum level not such that the relations (1.4) should be valid but such
that quantum fields are constructed on dS space (see e.g. Refs. [38, 39]).

Our discussion shows that the notion of interaction depends on symmetry.
For example, when we consider a system of two particles which from the point of view
of dS symmetry are free (since they are described by a tensor product of IRs), from
the point of view of our experience based on Galilei or Poincare symmetries they are
not free since their relative acceleration is not zero. This poses a question of whether
not only dS antigravity but other interactions are in fact not interactions but effective
interactions emerging when a higher symmetry is treated in terms of a lower one.

In particular, is it possible that quantum symmetry is such that on clas-
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sical level the relative acceleration of two free particles is described by the same
expression as that given by the Newton gravitational law and corrections to it? This
possibility has been first discussed in Ref. [35]. It is clear that this possibility is not
in mainstream according to which gravity is a manifestation of the graviton exchange.
We will not discuss whether or not the results on binary pulsars can be treated as a
strong indirect indication of the existence of gravitons and why gravitons have not
been experimentally detected yet. We believe that until the nature of gravity has
been unambiguously understood, different possibilities should be investigated. We
believe that a very strong argument in favor of our approach is as follows. In contrast
to theories based on Poincare and AdS symmetries, in the dS case the spectrum of
the free mass operator is not bounded below by (m1 + m2). As a consequence, it
is not a problem to indicate states where the mean value of the mass operator has
an additional contribution −Gm1m2/r with possible corrections. A problem is to
understand reasons why macroscopic bodies have such wave functions.

If we accept dS symmetry then the first step is to investigate the structure
of dS invariant theory from the point of view of IRs of the dS algebra. This problem
is discussed in Refs. [36, 37, 17]. In Ref. [35] we discussed a possibility that gravity is
simply a manifestation of the fact that fundamental quantum theory should be based
not on complex numbers but on a Galois field with a large characteristic p which is a
fundamental constant defining the laws of physics in our World. This approach has
been discussed in Refs. [40, 41, 42, 43] and other publications. In Refs. [44, 45] we
discussed additional arguments in favor of our hypothesis about gravity. We believe
that the results of the present work give strong indications that our hypothesis is
correct.

Another arguments that gravity is not an interaction at all follow. The
quantity G defines the gravitational force in the Newton law of gravity. Numerous
experimental data show that this law works with a very high accuracy. However, this
only means that G is a good phenomenological parameter. At the level of the Newton
law one cannot prove that G is the exact constant which does not change with time,
does not depend on masses, distances etc.

General Relativity is a classical (i.e. non-quantum) theory based on the
minimum action principle. Here we have two different quantities which have different
dimensions: the stress energy tensor of matter and the Ricci tensor describing the
curvature of the space-time background. Then the Einstein equations (1.1) derived
from the minimum action principle show that G is the coefficient of proportionality
between the left-hand and right-hand sides of Eq. (1.1). General Relativity cannot
calculate it or give a theoretical explanation why this value should be as it is.

A problem arises whether G should be treated as a fundamental or phe-
nomenological constant. By analogy with the treatment of the quantities c and h̄
in the preceding section, one might think that G can be treated analogously and its
value is as it is simply because we wish to measure masses in kilograms and distances
in meters (in the spirit of Planck units). However, treating G as a fundamental con-
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stant can be justified only if there are strong reasons to believe that the Lagrangian
of GR is the only possible Lagrangian. Let us consider whether this is the case.

The Lagrangian of GR should be invariant under general coordinate trans-
formations and the simplest way to satisfy this requirement is a choice when it is
proportional to the scalar curvature Rc. In this case the Newton gravitational law
is recovered in the nonrelativistic approximation and the theory is successful in ex-
plaining several well-known phenomena. However, the argument that this choice is
simple and agrees with the data, cannot be treated as a fundamental requirement.
Another reason for choosing the linear case is that here equations of motions are of
the second order while in quadratic, cubic cases etc. they will be of higher orders.
However, this reason also cannot be treated as fundamental. It has been argued in
the literature that GR is a low energy approximation of a theory where equations of
motion contain higher order derivatives. In particular, a rather popular approach is
when the Lagrangian contains a function f(Rc) which should be defined from addi-
tional considerations. In that case the constant G in the Lagrangian is not the same
as the standard gravitational constant. It is believed that the nature of gravity will
be understood in the future quantum theory of gravity but efforts to construct this
theory has not been successful yet. Therefore the above remarks show that there are
no solid reasons to treat G as a fundamental constant.

From the point of view of dS symmetry on quantum level, G cannot be a
fundamental constant from the following considerations. The commutation relations
(1.4) do not depend on any free parameters. One might say that this is a consequence
of the choice of units where h̄ = c = 1. However, as noted in the preceding section,
any fundamental theory should not involve the quantities h̄ and c. A theory based on
the above definition of the dS symmetry on quantum level cannot involve quantities
which are dimensionful in units h̄ = c = 1. In particular, we inevitably come to
conclusion that the gravitational and cosmological constants cannot be fundamental.

By analogy with the above discussion about gravity, one can pose a ques-
tion of whether the notions of other interactions are fundamental or not. In QFT all
interactions (e.g. in QED, electroweak theory and QCD) are introduced according
to the same scheme. One writes the Lagrangian as a sum of free and interaction
Lagrangians. The latter are proportional to interaction constants which cannot be
calculated from the theory and hence can be treated only as phenomenological param-
eters. It is reasonable to believe that the future fundamental theory will not involve
such parameters. For example, one of the ideas of the string theory is that the existing
interactions are only manifestations of how higher dimensions are compactified.

1.6 The content of this work

In Chap. 2 we show that in standard nonrelativistic and relativistic quantum the-
ory the position operator is defined inconsistently. As a consequence, in standard
quantum theory there exist several paradoxes discussed in Sec. 2.9. We propose a
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consistent definition of the position operator which resolves the paradoxes and gives
a new look at the construction of quantum theory.

In Chap. 3 we construct IRs of the dS algebra following the book by
Mensky [46]. This construction makes it possible to show that the well-known cos-
mological repulsion is simply a kinematical effect in dS quantum mechanics. The
derivation involves only standard quantum mechanical notions. It does not require
dealing with dS space, metric tensor, connection and other notions of Riemannian
geometry. As argued in the preceding sections, fundamental quantum theory should
not involve space-time at all. In our approach the cosmological constant problem does
not exist and there is no need to involve dark energy or other fields for explaining
this problem.

In Chap. 4 we construct IRs of the dS algebra in the basis where all
quantum numbers are discrete. In particular, the results of Chap. 2 on the position
operator and wave packet spreading are generalized to the dS case. This makes it
possible to investigate in Chap. 5 for which two-body wave functions one can get
standard Newton’s law of gravity and the results which are treated as three classical
tests of GR.

In Chap. 6 we argue that fundamental quantum theory should be based
on a Galois field rather than complex numbers. In our approach, standard theory
is a special case of a quantum theory over a Galois field (GFQT) in a formal limit
when the characteristic of the field p becomes infinitely large. We try to make the
presentation as self-contained as possible without assuming that the reader is familiar
with Galois fields.

In Chap. 7 we construct semiclassical states in GFQT and discuss the
problem of calculating the gravitational constant.

In Chap. 8 the AdS symmetry over a Galois field is applied to particle
theory. It is shown that in this approach there are no neutral elementary particles
in the theory. In particular, even the photon cannot be elementary. The notion of
a particle and its antiparticle can be only approximate and such additive quantum
numbers as the electric charge and the baryon and lepton quantum numbers can be
only approximately conserved.

In Chap. 9 we discuss Dirac singletons in GFQT. Our consideration can
be treated as a strong argument in favor of the possibility that only Dirac singletons
are true elementary particles.

Finally, Chap. 10 is a discussion.
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Chapter 2

A new look at the position
operator in quantum theory

2.1 Why do we need position operator in quantum

theory?

It has been postulated from the beginning of quantum theory that the coordinate and
momentum representations of wave functions are related to each other by a Fourier
transform. The historical reason was that in classical electrodynamics the coordinate
and wave vector k representations are related analogously and we postulate that
p = h̄k where p is the particle momentum. Then, although the interpretations of
classical fields on one hand and wave functions on the other are fully different, from
mathematical point of view classical electrodynamics and quantum mechanics have
much in common (and such a situation does not seem to be natural).

One of the examples follows. As explained in textbooks on quantum me-
chanics (see e.g. Ref. [47]), if the coordinate wave function ψ(r, t) contains a rapidly
oscillating factor exp[iS(r, t)/h̄], where S(r, t) is the classical action as a function
of coordinates and time, then in the formal limit h̄ → 0, called semiclassical ap-
proximation, the Schrödinger equation becomes the Hamilton-Jacoby equation which
shows that quantum mechanical wave packets are moving along classical trajectories.
This situation is analogous to the approximation of geometrical optics in classical
electrodynamics (see e.g. Ref. [3]) when fields contain a rapidly oscillating factor
exp[iϕ(r, t)] where the function ϕ(r, t) is called eikonal. It satisfies the eikonal equa-
tion which coincides with the relativistic Hamilton-Jacobi equation for a particle with
zero mass. This shows that classical electromagnetic wave packets are moving along
classical trajectories for particles with zero mass what is reasonable since it is assumed
that such packets consist of photons.

Another example of similarity between classical electrodynamics and quan-
tum mechanics follows. In classical electrodynamics a wave packet moving even in
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empty space inevitably spreads out and this fact has been known for a long time.
For example, as pointed out by Schrödinger (see pp. 41-44 in Ref. [48]), in standard
quantum mechanics a packet does not spread out if a particle is moving in a harmonic
oscillator potential in contrast to ”a wave packet in classical optics, which is dissipated
in the course of time”. However, as a consequence of the similarity, a free quantum
mechanical wave packet inevitably spreads out too. This effect is called wave packet
spreading (WPS) and it is described in textbooks and many papers (see e.g. Ref.
[49] and references therein). Moreover, as shown in Sec. 2.7, in quantum theory this
effect is pronounced even in a much greater extent than in classical electrodynamics.

In particular, the WPS effect has been investigated by de Broglie, Darwin
and Schrödinger. The fact that WPS is inevitable has been treated by several au-
thors as unacceptable and as an indication that standard quantum theory should be
modified. For example, de Broglie has proposed to describe a free particle not by the
Schrödinger equation but by a wavelet which satisfies a nonlinear equation and does
not spread out (a detailed description of de Broglie’s wavelets can be found e.g. in
Ref. [50]). Sapogin writes (see Ref. [51] and references therein) that ”Darwin showed
that such packet quickly and steadily dissipates and disappears” and proposes an
alternative to standard theory which he calls unitary unified quantum field theory.

At the same time, in the literature it has not been explicitly shown that
numerical results on WPS are incompatible with experimental data. For example, it
is known (see Sec. 2.3) that for macroscopic bodies the effect of WPS is extremely
small. Probably it is also believed that in experiments on the Earth with atoms and
elementary particles spreading does not have enough time to manifest itself although
we have not succeeded in finding an explicit statement on this problem in the liter-
ature. Probably for these reasons the majority of physicists do not treat WPS as a
drawback of the theory.

However, a natural problem arises what happens to photons which can
travel from distant objects to Earth even for billions of years. For example, as shown
in Sec. 2.9, in the case when the major part of photons emitted by stars are in wave
packet states (what is the most probable scenario) the effect of WPS for photons
emitted even by close stars is so strong that we should see not separate stars but
rather an almost continuous background from all stars. In addition, data on relic
radiation and gamma-ray bursts, signals from radio antennas to planets and space
probes, signals from space probes and signals from pulsars show no signs of spreading
of photon wave functions. We call those facts the WPS paradoxes. The consideration
given in the present chapter shows that the reason of the paradoxes is that standard
position operator is not consistently defined. Hence the inconsistent definition of the
position operator is not only an academic problem but leads to the above paradoxes.

Usual arguments in favor of choosing the standard position and momentum
operators are that these operators have correct properties in semiclassical approxi-
mation. For example, in the method of classical analogy proposed by Dirac [49] the
commutator of operators corresponding to physical quantities is proportional to the
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classical Poisson bracket of these quantities with the coefficient ih̄. The quantity h̄
has been introduced by Dirac who noted [49] that for agreement with experiment h̄
should be equal to the Planck constant h divided by 2π. Then semiclassical approx-
imation can be treated as a transition from quantum theory to classical one in the
formal limit h̄ → 0. However, as noted by Dirac, the method of classical analogy
is not universal and in each case when it does not apply special considerations are
needed. In addition, the requirement that an operator should have correct properties
in semiclassical approximation does not define the operator unambiguously.

One of the arguments in favor of choosing standard position and momen-
tum operators is that the nonrelativistic Schrödinger equation correctly describes
the hydrogen energy levels, the Dirac equation correctly describes fine structure cor-
rections to these levels etc. Historically these equations have been first written in
coordinate space and in textbooks they are still discussed in this form. However,
from the point of view of the present knowledge those equations should be treated as
follows.

It is believed that a fundamental theory describing electromagnetic inter-
actions on quantum level is quantum electrodynamics (QED). This theory proceeds
from quantizing classical Lagrangian which is only an auxiliary tool for constructing
S-matrix. When this construction is accomplished, the results of QED are formulated
exclusively in momentum space and the theory does not contain space-time at all.
In particular, as follows from the Feynman diagram for the one-photon exchange,
in the approximation (v/c)2 the electron in the hydrogen atom can be described in
the potential formalism where the potential acts on the wave function in momentum
space. So for calculating energy levels one should solve the eigenvalue problem for the
Hamiltonian with this potential. This is an integral equation which can be solved by
different methods. One of the convenient methods is to apply the Fourier transform
and get standard Schrödinger or Dirac equation in coordinate representation with
the Coulomb potential. Hence the fact that the results for energy levels are in good
agreement with experiment shows only that QED defines the potential correctly and
standard coordinate Schrödinger and Dirac equations are only convenient mathemat-
ical ways of solving the eigenvalue problem. For this problem the physical meaning of
the position operator is not important at all. One can consider other transformations
of the original integral equation and define other position operators. The fact that
for non-standard choices one might obtain something different from the Coulomb po-
tential is not important on quantum level. One might think that on classical level
the interaction between two charges can be described by the Coulomb potential but
this does not imply that on quantum level the potential in coordinate representation
should be necessarily Coulomb.

Let us also note the following. In the literature the statement that the
Coulomb law works with a high accuracy is often substantiated from the point of view
that predictions of QED have been experimentally confirmed with a high accuracy.
However, as follows from the above remarks, the meaning of distance on quantum
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level is not clear and in QED the law 1/r2 can be tested only we assume additionally
that the coordinate and momentum representations are related to each other by the
Fourier transform. So a conclusion about the validity of the law can be made only
on the basis of macroscopic experiments. A conclusion made from the results of
classical Cavendish and Maxwell experiments is that if the exponent in Coulomb’s
law is not 2 but 2 ± q then q < 1/21600. The accuracy of those experiments have
been considerably improved in the experiment [52] the result of which is q < 2 · 10−9.
However, the Cavendish-Maxwell experiments and the experiment [52] do not involve
pointlike electric charges. Cavendish and Maxwell used a spherical air condenser
consisting of two insulated spherical shells while the authors of Ref. [52] developed a
technique where the difficulties due to spontaneous ionization and contact potentials
were avoided. Therefore the conclusion that q < 2 · 10−9 for pointlike electric charges
requires additional assumptions.

Another example is as follows. It is said that the spatial distribution of
the electric charge inside a system can be extracted from measurements of form-
factors in the electron scattering on this system. However, the information about the
experiment is again given only in terms of momenta and conclusions about the spatial
distribution can be drawn only if we assume additionally how the position operator is
expressed in terms of momentum variables. On quantum level the physical meaning
of such a spatial distribution is not fundamental.

In quantum theory each elementary particle is described by an irreducible
representation (IR) of the symmetry algebra. For example, in Poincare invariant
theory the set of momentum operators represents three of ten linearly independent
representation operators of the Poincare algebra and hence those operators are con-
sistently defined. On the other hand, among the representation operators there is no
position operator. In view of the above discussion, since the results of existing funda-
mental quantum theories describing interactions on quantum level (QED, electroweak
theory and QCD) are formulated exclusively in terms of the S-matrix in momentum
space without any mentioning of space-time, for investigating such stationary quan-
tum problems as calculating energy levels, form-factors etc., the notion of the position
operator is not needed.

However, the choice of the position operator is important in nonstationary
problems when evolution is described by the time dependent Schrödinger equation
(with the nonrelativistic or relativistic Hamiltonian). For any new theory there should
exist a correspondence principle that at some conditions the new theory should re-
produce results of the old well tested theory with a good accuracy. In particular,
quantum theory should reproduce the motion of a particle along the classical trajec-
tory defined by classical equations of motion. Hence the position operator is needed
only in semiclassical approximation and it should be defined from additional consid-
erations.

As noted in Sec. 1.2, in standard approaches to quantum theory the
existence of space-time background is assumed from the beginning. Then the position
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operator for a particle in this background is the operator of multiplication by the
particle radius-vector r. As explained in textbooks on quantum mechanics (see e.g.
Ref. [47]), the result −ih̄∂/∂r for the momentum operator can be justified from
the requirement that quantum theory should correctly reproduce classical results in
semiclassical approximation. However, as noted above, this requirement does not
define the operator unambigously.

As noted in Sec. 1.3, the definition of Poincare symmetry on quantum
level means that the operators commute according to Eq. (1.3). The fact that an
elementary particle in quantum theory is described by an IR of the symmetry algebra
can be treated as a definition of the elementary particle (see Sec. 1.3). In Poincare
invariant theory the IRs can be implemented in a space of functions χ(p) such that
∫

|χ(p)|2d3p <∞ (see Sec. 2.4). In this representation the momentum operator P is
defined unambiguously and is simply the operator of multiplication by p. A standard
assumption is that the position operator in this representation is ih̄∂/∂p.

As explained in textbooks on quantum mechanics (see e.g. Ref. [47]
and Sec. 2.2), semiclassical approximation cannot be valid in situations when the
momentum is rather small. Consider first a one-dimensional case. If the value of the
x component of the momentum px is rather large, the definition of the coordinate
operator x = ih̄∂/∂px can be justified but this definition does not have a physical
meaning in situations when px is small.

Consider now the three-dimensional case. If all the components pj (j =
1, 2, 3) are rather large then there are situations when all the operators ih̄∂/∂pj are
semiclassical. A semiclassical wave function χ(p) in momentum space should describe
a narrow distribution around the mean value p0. Suppose now that the coordinate
axes are chosen such p0 is directed along the z axis. Then in view of the above remarks
the operators ih̄∂/∂pj cannot be physical for j = 1, 2, i.e. in directions perpendicular
to the particle momentum. Hence the standard definition of all the components of
the position operator can be physical only for special choices of the coordinate axes
and there exist choices when the definition is not physical. The situation when a
definition of an operator is physical or not depending on the choice of the coordinate
axes is not acceptable and hence standard definition of the position operator is not
physical.

In the present chapter we propose a consistent definition of the position
operator in Poincare invariant theory. As a consequence, in our approach WPS in
directions perpendicular to the particle momentum is absent regardless of whether
the particle is nonrelativistic or relativistic. Hence the above paradoxes are resolved.
Moreover, for an ultrarelativistic particle the effect of WPS is absent at all. In our
approach different components of the position operator do not commute with each
other and, as a consequence, there is no wave function in coordinate representation.

The chapter is organized as follows. In Secs. 2.2 and 2.4 we discuss the
approach to the position operator in standard nonrelativistic and relativistic quan-
tum theory, respectively. An inevitable consequence of this approach is the effect of
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WPS of the coordinate wave function which is discussed in Secs. 2.3 and 2.5 for the
nonrelativistic and relativistic cases, respectively. In Sec. 2.7 we discuss a relation
between the WPS effects for a classical wave packet and for photons comprising this
packet. In Sec. 2.8 the problem of WPS in coherent states is discussed. In Sec.
2.9 we show that the WPS effect leads to several paradoxes mentioned above. As
discussed in Sec. 2.10, in standard theory it is not possible to avoid those paradoxes.
Our approach to a consistent definition of the position operator and its application
to WPS are discussed in Secs. 2.11-2.13. Finally, in Sec. 2.14 we discuss implications
of the results for entanglement and quantum locality.

2.2 Position operator in nonrelativistic quantum

mechanics

In quantum theory, states of a system are represented by elements of a
projective Hilbert space. The fact that a Hilbert space H is projective means that if
ψ ∈ H is a state then const ψ is the same state. The matter is that not the probability
itself but only relative probabilities of different measurement outcomes have a physical
meaning. In particular, normalization of states to one is only a matter of convention.
This observation will be important in Chaps. 4 and 6 while in this and the next
chapters we will always work with states ψ such that ||ψ|| = 1 where ||...|| is a norm.
It is defined such that if (..., ...) is a scalar product in H then ||ψ|| = (ψ, ψ)1/2.

In quantum theory every physical quantity is described by a self-adjoint op-
erator. Each self-adjoint operator is Hermitian i.e. satisfies the property (ψ2, Aψ1) =
(Aψ2, ψ1) for any states belonging to the domain of A. If A is an operator of some
quantity then the mean value of the quantity and its uncertainty in state ψ are given
by Ā = (ψ,Aψ) and ∆A = ||(A− Ā)ψ||, respectively. The condition that a quantity
corresponding to the operator A is semiclassical in state ψ can be defined such that
∆A ≪ |Ā|. This implies that the quantity can be semiclassical only if |Ā| is rather
large. In particular, if Ā = 0 then the quantity cannot be semiclassical.

Let B be an operator corresponding to another physical quantity and B̄
and ∆B be the mean value and the uncertainty of this quantity, respectively. We
can write AB = {A,B}/2 + [A,B]/2 where the commutator [A,B] = AB − BA
is anti-Hermitian and the anticommutator {A,B} = AB + BA is Hermitian. Let
[A,B] = −iC and C̄ be the mean value of the operator C.

A question arises whether two physical quantities corresponding to the
operators A and B can be simultaneously semiclassical in state ψ. Since ||ψ1||||ψ2|| ≥
|(ψ1, ψ2)|, we have that

∆A∆B ≥ 1

2
|(ψ, ({A− Ā, B − B̄}+ [A,B])ψ)| (2.1)
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Since (ψ, {A− Ā, B − B̄}ψ) is real and (ψ, [A,B]ψ) is imaginary, we get

∆A∆B ≥ 1

2
|C̄| (2.2)

This condition is known as a general uncertainty relation between two quantities. A
well-known special case is that if P is the x component of the momentum operator
and X is the operator of multiplication by x then [P,X ] = −ih̄ and ∆p∆x ≥ h̄/2.
The states where ∆p∆ = h̄/2 are called coherent ones. They are treated such that the
momentum and the coordinate are simultaneously semiclassical in a maximal possible
way. A well-known example is that if

ψ(x) =
1

a
√
π
exp[

i

h̄
p0x−

1

2a2
(x− x0)

2]

then X̄ = x0, P̄ = p0, ∆x = a/
√
2 and ∆p = h̄/(a

√
2).

Consider first a one dimensional motion. In standard textbooks on quan-
tum mechanics, the presentation starts with a wave function ψ(x) in coordinate space
since it is implicitly assumed that the meaning of space coordinates is known. Then
a question arises why P = −ih̄d/dx should be treated as the momentum operator.
The explanation is as follows.

Consider wave functions having the form ψ(x) = exp(ip0x/h̄)a(x) where
the amplitude a(x) has a sharp maximum near x = x0 ∈ [x1, x2] such that a(x) is not
small only when x ∈ [x1, x2]. Then ∆x is of the order of x2 − x1 and the condition
that the coordinate is semiclassical is ∆x ≪ |x0|. Since −ih̄dψ(x)/dx = p0ψ(x) −
ih̄exp(ip0x/h̄)da(x)/dx, we see that ψ(x) will be approximately the eigenfunction of
−ih̄d/dx with the eigenvalue p0 if |p0a(x)| ≫ h̄|da(x)/dx|. Since |da(x)/dx| is of the
order of |a(x)/∆x|, we have a condition |p0∆x| ≫ h̄. Therefore if the momentum
operator is −ih̄d/dx, the uncertainty of momentum ∆p is of the order of h̄/∆x,
|p0| ≫ ∆p and this implies that the momentum is also semiclassical. At the same
time, |p0∆x|/2πh̄ is approximately the number of oscillations which the exponent
makes on the segment [x1, x2]. Therefore the number of oscillations should be much
greater than unity. In particular, semiclassical approximation cannot be valid if ∆x
is very small, but on the other hand, ∆x cannot be very large since it should be
much less than x0. Another justification of the fact that −ih̄d/dx is the momentum
operator is that in the formal limit h̄ → 0 the Schrödinger equation becomes the
Hamilton-Jacobi equation. This discussion is similar to a well-known one on the
validity of geometrical optics: it is valid when the wave length is much less than
characteristic dimensions of the problem.

We conclude that the choice of −ih̄d/dx as the momentum operator is jus-
tified from the requirement that in semiclassical approximation this operator becomes
the classical momentum. However, it is obvious that this requirement does not define
the operator uniquely: any operator P̃ such that P̃ − P disappears in semiclassical
limit, also can be called the momentum operator.
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One might say that the choice P = −ih̄d/dx can also be justified from the
following considerations. In nonrelativistic quantum mechanics we assume that the
theory should be invariant under the action of the Galilei group, which is a group of
transformations of Galilei space-time. The x component of the momentum operator
should be the generator corresponding to spatial translations along the x axis and
−ih̄d/dx is precisely the required operator. In this consideration one assumes that
space-time has a physical meaning while, as noted in Sect. 1.2, this is not the case.

As noted in Sect. 1.3, one should start not from space-time but from a
symmetry algebra. Therefore in nonrelativistic quantum mechanics we should start
from the Galilei algebra and consider its IRs. For simplicity we again consider a
one dimensional case. Let Px = P be one of representation operators in an IR
of the Galilei algebra. We can implement this IR in a Hilbert space of functions
χ(p) such that

∫∞
−∞ |χ(p)|2dp < ∞ and P is the operator of multiplication by p, i.e.

Pχ(p) = pχ(p). Then a question arises how the operator of the x coordinate should
be defined. In contrast to the momentum operator, the coordinate one is not de-
fined by the representation and so it should be defined from additional assumptions.
Probably a future quantum theory of measurements will make it possible to construct
operators of physical quantities from the rules how these quantities should be mea-
sured. However, at present we can construct necessary operators only from rather
intuitive considerations.

By analogy with the above discussion, one can say that semiclassical wave
functions should be of the form χ(p) = exp(−ix0p/h̄)a(p) where the amplitude a(p)
has a sharp maximum near p = p0 ∈ [p1, p2] such that a(p) is not small only when
p ∈ [p1, p2]. Then ∆p is of the order p2 − p1 and the condition that the momentum is
semiclassical is ∆p≪ |p0|. Since ih̄dχ(p)/dp = x0χ(p)+ ih̄exp(−ix0p/h̄)da(p)/dp, we
see that χ(p) will be approximately the eigenfunction of ih̄d/dp with the eigenvalue
x0 if |x0a(p)| ≫ h̄|da(p)/dp|. Since |da(p)/dp| is of the order of |a(p)/∆p|, we have
a condition |x0∆p| ≫ h̄. Therefore if the coordinate operator is X = ih̄d/dp, the
uncertainty of coordinate ∆x is of the order of h̄/∆p, |x0| ≫ ∆x and this implies
that the coordinate defined in such a way is also semiclassical. We can also note that
|x0∆p|/2πh̄ is approximately the number of oscillations which the exponent makes on
the segment [p1, p2] and therefore the number of oscillations should be much greater
than unity. It is also clear that semiclassical approximation cannot be valid if ∆p is
very small, but on the other hand, ∆p cannot be very large since it should be much
less than p0.

Although this definition of the coordinate operator has much in common
with standard definition of the momentum operators, several questions arise. First
of all, by analogy with the discussion about the momentum operator, one can say
that the condition that in classical limit the coordinate operator should become the
classical coordinate does not define the operator uniquely. One might require that
the coordinate operator should correspond to translations in momentum space or
be the operator of multiplication by x where the x representation is defined as a
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Fourier transform of the p representation but these requirements are not justified.
The condition |x0| ≫ ∆x might seem to be unphysical since x0 depends on the choice
of the origin in the x space while ∆x does not depend on this choice. Therefore a
conclusion whether the coordinate is semiclassical or not depends on the choice of the
reference frame. However, one can notice that not the coordinate itself has a physical
meaning but only a relative coordinate between two particles.

Nevertheless, the above definition of the coordinate operator is not fully
in line with what we think is a physical coordinate operator. To illustrate this point,
consider, for example a measurement of the distance between some particle and the
electron in a hydrogen atom. We expect that ∆x cannot be less than the Bohr
radius. Therefore if x0 is of the order of the Bohr radius, the coordinate cannot be
semiclassical. One might think that the accuracy of the coordinate measurement can
be defined as |∆x/x0| and therefore if we succeed in keeping ∆x of the order of the
Bohr radius when we increase |x0| then the coordinate will be measured with a better
and better accuracy when |x0| becomes greater. This intuitive understanding might
be correct if the distance to the electron is measured in a laboratory where a distance
is of the order of centimeters or meters. However, is this intuition correct when we
measure distances between macroscopic bodies? In the spirit of GR, the distance
between two bodies which are far from each other should be measured by sending a
light signal and waiting when it returns back. However, when a reflected signal is
obtained, some time has passed and we don’t know what happened to the body of
interest (e.g. if the body is moving with a high speed, if the World is expanding etc.).
For such experiments the logic is opposite to what we have with standard definition
of the coordinate operator in quantum mechanics: the accuracy of measurements is
better not when the distance is greater but when it is less. One might think that
if we consider not very long time intervals then for nonrelativistic particles such a
measurement defines the coordinate with a good accuracy. However, it is a problem
how to define the distance operator between a macroscopic body and a photon. In
view of the remarks in Sect. 1.2 one might think that the photon wave function in
coordinate representation might be only a good approximation in semiclassical limit
(see also Sec. 2.4).

The above results can be directly generalized to the three-dimensional
case. For example, if the coordinate wave function is chosen in the form

ψ(r) =
1

π3/4a3/2
exp[−(r − r0)

2

2a2
+
i

h̄
p0r] (2.3)

then the momentum wave function is

χ(p) =

∫

exp(− i

h̄
pr)ψ(r)

d3r

(2πh̄)3/2
=

a3/2

π3/4h̄3/2
exp[−(p − p0)

2a2

2h̄2
− i

h̄
(p− p0)r0]

(2.4)
It is easy to verify that

||ψ||2 =
∫

|ψ(r)|2d3r = 1, ||χ||2 =
∫

|χ(p)|2d3p = 1, (2.5)
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the uncertainty of each component of the coordinate operator is a/
√
2 and the uncer-

tainty of each component of the momentum operator is h̄/(a
√
2). Hence one might

think that Eqs. (2.3) and (2.4) describe a state which is semiclassical in a maximal
possible extent.

Let us make the following remark about semiclassical vector quantities.
We defined a quantity as semiclassical if its uncertainty is much less than its mean
value. In particular, as noted above, a quantity cannot be semiclassical if its mean
value is small. In the case of vector quantities we have sets of three physical quantities.
Some of them can be small and for them it is meaningless to discuss whether they
are semiclassical or not. We say that a vector quantity is semiclassical if all its
components which are not small are semiclassical and there should be at least one
semiclassical component.

For example, if the mean value of the momentum p0 is directed along the
z axes then the xy components of the momentum are not semiclassical but the three-
dimensional vector quantity p can be semiclassical if p0 is rather large. However,
in that case the definitions of the x and y components of the position operator as
x = ih̄∂/∂px and y = ih̄∂/∂py become inconsistent. The situation when the validity
of an operator depends on the choice of directions of the coordinate axes is not accept-
able and hence the above definition of the position operator is at least problematic.
Moreover, as already mentioned, it will be shown in Sec. 2.9 that the standard choice
of the position operator leads to the WPS paradoxes.

Let us note that semiclassical states can be constructed not only in momen-
tum or coordinate representations. For example, instead of momentum wave functions
χ(p) one can work in the representation where the quantum numbers (p, l, µ) in wave
functions χ(p, l, µ) mean the magnitude of the momentum p, the orbital quantum
number l (such that a state is the eigenstate of the orbital momentum squared L2

with the eigenvalue l(l+ 1)) and the magnetic quantum number µ (such that a state
is the eigenvector or Lz with the eigenvalue µ). A state described by a χ(p, l, µ) will
be semiclassical with respect to those quantum numbers if χ(p, l, µ) has a sharp max-
imum at p = p0, l = l0, µ = µ0 and the widths of the maxima in p, l and µ are much
less than p0, l0 and µ0, respectively. However, by analogy with the above discussion,
those widths cannot be arbitrarily small if one wishes to have other semiclassical
variables (e.g. the coordinates). Examples of such situations will be discussed in Sec.
2.12.

2.3 Wave packet spreading in nonrelativistic quan-

tum mechanics

As noted in Sec. 1.2, in quantum theory there is no operator having the meaning
of the time operator and it is usually assumed that time is a classical parameter
such that the dependence of the wave function on time is defined by the Hamiltonian
according to the Schrödinger equation. As discussed in Sec. 1.2, this treatment of time
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encounters several problems. However, in this chapter we consider theWPS paradoxes
assuming that the standard treatment of time is valid for describing photons and other
elementary particles.

In nonrelativistic quantum mechanics the Hamiltonian of a free particle
with the mass m is H = p2/2m and hence, as follows from Eq. (2.4), in the model
discussed above the dependence of the momentum wave function on t is given by

χ(p, t) =
a3/2

π3/4h̄3/2
exp[−(p− p0)

2a2

2h̄2
− i

h̄
(p− p0)r0 −

ip2t

2mh̄
] (2.6)

It is easy to verify that for this state the mean value of the operator p and the
uncertainty of each momentum component are the same as for the state χ(p), i.e.
those quantities do not change with time.

Consider now the dependence of the coordinate wave function on t. This
dependence can be calculated by using Eq. (2.6) and the fact that

ψ(r, t) =

∫

exp(
i

h̄
pr)χ(p, t)

d3p

(2πh̄)3/2
(2.7)

The result of a direct calculation is

ψ(r, t) =
1

π3/4a3/2
(1+

ih̄t

ma2
)−3/2exp[−(r − r0 − v0t)

2

2a2(1 + h̄2t2

m2a4
)
(1− ih̄t

ma2
)+

i

h̄
p0r−

ip2
0t

2mh̄
] (2.8)

where v0 = p0/m is the classical velocity. This result shows that the semiclassical
wave packet is moving along the classical trajectory r(t) = r0 + v0t. At the same
time, it is now obvious that the uncertainty of each coordinate depends on time as

∆xj(t) = ∆xj(0)(1 + h̄2t2/m2a4)1/2, (j = 1, 2, 3) (2.9)

where ∆xj(0) = a/
√
2, i.e. the width of the wave packet in coordinate representation

is increasing. This fact, known as the wave-packet spreading (WPS), is described
in many textbooks and papers (see e.g. the textbooks [49] and references therein).
It shows that if a state was semiclassical in the maximal extent at t = 0, it will
not have this property at t > 0 and the accuracy of semiclassical approximation will
decrease with the increase of t. The characteristic time of spreading can be defined as
t∗ = ma2/h̄. For macroscopic bodies this is an extremely large quantity and hence in
macroscopic physics the effect of WPS can be neglected. In the formal limit h̄ → 0,
t∗ becomes infinite, i.e. spreading does not take place. This shows that WPS is a
pure quantum phenomenon. For the first time the result (2.8) has been obtained by
Darwin in Ref. [53].

One might pose a problem whether the WPS effect is specific only for
Gaussian wave functions. One might expect that this effect will take place in gen-
eral situations since each component of standard position operator ih̄∂/∂p does not
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commute with the Hamiltonian and so the distribution of the corresponding physical
quantity will be time dependent. A good example showing inevitability of WPS is as
follows. If at t = 0 the coordinate wave function is ψ0(r) then, as follows from Eqs.
(2.4) and (2.7),

ψ(r, t) =

∫

exp{ i
h̄
[p(r− r′)− p2t

2m
]}ψ0(r

′)
d3r′d3p

(2πh̄)3
(2.10)

As follows from this expression, if ψ0(r) 6= 0 only if r belongs to a finite vicinity of
some vector r0 then at any t > 0 the carrier of ψ(r, t) belongs to the whole three-
dimensional space, i.e. the wave function spreads out with an infinite speed. One
might think that in nonrelativistic theory this is not unacceptable since this theory
can be treated as a formal limit c→ ∞ of relativistic theory.

As shown in Ref. [54] titled ”Nonspreading wave packets”, for a one-
dimensional wave function in the form of an Airy function, spreading does not take
place and the maximum of the quantity |ψ(x)|2 propagates with constant acceleration
even in the absence of external forces. Those properties of Airy packets have been
observed in optical experiments [55]. However, since such a wave function is not
normalizable, we believe that the term ”wave packet” in the given situation might be
misleading since the mean values and uncertainties of the coordinate and momentum
cannot be calculated in a standard way. Such a wave function can be constructed only
in a limited region of space. As explained in Ref. [54], this wave function describes
not a particle but rather families of particle orbits. As shown in Ref. [54], one can
construct a normalized state which is a superposition of Airy functions with Gaussian
coefficients and ”eventually the spreading due to the Gaussian cutoff takes over”.
This is an additional argument that the effect of WPS is an inevitable consequence
of standard quantum theory.

Since quantum theory is invariant under time reversal, one might ask the
following question: is it possible that the width of the wave packet in coordinate
representation is decreasing with time? From the formal point of view, the answer is
”yes”. Indeed, the solution given by Eq. (2.8) is valid not only when t ≥ 0 but when
t < 0 as well. Then, as follows from Eq. (2.9), the uncertainty of each coordinate is
decreasing when t changes from some negative value to zero. However, eventually the
value of t will become positive and the quantities ∆xj(t) will grow to infinity. In this
chapter we consider situations when a photon is created on atomic level and hence
one might expect that its initial coordinate uncertainties are not large. However,
when the photon travels a long distance to the Earth, those uncertainties become
much greater, i.e. the term WPS reflects the physics adequately.
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2.4 Position operator in relativistic quantum me-

chanics

The problem of the position operator in relativistic quantum theory has been dis-
cussed in a wide literature and different authors have different opinions on this prob-
lem. In particular, some authors state that in relativistic quantum theory no position
operator exists. As already noted, the results of fundamental quantum theories are
formulated only in terms of the S-matrix in momentum space without any mention-
ing of space-time. This is in the spirit of the Heisenberg S-matrix program that in
relativistic quantum theory it is possible to describe only transitions of states from
the infinite past when t → −∞ to the distant future when t → +∞. On the other
hand, since quantum theory is treated as a theory more general than classical one,
it is not possible to fully avoid space and time in quantum theory. For example,
quantum theory should explain how photons from distant objects travel to Earth and
even how macroscopic bodies are moving along classical trajectories. Hence we can
conclude that: a) in quantum theory (nonrelativistic and relativistic) we must have
a position operator and b) this operator has a physical meaning only in semiclassical
approximation.

There exists a wide literature describing how IRs of the Poincare algebra
can be constructed. In particular, an IR for a spinless particle can be implemented
in a space of functions ξ(p) satisfying the condition

∫

|ξ(p)|2dρ(p) <∞, dρ(p) =
d3p

ǫ(p)
(2.11)

where ǫ(p) = (m2 + p2)1/2 is the energy of the particle with the mass m. The
convenience of the above requirement is that the volume element dρ(p) is Lorentz
invariant. In that case it can be easily shown by direct calculations (see e.g. Ref.
[56]) that the representation operators have the form

L = −ip× ∂

∂p
, N = −iǫ(p) ∂

∂p
, P = p, E = ǫ(p) (2.12)

where L is the orbital angular momentum operator, N is the Lorentz boost operator,
P is the momentum operator, E is the energy operator and these operators are
expressed in terms of the operators in Eq. (1.3) as

L = (M23,M31,M12), N = (M10,M20,M30), P = (P 1, P 2, P 3), E = P 0

For particles with spin these results are modified as follows. For a massive
particle with spin s the functions ξ(p) also depend on spin projections which can
take 2s + 1 values −s,−s + 1, ...s. If s is the spin operator then the total angular
momentum has an additional term s and the Lorentz boost operator has an additional
term (s×p)/(ǫ(p)+m) (see e.g. Eq. (2.5) in Ref. [56]). Hence corrections of the spin
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terms to the quantum numbers describing the angular momentum and the Lorentz
boost do not exceed s. We assume as usual that in semiclassical approximation the
quantum numbers characterizing the angular momentum and the Lorentz boost are
much greater than unity and hence in this approximation spin effects can be neglected.
For a massless particle with the spin s the spin projections can take only values −s
and s and those quantum numbers have the meaning of helicity. In this case the
results for the representation operators can be obtained by taking the limit m→ 0 if
the operators are written in the light front variables (see e.g. Eq. (25) in Ref. [17]).
As a consequence, in semiclassical approximation the spin corrections in the massless
case can be neglected as well. Hence for investigating the position operator we will
neglect spin effects and will not explicitly write the dependence of wave functions on
spin projections.

In the above IRs the representation operators are Hermitian as it should be
for operators corresponding to physical quantities. In standard theory (over complex
numbers) such IRs of the Lie algebra can be extended to unitary IRs of the Poincare
group. In the literature elementary particles are described not only by such IRs but
also by local fields and, as noted in Sec. 1.2, their physical meaning is problematic.
Below we discuss the both approaches but first we consider the case of unitaty IRs.

As follows from Eq. (1.3), the operator I2 = E2 −P2 is the Casimir oper-
ator of the second order, i.e. it is a bilinear combination of representation operators
commuting with all the operators of the algebra. As follows from the known Schur
lemma, all states belonging to an IR are the eigenvectors of I2 with the same eigen-
value m2. Note that Eq. (2.12) contains only m2 but not m. The choice of the energy
sign is only a matter of convention but not a matter of principle. Indeed, the energy
can be measured only if the momentum p is measured and then it is only a matter of
convention what sign of the square root should be chosen. However, it is important
that the sign should be the same for all particles. For example, if we consider a sys-
tem of two particles with the same values of m2 and the opposite momenta p1 and
p2 such that p1 + p2 = 0, we cannot define the energies of the particles as ǫ(p1) and
−ǫ(p2), respectively, since in that case the total four-momentum of the two-particle
system will be zero what contradicts experiment.

The notation I2 = m2 is justified by the fact that for all known particles
I2 is greater or equal than zero. Then the mass m is defined as the square root of m2

and the sign of m is only a matter of convention. The usual convention is that m ≥ 0.
However, from mathematical point of view, IRs with I2 < 0 are not prohibited. If
the velocity operator v is defined as v = P/E then for known particles |v| ≤ 1, i.e.
|v| ≤ c in standard units. However, for IRs with I2 < 0, |v| > c and, at least from
the point of view of mathematical construction of IRs, this case is not prohibited.
The hypothetical particles with such properties are called tachyons and their possible
existence is widely discussed in the literature. If the tachyon mass m is also defined
as the square root of m2 then this quantity will be imaginary. However, this does
not mean than the corresponding IRs are unphysical since all the operators of the
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Poincare group Lie algebra depend only on m2.
As follows from Eqs. (2.11) and (2.12), in the nonrelativistic approxi-

mation dρ(p) = d3p/m and N = −im∂/∂p. Therefore in this approximation N is
proportional to standard position operator and one can say that the position operator
is in fact present in the description of the IR.

In relativistic case the operator i∂/∂p is not selfadjoint since dρ(p) is not
proportional to d3p. However, one can perform a unitary transformation ξ(p) →
χ(p) = ξ(p)/ǫ(p)1/2 such that the Hilbert space becomes the space of functions
χ(p) satisfying the condition

∫

|χ(p)|2d3p < ∞. It is easy to verify that in this
implementation of the IR the operators (L,P, E) will have the same form as in Eq.
(2.12) but the expression for N will be

N = −iǫ(p)1/2 ∂
∂p

ǫ(p)1/2 (2.13)

In this case one can define ih̄∂/∂p as a position operator but now we do not have
a situation when the position operator is present among the other representation
operators.

A problem of the definition of the position operator in relativistic quantum
theory has been discussed since the beginning of the 1930s and it has been noted
that when quantum theory is combined with relativity the existence of the position
operator with correct physical properties becomes a problem. The above definition
has been proposed by Newton and Wigner in Ref. [20]. They worked in the approach
when elementary particles are described by local fields rather than unitary IRs. The
Fourier transform of such fields describes states where the energy can be positive and
negative and this is interpreted such that local quantum fields describe a particle and
its antiparticle simultaneously. Newton and Wigner first discuss the spinless case and
consider only states on the upper Lorentz hyperboloid where the energy is positive.
For such states the representation operators act in the same way as in the case of
spinless unitary IRs. With this definition the coordinate wave function ψ(r) can be
again defined by Eq. (2.3) and a question arises whether such a position operator has
all the required properties.

For example, in the introductory section of the textbook [16] the following
arguments are given in favor of the statement that in relativistic quantum theory
it is not possible to define a physical position operator. Suppose that we measure
coordinates of an electron with the massm. When the uncertainty of coordinates is of
the order of h̄/mc, the uncertainty of momenta is of the order ofmc, the uncertainty of
energy is of the order of mc2 and hence creation of electron-positron pairs is allowed.
As a consequence, it is not possible to localize the electron with the accuracy better
than its Compton wave length h̄/mc. Hence, for a particle with a nonzero mass exact
measurement is possible only either in the nonrelativistic limit (when c → ∞) or
classical limit (when h̄ → 0). In the case of the photon, as noted by Pauli (see p.
191 of Ref. [7]), the coordinate cannot be measured with the accuracy better than
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h̄/p where p is the magnitude of the photon momentum. The quantity λ = 2πh̄/p is
called the photon wave length (see Sec. 1.2). Since λ→ 0 in the formal limit h̄→ 0,
Pauli concludes that ”Only within the confines of the classical ray concept does the
position of the photon have a physical significance”.

Another argument that the Newton-Wigner position operator does not
have all the required properties follows. A relativistic analog of Eq. (2.10) is

ψ(r, t) =

∫

exp{ i
h̄
[p(r− r′)− ǫ(p)t]}ψ0(r

′)
d3r′d3p

(2πh̄)3
(2.14)

As a consequence, the Newton-Wigner position operator has the ”tail property”: if
ψ0(r) 6= 0 only if r belongs to a finite vicinity of some vector r0 then at any t > 0 the
function ψ(r, t) has a tail belonging to the whole three-dimensional space, i.e. the
wave function spreads out with an infinite speed. Hence at any t > 0 the particle can
be detected at any point of the space and this contradicts the requirement that no
information should be transmitted with the speed greater than c.

The tail property of the Newton-Wigner position operator has been known
for a long time (see e.g. Ref. [57] and references therein). It is characterized as non-
locality leading to the action at a distance. Hegerfeldt argues [57] that this property
is rather general because it can be proved assuming that energy is positive and with-
out assuming a specific choice of the position operator. The Hegerfeldt theorem [57]
is based on the assumption that there exists an operator N(V ) whose expectation
defines the probability to find a particle inside the volume V . However, the meaning
of time on quantum level is not clear and for the position operator proposed in the
present paper such a probability does not exist because there is no wave function in
coordinate representation (see Sec. 2.11 and the discussion in Sec. 2.14).

One might say that the requirement that no signal can be transmitted with
the speed greater than c has been obtained in Special Relativity which is a classical
(i.e. nonquantum) theory operating only with classical space-time coordinates. For
example, in classical theory the velocity of a particle is defined as v = dr/dt but,
as noted above, the velocity should be defined as v = p/E (i.e. without mentioning
space-time) and then on classical level it can be shown that v = dr/dt. In QFT local
quantum fields separated by space-like intervals commute or anticommute (depending
on whether the spin is integer or half-integer) and this is treated as a requirement
of causality and that no signal can be transmitted with the speed greater than c.
However, as noted above, the physical meaning of space-time coordinates on quantum
level is not clear. Hence from the point of view of quantum theory the existence of
tachyons is not prohibited. Note also that when two electrically charged particles
exchange by a virtual photon, a typical situation is that the four-momentum of the
photon is space-like, i.e. the photon is the tachyon. We conclude that although in
relativistic theory such a behavior might seem undesirable, there is no proof that
it must be excluded. Also, as argued by Griffiths (see Ref. [58] and references
therein), with a consistent interpretation of quantum theory there are no nonlocality
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and superluminal interactions. In Sec. 2.14 we argue that the position operator
proposed in the present paper sheds a new light on this problem.

An example with the 21cm transition line between the hyperfine energy
levels of the hydrogen atom mentioned in Sec. 1.2 describes a pure quantum phe-
nomenon while, as noted above, a position operator is needed only in semiclassical
approximation.

For particles with nonzero spin, the number of states in local fields is
typically by a factor of two greater than in the case of unitary IRs (since local fields
describe a particle and its antiparticle simultaneously) but those components are not
independent since local fields satisfy a covariant equation (Klein-Gordon, Dirac etc.).
In Ref. [20] Newton and Wigner construct a position operator in the massive case but
say that in the massless one they have succeeded in constructing such an operator
only for Klein-Gordon and Dirac particles while in the case of the photon the position
operator does not exist. On the other hand, as noted above, in the case of unitary IRs
different spin components are independent and in semiclassical approximation spin
effects are not important. So in this approach one might adopt the Newton-Wigner
position operator for particles with any spin and any mass.

In view of the WPS paradoxes, we consider the photon case in greater
details. In textbooks on QED (see e.g. Ref. [12]) it is stated that in this theory
there is no way to define a coordinate photon wave function and the arguments are as
follows. The electric and magnetic fields of the photon in coordinate representation
are proportional to the Fourier transforms of |p|1/2χ(p), rather than χ(p). As a
consequence, the quantities E(r) and B(r) are defined not by ψ(r) but by integrals of
ψ(r) over a region of the order of the wave length. However, this argument also does
not exclude the possibility that ψ(r) can have a physical meaning in semiclassical
approximation since, as noted in Sec. 1.2, the notions of the electric and magnetic
fields of the single photon do not have a physical meaning. In addition, since λ → 0
in the formal limit h̄ → 0, one should not expect that any position operator in
semiclassical approximation can describe coordinates with the accuracy better than
the wave length.

A detailed discussion of the photon position operator can be found in
papers by Margaret Hawton and references therein (see e.g. Ref. [59]). In this
approach the photon is described by a local field and the momentum and coordinate
representations are related to each other by standard Fourier transform. The author
of Ref. [59] discusses generalizations of the photon position operator proposed by
Pryce [60]. However, the Pryce operator and its generalizations discussed in Ref.
[59] differ from the Newton-Wigner operator only by terms of the order of the wave
length. Hence in semiclassical approximation all those operators are equivalent.

The above discussion shows that on quantum level the physical meaning
of the coordinate is not clear but in view of a) and b) (see the beginning of this sec-
tion) one can conclude that in semiclassical approximation all the existing proposals
for the position operator are equivalent to the Newton-Wigner operator ih̄∂/∂p. An
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additional argument in favor of this operator is that the relativistic nature of the pho-
ton might be somehow manifested in the longitudinal direction while in transverse
directions the behavior of the wave function should be similar to that in standard
nonrelativistic quantum mechanics. Another argument is that the photon wave func-
tion in coordinate representation constructed by using this operator satisfies the wave
equation in agreement with classical electrodynamics (see Sec. 2.6).

In addition, if we consider a motion of a free particle, it is not important
in what interactions this particle participates and, as explained above, if the particle
is described by its IR in semiclassical approximation then the particle spin is not
important. Hence the effect of WPS for an ultrarelativistic particle does not depend
on the nature of the particle, i.e. on whether the particle is the photon, the proton,
the electron etc.

For all the reasons described above and in view of a) and b), in the next
section we consider what happens if the space-time evolution of relativistic wave
packets is described by using the Newton-Wigner position operator.

2.5 Wave packet spreading in relativistic quantum

mechanics

Consider first a construction of the wave packet for a particle with nonzero mass.
A possible way of the construction follows. We first consider the particle in its rest
system, i.e. in the reference frame where the mean value of the particle momentum is
zero. The wave function χ0(p) in this case can be taken as in Eq. (2.4) with p0 = 0.
As noted in Sec. 2.2, such a state cannot be semiclassical. However, it is possible
to obtain a semiclassical state by applying a Lorentz transformation to χ0(p). One
can show (see e.g. Eq. (2.4) in Ref. [56]) that when the IR for a spinless particle is
extended to the unitary representation of the Poincare group then the operator U(g)
corresponding to a Lorentz transformation g is

U(g)χ0(p) = [
ǫ(p′)

ǫ(p)
]1/2χ0(p

′) (2.15)

where p′ is the momentum obtained from p by the Lorentz transformation g−1. If g
is the Lorentz boost along the z axis with the velocity v then

p′
⊥ = p⊥, p′z =

pz − vǫ(p)

(1− v2)1/2
(2.16)

where we use the subscript ⊥ to denote projections of vectors onto the xy plane.
As follows from this expression, exp(−p

′2a2/2h̄2) as a function of p has
the maximum at p⊥ = 0, pz = pz0 = v[(m2+p2

⊥)/(1− v2)]1/2 and near the maximum

exp(−a
2p

′2

2h̄2
) ≈ exp{− 1

2h̄2
[a2p2

⊥ + b2(pz − pz0)
2]}
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where b = a(1 − v2)1/2 what represents the effect of the Lorentz contraction. If
mv ≫ h̄/a (in units where c = 1) then m ≫ |p⊥| and pz0 ≈ mv/(1 − v2)1/2. In
this case the transformed state is semiclassical and the mean value of the momentum
is exactly the classical (i.e. nonquantum) value of the momentum of a particle with
mass m moving along the z axis with the velocity v. However, in the opposite case
when m≪ h̄/a the transformed state is not semiclassical since the uncertainty of pz
is of the same order as the mean value of pz.

If the photon mass is exactly zero then the photon cannot have the rest
state. However, even if the photon mass is not exactly zero, it is so small that
the relation m ≪ h̄/a is certainly satisfied for any realistic value of a. Hence a
semiclassical state for the photon or a particle with a very small mass cannot be
obtained by applying the Lorentz transformation to χ0(p) and considering the case
when v is very close to unity. In this case we will describe a semiclassical state by a
wave function which is a generalization of the function (2.4):

χ(p, 0) =
ab1/2

π3/4h̄3/2
exp[−p2

⊥a
2

2h̄2
− (pz − p0)

2b2

2h̄2
− i

h̄
p⊥r0⊥ − i

h̄
(pz − p0)z0] (2.17)

Here we assume that the vector p0 is directed along the z axis and its z component is
p0. In the general case the parameters a and b defining the momentum distributions
in the transverse and longitudinal directions, respectively, can be different. In that
case the uncertainty of each transverse component of momentum is h̄/(a

√
2) while

the uncertainty of the z component of momentum is h̄/(b
√
2). In view of the above

discussion one might think that, as a consequence of the Lorentz contraction, the
parameter b should be very small. However, the above discussion shows that the
notion of the Lorentz contraction has a physical meaning only if m ≫ h̄/a while
for the photon the opposite relation takes place. We will see below that in typical
situations the quantity b is large and much greater than a.

As noted in Sec. 2.3, in this chapter we assume that in some situations time
is a good approximate parameter describing evolution. Hence in the relativistic case
evolution is described by the Schrödinger equation with the relativistic Hamiltonian.
Then the dependence of the momentum wave function (2.17) on t is given by

χ(p, t) = exp(− i

h̄
pct)χ(p, 0) (2.18)

where p = |p| and we assume that the particle is ultrarelativistic, i.e. p ≫ m. Since
at different moments of time the wave functions in momentum space differ each other
only by a phase factor, the mean value and uncertainty of each momentum component
do not depend on time. In other words, there is no WPS for the wave function in
momentum space. As noted in Sec. 2.3, the same is true in the nonrelativistic case.

In view of the above discussion, the function ψ(r, t) can be again defined
by Eq. (2.7) where now χ(p, t) is defined by Eq. (2.18). If the variable pz in the

46



integrand is replaced by p0 + pz then as follows from Eqs. (2.7,2.17,2.18)

ψ(r, t) =
ab1/2exp(ip0r/h̄)

π3/4h̄3/2(2πh̄)3/2

∫

exp{−p2
⊥a

2

2h̄2
− p2zb

2

2h̄2
+
i

h̄
p(r− r0)

−ict
h̄
[(pz + p0)

2 + p2
⊥]

1/2}d3p (2.19)

We now take into account the fact that in semiclassical approximation the quantity p0
should be much greater than the uncertainties of the momentum in the longitudinal
and transversal directions, i.e. p0 ≫ pz and p0 ≫ |p⊥|. Hence with a good accuracy
we can expand the square root in the integrand in powers of |p|/p0. Taking into
account the linear and quadratic terms in the square root we get

[(pz + p0)
2 + p2

⊥]
1/2 ≈ p0 + pz + p2

⊥/2p0 (2.20)

Then the integral over d3p can be calculated as the product of integrals over d2p⊥
and dpz and the calculation is analogous to that in Eq. (2.8). The result of the
calculation is

ψ(r, t) = [π3/4ab1/2(1 +
ih̄ct

p0a2
)]−1exp[

i

h̄
(p0r− p0ct)]

exp[−
(r⊥ − r0⊥)

2(1− ih̄ct
p0a2

)

2a2(1 + h̄2c2t2

p20a
4 )

− (z − z0 − ct)2

2b2
] (2.21)

This result shows that the wave packet describing an ultrarelativistic par-
ticle (including a photon) is moving along the classical trajectory z(t) = z0+ct, in the
longitudinal direction there is no spreading while in transversal directions spreading
is characterized by the function

a(t) = a(1 +
h̄2c2t2

p20a
4
)1/2 (2.22)

The characteristic time of spreading can be defined as t∗ = p0a
2/h̄c. The fact that

t∗ → ∞ in the formal limit h̄ → 0 shows that in relativistic case WPS also is a
pure quantum phenomenon (see the end of Sec. 2.3). From the formal point of view
the result for t∗ is the same as in nonrelativistic theory but m should be replaced
by E/c2 where E is the energy of the ultrarelativistic particle. This fact could be
expected since, as noted above, it is reasonable to think that spreading in directions
perpendicular to the particle momentum is similar to that in standard nonrelativistic
quantum mechanics. However, in the ultrarelativistic case spreading takes place only
in this direction. If t ≫ t∗ the transversal width of the packet is a(t) = h̄ct/p0a.
Hence the speed of spreading in the perpendicular direction is v∗ = h̄c/p0a.
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2.6 Geometrical optics

The relation between quantum and classical electrodynamics is well-known and is de-
scribed in textbooks (see e.g. Ref. [12]). As already noted, classical electromagnetic
field consists of many photons and in classical electrodynamics the photons are not
described individually. Instead, classical electromagnetic field is described by field
strengths which represent mean characteristics of a large set of photons. For con-
structing the field strengths one can use the photon wave functions χ(p, t) or ψ(r, t)
where E is replaced by h̄ω and p is replaced by h̄k. In this connection it is interesting
to note that since ω is a classical quantity used for describing a classical electromag-
netic field, the photon is a pure quantum particle since its energy disappears in the
formal limit h̄ → 0. Even this fact shows that the photon cannot be treated as a
classical particle and the effect of WPS for the photon cannot be neglected.

With the above replacements the functions χ and ψ do not contain any
dependence on h̄ (note that the normalization factor h̄−3/2 in χ(k, t) will disappear
since the normalization integral for χ(k, t) is now over d3k, not d3p). The quantities
ω and k are now treated, respectively, as the frequency and the wave vector of the
classical electromagnetic field and the functions χ(k, t) and ψ(r, t) are interpreted not
such that they describe probabilities for a single photon but such that they describe
classical electromagnetic field and E(r, t) and B(r, t) can be constructed from these
functions as described in textbooks on QED (see e.g. Ref. [12]).

An additional argument in favor of the choice of ψ(r, t) as the coordi-
nate photon wave function is that in classical electrodynamics the quantities E(r, t)
and B(r, t) for the free field should satisfy the wave equation ∂2E/c2∂t2 = ∆E and
analogously for B(r, t). Hence if E(r, t) and B(r, t) are constructed from ψ(r, t) as
described in textbooks (see e.g. Ref. [12]), they will satisfy the wave equation since,
as follows from Eqs. (2.7,2.17,2.18), ψ(r, t) also satisfies this equation.

The geometrical optics approximation implies that if k0 and r0 are the
mean values of the wave vector and the spatial radius vector for a wave packet de-
scribing the electromagnetic wave then the uncertainties ∆k and ∆r, which are the
mean values of |k − k0| and |r − r0|, respectively, should satisfy the requirements
∆k ≪ |k0| and ∆r ≪ |r0|. Analogously, in full analogy with the derivation of Eq.
(2.2), one can show that for each j = 1, 2, 3 the uncertainties of the corresponding
projections of the vectors k and r satisfy the requirement ∆kj∆rj ≥ 1/2 (see e.g. Ref.
[3]). In particular, an electromagnetic wave satisfies the approximation of geometrical
optics in the greatest possible extent if ∆k∆r is of the order of unity.

The above discussion confirms what has been mentioned in Sec. 2.1 that
the effect of WPS in transverse directions takes place not only in quantum theory
but even in classical electrodynamics. Indeed, since the function ψ(r, t) satisfies the
classical wave equation, the above consideration can be also treated as an example
showing that even for a free wave packet in classical electrodynamics the WPS effect
is inevitable. In the language of classical waves the parameters of spreading can be
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characterized by the function a(t) (see Eq. (2.22)) and the quantities t∗ and v∗ (see
the end of the preceding section) such that in terms of the wave length λ = 2πc/ω0

a(t) = a(1 +
λ2c2t2

4π2a4
)1/2, t∗ =

2πa2

λc
, v∗ =

λc

2πa
(2.23)

The last expression can be treated such that if λ ≪ a then the momentum has the
angular uncertainty of the order of α = λ/(2πa). This result is natural from the
following consideration. Let the mean value of the momentum be directed along
the z-axis and the uncertainty of the transverse component of the momentum be
∆p⊥. Then ∆p⊥ is of the order of h̄/a, λ = 2πh̄/p0 and hence α is of the order of
∆p⊥/p0 ≈ λ/(2πa). This is analogous to the well-known result in classical optics that
the best angular resolution of a telescope with the dimension d is of the order of λ/d.
Another well-known result of classical optics is that if a wave encounters an obstacle
having the dimension d then the direction of the wave diverges by the angle of the
order of λ/d.

The inevitability of WPS for a free wave packet in classical electrodynamics
is obvious from the following consideration. Suppose that a classical wave packet does
not have a definite value of the momentum. Then if a is the initial width of the packet
in directions perpendicular to the mean momentum, one might expect that the width
will grow as a(t) = a + αct and for large values of t, a(t) ≈ αct. As follows from
Eq. (2.23), if t ≫ t∗ then indeed a(t) ≈ αct. In standard quantum theory we have
the same result because the coordinate and momentum wave functions are related to
each other by the same Fourier transform as the coordinate and k distributions in
classical electrodynamics.

The quantity N|| = b/λ shows how many oscillations the oscillating expo-
nent in Eq. (2.21) makes in the region where the wave function or the amplitude of
the classical wave is significantly different from zero. As noted in Sec. 2.2, for the
validity of semiclassical approximation this quantity should be very large. In nonrel-
ativistic quantum mechanics a and b are of the same order and hence the same can
be said about the quantity N⊥ = a/λ. As noted above, in the case of the photon we
don’t know the relation between a and b. In terms of the quantity N⊥ we can rewrite
the expressions for t∗ and v∗ in Eq. (2.23) as

t∗ = 2πN2
⊥T, v∗ =

c

2πN⊥
(2.24)

where T is the period of the classical wave. Hence the accuracy of semiclassical
approximation (or the geometrical optics approximation in classical electrodynamics)
increases with the increase of N⊥.

In Ref. [61] the problem of WPS for classical electromagnetic waves has
been discussed in the Fresnel approximation (i.e. in the approximation of geometrical
optics) for a two-dimensional wave packet. Equation (25) of Ref. [61] is a special case
of Eq. (2.20) and the author of Ref. [61] shows that, in his model the wave packet
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spreads out in the direction perpendicular to the group velocity of the packet. As
noted at the end of the preceding section, in the ultrarelativistic case the function
a(t) is given by the same expression as in the nonrelativistic case but m is replaced
by E/c2. Hence if the results of the preceding section are reformulated in terms of
classical waves then m should be replaced by h̄ω0/c

2 and this fact has been pointed
out in Ref. [61].

2.7 Wave packet width paradox

We now consider the following important question. We assume that a classical wave
packet is a collection of photons. Let acl be the quantity a for the classical packet
and aph be a typical value of a for the photons. What is the relation between acl and
aph?

My observation is that physicists answer this question in different ways.
Quantum physicists usually say that in typical situations aph ≪ acl because acl is
of macroscopic size while in semiclassical approximation the quantity aph for each
photon can be treated as the size of the region where the photon has been created.
On the other hand, classical physicists usually say that aph ≫ acl and the motivation
is as follows.

Consider a decomposition of some component of classical electromagnetic
field into the Fourier series:

A(x) =
∑

σ

∫

[a(p, σ)u(p, σ)exp(−ipx) + a(p, σ)∗u(p, σ)∗exp(ipx)]d3p (2.25)

where σ is the polarization, x and p are the four-vectors such that x = (ct,x) and
p = (|p|c,p), the functions a(p, σ) are the same for all the components, the functions
u(p, σ) depend on the component and ∗ is used to denote the complex conjugation.
Then photons arise as a result of quantization when a(p, σ) and a(p, σ)∗ are under-
stood not as usual function but as operators of annihilation and creation of the photon
with the quantum numbers (p, σ) and ∗ is now understood as Hermitian conjugation.
Hence the photon is described by a plane wave which has the same magnitude in all
points of the space. In other words, aph is infinitely large and a finite width of the
classical wave packet arises as a result of interference of different plane waves.

The above definition of the photon has at least the following inconsistency.
If the photon is treated as a particle then its wave function should be normalizable
while the plane wave is not normalizable. In textbooks this problem is often circum-
vented by saying that we consider our system in a finite box. Then the spectrum of
momenta becomes finite and instead of Eq. (2.25) one can write

A(x) =
∑

σ

∑

j

[a(pj , σ)u(pj, σ)exp(−ipjx) + a(pj, σ)
∗u(pj, σ)

∗exp(ipjx)] (2.26)
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where j enumerates the points of the momentum spectrum.
One can now describe quantum electromagnetic field by states in the Fock

space where the vacuum vector Φ0 satisfies the condition a(pj , σ)Φ0 = 0, ||Φ0|| = 1
and the operators commute as

[a(pi, σk), a(pj , σl)] = [a(pi, σk)
∗, a(pj , σl)

∗] = 0, [a(pi, σk), a(pj , σl)
∗] = δijδkl

(2.27)
Then any state can be written as

Ψ =
∞
∑

n=0

∑

σ1...σn

∑

p1,...pn

χ(p1, σ1, ...pn, σn)a(p1, σ1)
∗ · · · a(pn, σn)

∗Φ0 (2.28)

Classical states are understood such that although the number of photons
is large, it is much less than the number of possible momenta and in Eq. (2.28) all
the photons have different momenta (this is analogous to the situation in classical
statistics where mean numbers of particles in each state are much less than unity).
Then it is not important whether the operators (a, a∗) commute or anticommute.
However, according to the Pauli theorem on the spin-statistics connection [11], they
should commute and this allows the existence of coherent states where many photons
have the same quantum numbers. Such states can be created in lasers and they are
not described by classical electrodynamics. In the next section we consider position
operator for coherent states while in this section we consider only quantum description
of states close to classical.

The next problem is that one should take into account that in standard
theory the photon momentum spectrum is continuous. Then the above construction
can be generalized as follows. The vacuum state Φ0 satisfies the same conditions
||Φ0|| = 1 and a(p, σ)Φ0 = 0 while the operators (a, a∗) satisfy the following commu-
tation relations

[a(p, σ), a(p′, σ′)] = [a(p, σ)∗, a(p′, σ′)∗] = 0 [a(p, σ), a(p′, σ′)∗] = δ(3)(p− p′)δσσ′

(2.29)
Then a general quantum state can be written as

Ψ =

∞
∑

n=0

∑

σ1...σn

∫

...

∫

χ(p1, σ1, ...pn, σn)a(p1, σ1)
∗ · · · a(pn, σn)

∗d3p1 · · · d3pnΦ0

(2.30)
In the approximation when a classical wave packet is understood as a

collection of independent photons (see the discussion in Sec. 10), the state of this
packet has the form

Ψ =

∞
∑

n=0

cn

n
∏

j=1

{
∑

σj

∫

χj(pj , σj)a(pj, σj)
∗d3pj}Φ0 (2.31)
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where χj is the wave function of the jth photon and intersections of supports of
wave functions of different photons can be neglected. This is an analog of the above
situation with the discrete case where it is assumed that different photons in a classical
wave packet have different momenta. In other words, while the wave function of each
photon can be treated as an interference of plane waves, different photons can interfere
only in coherent states but not in classical wave packets.

We now describe a well-known generalization of the results on IRs of the
Poincare algebra to the description in the Fock space (see e.g. Ref. [37] for details).
If A is an operator in the space of the photon IR then a generalization of this operator
to the case of the Fock space can be constructed as follows. Any operator in the space
of IR can be represented as an integral operator acting on the wave function as

Aχ(p, σ) =
∑

σ′

∫

A(p, σ,p′, σ′)χ(p′, σ′)d3p′ (2.32)

For example, if Aχ(p, σ) = ∂χ(p, σ)/∂p then A is the integral operator with the
kernel

A(p, σ,p′, σ′) =
∂δ(3)(p− p′)

∂p
δσσ′

We now require that if the action of the operator A in the space of IR is defined by
Eq. (2.32) then in the case of the Fock space this action is defined as

A =
∑

σσ′

∫

A(p, σ,p′, σ′)a(p, σ)∗a(p′, σ′)d3pd3p′ (2.33)

Then it is easy to verify that if A, B and C are operators in the space of IR satisfying
the commutation relation [A,B] = C then the generalizations of these operators in
the Fock space satisfy the same commutation relation. It is also easy to verify that
the operators generalized to the action in the Fock space in such a way are additive,
i.e. for a system of n photons they are sums of the corresponding single-particle
operators. In particular, the energy of the n-photon system is a sum of the energies
of the photons in the system and analogously for the other representation operators
of the Poincare algebra - momenta, angular momenta and Lorentz boosts.

We are interested in calculating mean values of different combinations of
the momentum operator. Since this operator does not act over spin variables, we will
drop such variables in the (a, a∗) operators and in the functions χj. Then the explicit
form of the momentum operator is P =

∫

pa(p)∗a(p)d3p. Since this operator does
not change the number of photons, the mean values can be independently calculated
in each subspace where the number of photons is N .

Suppose that the momentum of each photon is approximately directed
along the z-axis and the quantity p0 for each photon approximately equals 2πh̄/λ.
If ∆p⊥ is a typical uncertainty of the transversal component of the momentum for
the photons then a typical value of the angular uncertainty for the photons is αph =
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∆p⊥/p0 ≈ λ/(2πaph). The total momentum of the classical wave packet consisting of

N photons is a sum of the photon momenta: P =
∑N

i=1 p
(i). Suppose that the mean

value of P is directed along the z-axis and its magnitude P0 is such that P0 ≈ Np0.

The uncertainty of the x component of P is ∆Px = P 2
x

1/2
where

P 2
x =

N
∑

i=1

(p
(i)
x )2 +

N
∑

i 6=j;i,j=1

p
(i)
x p

(j)
x

Then in the approximation of independent photons (see the remarks after Eq. (2.31))

P 2
x =

N
∑

i=1

(p
(i)
x )2 +

N
∑

i 6=j;i,j=1

p
(i)
x · p(j)x =

N
∑

i=1

[(p
(i)
x )2 − p

(i)
x

2

] =

N
∑

i=1

(∆p
(i)
⊥ )2

where we have taken into account that Px =
∑N

i=1 p
(i)
x = 0.

As a consequence, if typical values of ∆p
(i)
⊥ have the the same order of

magnitude equal to ∆p⊥ then ∆P⊥ ≈ N1/2∆p⊥ and the angular divergence of the
classical vave packet is

αcl = ∆P⊥/P0 ≈ ∆p⊥/(p0N
1/2) = αph/N

1/2

Since the classical wave packet is described by the same wave equation as the photon
wave function, its angular divergence can be expressed in terms of the parameters
λ and acl such that αcl = λ/(2πacl). Hence acl ≈ N1/2aph and we conclude that
aph ≪ acl.

Note that in this derivation no position operator has been used. Although
the quantities λ and aph have the dimension of length, they are defined only from
considering the photon in momentum space because, as noted in Sec. 1.2, for indi-
vidual photons λ is understood only as 2πh̄/p0, aph defines the width of the photon
momentum wave function (see Eq. (2.17)) and is of the order of h̄/∆p⊥. As noted in
Secs. 2.3 and 2.5, the momentum distribution does not depend on time and hence the
result aph ≪ acl does not depend on time too. If photons in a classical wave packet
could be treated as (almost) pointlike particles then photons do not experience WPS
while the WPS effect for a classical wave packet is a consequence of the fact that
different photons in the packet have different momenta.

However, in standard quantum theory this scenario does not take place for
the following reason. Let acl(t) be the quantity a(t) for the classical wave packet and
aph(t) be a typical value of the quantity a(t) for individual photons. With standard
position operator the quantity aph(t) is interpreted as the spatial width of the photon
coordinate wave function in directions perpendicular to the photon momentum and
this quantity is time dependent. As shown in Secs. 2.5 and 2.6, a(0) = a but if
t ≫ t∗ then a(t) is inversely proportional to a and the coefficient of proportionality
is the same for the classical wave packet and individual photons (see Eq. (2.23)).

53



Hence in standard quantum theory we have a paradox that after some period of time
aph(t) ≫ acl(t) i.e. individual photons in a classical wave packet spread out in a
much greater extent than the wave packet as a whole. We call this situation the wave
packet width (WPW) paradox (as noted above, different photons in a classical wave
packet do not interfere with each other). The reason of the paradox is obvious: if
the law that the angular divergence of a wave packet is of the order of λ/a is applied
to both, a classical wave packet and photons comprising it then the paradox follows
from the fact that the quantities a for the photons are much less than the quantity
a for the classical wave packet. Note that in classical case the quantity acl does not
have the meaning of h̄/∆P⊥ and λ is not equal to 2πh̄/P0.

2.8 Wave packet spreading in coherent states

In textbooks on quantum optics the laser emission is described by the following model
(see e.g. Ref. [62]). Consider a set of photons having the same momentum p and
polarization σ and, by analogy with the discussion in the preceding section, sup-
pose that the momentum spectrum is discrete. Consider a quantum superposition
Ψ =

∑∞
n=0 cn[a(p, σ)

∗]nΦ0 where the coefficients cn satisfy the condition that Ψ is
an eigenstate of the annihilation operator a(p, σ). Then the product of the coordi-
nate and momentum uncertainties has the minimum possible value h̄/2 and, as noted
in Sec. 2.2, such a state is called coherent. However, the term coherent is some-
times used meaning that the state is a quantum superposition of many-photon states
[a(p, σ)∗]nΦ0.

In the above model it is not taken into account that (in standard theory)
photons emitted by a laser can have only a continuous spectrum of momenta. Mean-
while for the WPS effect the width of the momentum distribution is important. In
this section we consider a generalization of the above model where the fact that pho-
tons have a continuous spectrum of momenta is taken into account. This will make
it possible to consider the WPS effect in coherent states.

In the above formalism coherent states can be defined as follows. We
assume that all the photons in the state Eq. (2.30) have the same polarization.
Hence for describing such states we can drop the quantum number σ in wave functions
and a-operators. We also assume that all photons in coherent states have the same
momentum distribution. These conditions can be satisfied by requiring that coherent
states have the form

Ψ =
∞
∑

n=0

cn[

∫

χ(p)a(p)∗d3p]nΦ0 (2.34)

where cn are some coefficients. Finally, by analogy with the description of coher-
ent states in standard textbooks on quantum optics one can require that they are
eigenstates of the operator

∫

a(p)d3p.
The dependence of the state Ψ in Eq. (2.34) on t is Ψ(t) = exp(−iEt/h̄)Ψ
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where, as follows from Eqs. (2.12) and (2.33), the action of the energy operator in
the Fock space is E =

∫

pca(p)∗a(p)d3p. Since exp(iEt/h̄)Φ0 = Φ0, it readily follows
from Eq. (2.29) that

Ψ(t) =

∞
∑

n=0

cn[

∫

χ(p, t)a(p)∗d3p]nΦ0 (2.35)

where the relation between χ(p, t) and χ(p) = χ(p, 0) is given by Eq. (2.18).
A problem arises how to define the position operator in the Fock space. If

this operator is defined by analogy with the above construction then we get an un-
physical result that each coordinate of the n-photon system as a whole is a sum of the
corresponding coordinates of the photons in the system. This is an additional argu-
ment that the position operator is less fundamental than the representation operators
of the Poincare algebra and its action should be defined from additional considera-
tions. In textbooks on quantum optics the position operator for coherent states is
usually defined by analogy with the position operator in nonrelativistic quantum me-
chanics for the harmonic oscillator problem. The motivation is as follows. If the
energy levels h̄ω(n+1/2) of the harmonic oscillator are treated as states of n quanta
with the energies h̄ω then the harmonic oscillator problem can be described by the
operators a and a∗ which are expressed in terms of the one-dimensional position and
momentum operators q and p as a = (ωq+ ip)/(2h̄ω)1/2 and a∗ = (ωq− ip)/(2h̄ω)1/2.
However, as noted above, the model description of coherent states in those textbooks
is one-dimensional because the continuous nature of the momentum spectrum is not
taken into account. In addition, the above results on WPS give indications that the
position operator in standard theory is not consistently defined. For all these rea-
sons a problem arises whether the requirement that the state Ψ in Eq. (2.34) is an
eigenvector of the operator

∫

a(p)d3p has a physical meaning. In what follows this
requirement will not be used.

In nonrelativistic classical mechanics the radius vector of a system of n
particles as a whole (the radius vector of the center of mass) is defined as R =
(m1r1 + ... +mnrn)/(m1 + ... +mn) and in works on relativistic classical mechanics
it is usually defined as R = (ǫ1(p1)r1 + ... + ǫn(pn)rn)/(ǫ1(p1) + ... + ǫn(pn)) where
ǫi(pi) = (m2

i + p2
i )

1/2. Hence if all the particles have the same masses and momenta,
R = (r1 + ...+ rn)/n.

These remarks make it reasonable to define the position operator for co-
herent states as follows. Let xj be the jth component of the position operator in the
space of IR and Aj(p,p

′) be the kernel of this operator. Then in view of Eq. (2.33)
the action of the operator Xj on the state Ψ(t) in Eq. (2.34) can be defined as

XjΨ(t) =

∞
∑

n=1

cn
n

∫ ∫

Aj(p”,p
′)a(p”)∗a(p′)d3p”d3p′[

∫

χ(p, t)a(p)∗d3p]nΦ0 (2.36)

If xj(t) and x2j (t) are the mean values of the operators xj and x
2
j , respec-
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tively then as follows from the definition of the kernel of the operator xj

xj(t) =

∫ ∫

χ(p, t)∗Aj(p,p
′)χ(p′, t)d3pd3p′

x2j (t) =

∫ ∫ ∫

χ(p”, t)∗Aj(p,p”)
∗Aj(p,p

′)χ(p′, t)d3pd3p”d3p′ (2.37)

and in the case of IR the uncertainty of the quantity xj is ∆xj(t) = [x2j (t)−xj(t)2]1/2.
At the same time, if Xj(t) and X2

j (t) are the mean values of the operators Xj and
X2

j , respectively then

Xj(t) = (Ψ(t), XjΨ(t)), X2
j (t) = (Ψ(t), X2

jΨ(t)) (2.38)

and the uncertainty of the quantity Xj is ∆Xj(t) = [X2
j (t) −Xj(t)

2]1/2. Our goal is

to express ∆Xj(t) in terms of xj(t), x2j (t) and ∆xj(t).
If the function χ(p, t) is normalized to one (see Eq. (2.5)) then, as follows

from Eq. (2.29), ||Ψ(t)|| = 1 if
∞
∑

n=0

n!|cn|2 = 1 (2.39)

A direct calculation using Eqs. (2.29), (2.36), (2.37) and (2.38) gives

Xj(t) = xj(t)

∞
∑

n=1

n!|cn|2

X2
j (t) =

∞
∑

n=1

(n− 1)!|cn|2[x2j (t) + (n− 1)xj(t)
2] (2.40)

It now follows from Eq. (2.39) and the definitions of the quantities ∆xj(t) and ∆Xj(t)
that

∆Xj(t)
2 = (1− |c0|2)|c0|2xj(t)2 +

∞
∑

n=1

(n− 1)!|cn|2∆xj(t)2 (2.41)

Equation (2.41) is the key result of this section. It has been derived with-
out using a specific choice of the single photon position operator. The consequence
of this result is as follows. If the main contribution to the state Ψ(t) in Eq. (2.35)
is given by very large values of n then |c0| is very small and the first term in this
expression can be neglected. Suppose that the main contribution is given by terms
where n is of the order of n̄. Then, as follows from Eqs. (2.39) and (2.41), ∆Xj(t) is
of the order of ∆xj(t)/n̄

1/2. This means that for coherent states where the main con-
tribution is given by very large numbers of photons the effect of WPS is pronounced
in a much less extent than for single photons.
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2.9 Experimental consequences of WPS in stan-

dard theory

The problem of explaining the redshift phenomenon has a long history. Different
competing approaches can be divided into two big sets which we call Theory A and
Theory B. In Theory A the redshift has been originally explained as a manifestation
of the Doppler effect but in recent years the cosmological and gravitational redshifts
have been added to the consideration. In this theory the interaction of photons with
the interstellar medium is treated as practically not important, i.e. it is assumed that
with a good accuracy we can treat photons as propagating in the empty space. On
the contrary, in Theory B, which is often called the tired-light theory, the interaction
of photons with the interstellar medium is treated as a main reason for the redshift.
At present the majority of physicists believe that Theory A explains the astronomical
data better than Theory B. Even some physicists working on Theory B acknowledged
that any sort of scattering of light would predict more blurring than is seen (see e.g.
the article ”Tired Light” in Wikipedia).

A problem arises whether or not WPS of the photon wave function is
important for explaining the redshift. One might think that this effect is not impor-
tant since a considerable WPS would also blur the images more than what is seen.
However, as shown in the previous discussion, WPS is an inevitable consequence of
standard quantum theory and moreover this effect also exists in classical electrody-
namics. Hence it is not sufficient to just say that a considerable WPS is excluded by
observations. One should try to estimate the importance of WPS and to understand
whether our intuition is correct or not.

As follows from these remarks, in Theory A it is assumed that with a
good accuracy we can treat photons as propagating in the empty space. It is also
reasonable to expect (see the discussion in the next section) that photons from distant
stars practically do not interact with each other. Hence the effect of WPS can be
considered for each photon independently and the results of the preceding sections
make it possible to understand what experimental consequences of WPS are.

A question arises what can be said about characteristics of photons coming
to Earth from distance objects. Since wave lengths of such photons are typically much
less than characteristic dimensions of obstacles one might think that the radiation of
stars can be described in the geometrical optics approximation. As discussed in
Sec. 2.6, this approximation is similar to semiclassical approximation in quantum
theory. This poses a question whether this radiation can be approximately treated
as a collection of photons moving along classical trajectories.

Consider, for example, the Lyman transition 2P → 1S in the hydrogen
atom on the Sun. In this case the mean energy of the photon is E0 = 10.2eV , its wave
length is λ = 121.6nm and the lifetime is τ = 1.6 ·10−9s. The phrase that the lifetime
is τ is interpreted such that the uncertainty of the energy is h̄/τ , the uncertainty
of the longitudinal momentum is h̄/cτ and b is of the order of cτ ≈ 0.48m. In this
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case the photon has a very narrow energy distribution since the mean value of the
momentum p0 = E0/c satisfies the condition p0b ≫ h̄. At the same time, since the
orbital angular momentum of the photon is a small quantity, the direction of the
photon momentum cannot be semiclassical. Qualitative features of such situations
can be described by the following model.

Suppose that the photon momentum wave function is spherically symmet-
ric and has the form

χ(p) = Cexp[−1

2
(p− p0)

2b2 − i

h̄
pr0] (2.42)

where C is a constant, and p is the magnitude of the momentum. Then the main
contribution to the normalization integral is given by the region of p where |p − p0|
is of the order of h̄/b and in this approximation the integration over p can be taken
from −∞ to ∞. As a result, the function normalized to one has the form

χ(p) =
b1/2

2π3/4p0
exp[− 1

2h̄2
(p− p0)

2b2 − i

h̄
pr0] (2.43)

The dependence of this function on t is χ(p, t) = exp(−iE(p)t/h̄)χ(p) where E(p) =
pc. Hence

χ(p, t) =
b1/2

2π3/4p0
exp[− 1

2h̄2
(p− p0)

2b2 − i

h̄
pr0(t)] (2.44)

where r0(t) = r0 + ct.
The coordinate wave function is

ψ(r, t) =
1

(2πh̄)3/2

∫

χ(p, t)eipr/h̄d3p (2.45)

Since χ(p, t) is spherically symmetric it is convenient to decompose eipr/h̄ as a sum
of spherical harmonics and take into account that only the term corresponding to
l = 0 contributes to the integral. This term is j0(pr/h̄) = sin(pr/h̄)/(pr/h̄). Then
the integral can be again taken from −∞ to ∞ and the result is

ψ(r, t) =
1

2iπ3/4r0(t)b1/2
exp[−(r − r0(t))

2

2b2
+
i

h̄
p0(r − r0(t))] (2.46)

We assume that r0(t) ≫ b and hence the term with exp[−(r + r0(t))
2/2b2] can be

neglected and r in the denominator can be replaced by r0(t). As follows from the
above results, the mean value of r is r0(t). If λ is defined as λ = 2πh̄/p0 then
the requirement that p0b ≫ h̄ implies that b ≫ λ. The conditions p0b/h̄ ≫ 1 and
r0(t) ≫ b imply that the radial part of the photon state is semiclassical while the
angular part is obviously strongly nonclassical.

Suppose that we want to detect the photon inside the volume V where
the coordinates are x ∈ [−dx, dx], y ∈ [−dy, dy], z ∈ [r0(t) − dz, r0(t) + dz]. Let g(r)
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be the characteristic function of V , i.e. g(r) = 1 when r ∈ V and g(r) = 0 otherwise.
Let P be the projector acting on wave functions as Pψ(r) = g(r)ψ(r). Then

Pψ(r, t) = 1

2iπ3/4r0(t)b1/2
g(r)exp[−(r − r0(t))

2

2b2
+
i

h̄
p0(r − r0(t))] (2.47)

Assume that r0(t) ≫ dx, dy. Then r − r0(t) ≈ z − r0(t) + (x2 + y2)/2r0(t). We also
assume that r0(t) is so large then r0(t)λ≫ (d2x + d2y). Then

Pψ(r, t) ≈ 1

2iπ3/4r0(t)b1/2
g(r)exp[−(z − r0(t))

2

2b2
+
i

h̄
p0(z − r0(t))] (2.48)

We also assume that dz ≫ b. Then a simple calculation shows that

||Pψ(r, t)||2 = S

4πr0(t)2
(2.49)

where S = 4dxdy is the area of the cross section of V by the plane z = r0(t). The
meaning of Eq. (2.49) is obvious: ||Pψ(r, t)||2 is the ratio of the cross section to the
area of the sphere with the radius r0(t).

Let us now calculate the momentum distribution in the function Pψ(r, t).
This distribution is defined as

χ̃(p) =
1

(2πh̄)3/2

∫

[Pψ(r, t)]e−ipr/h̄d3r (2.50)

As follows from Eq. (2.47)

χ̃(p) = A(t)exp[− 1

2h̄2
(pz − p0)

2b2]j0(pxdx/h̄)j0(pydy/h̄) (2.51)

where A(t) is a function of t. This result is similar to the well-known result in optics
that the best angular resolution is of the order of λ/d where d is the dimension of
the optical device (see e.g. textbooks [62]). As noted in Sec. 2.1 the reason of the
similarity is that in quantum theory the coordinate and momentum representations
are related to each other by the Fourier transform by analogy with classical electro-
dynamics. Note also that since the fall off of the function j0(x) = sinx/x is not rapid
enough when x increases, in the case when many photons are detected, a considerable
part of them might be detected in the angular range much greater than λ/d.

Let L be the distance to a pointlike source of spherically symmetric pho-
tons. From geometrical consideration one might expect that photons from this source
will be detected in the angular range of the order of d/L. This quantity does not
depend on λ while the quantity λ/d does not depend on L. Therefore the result
given by Eq. (2.51) is counterintuitive. It is shown in Sec. 2.13 that, in contrast to
the standard result λ/d obtained with the Fourier transform, our position operator
indeed predicts the angular resolution of the order of d/L.
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If R is the radius of a star then one might expect that the star will be
visible in the angular range (R + d)/L ≈ R/L. Hence the standard result predicts
that if λ/d ≥ R/L then the image of the star will be blurred. The experimental
verification of this prediction is problematic since the quantities R/L are very small
and at present star radii cannot be measured directly. Conclusions about them are
made from the data on luminosity and temperature assuming that the major part of
the radiation from stars comes not from transitions between atomic levels but from
processes which can be approximately described as a blackbody radiation.

A theoretical model describing blackbody radiation (see e.g. Ref. [63]) is
such that photons are treated as an ideal Bose gas weakly interacting with matter
and such that typical photon energies are not close to energies of absorption lines
for that matter (hence the energy spectrum of photons is almost continuous). It
is also assumed that the photons are distributed over states with definite values
of momenta. With these assumptions one can derive the famous Planck formula
for the spectral distribution of the blackbody radiation (this formula is treated as
marking the beginning of quantum theory). When the photons leave the black body,
their distribution in the phase space can be described by the Liouville theorem; in
particular it implies that the photons are moving along classical trajectories.

Although the blackbody model is not ideal, numerous experimental data
indicate that it works with a good accuracy. One of the arguments that the major
part of the radiation consists of semiclassical photons is that the data on deflection
of light by the Sun are described in the eikonal approximation which shows that
the light from stars consists mainly of photons approximately moving along classical
trajectories.

If we accept those arguments that the main part of photons emitted by
stars can be qualitatively described in the formalism considered in Sec. 2.5. In that
case we cannot estimate the quantity b as above and it is not clear what criteria can
be used for estimating the quantity a.

The estimation a ≈ b ≈ 0.48m seems to be very favorable since one might
expect that the value of a is of atomic size, i.e. much less than 0.48m. With this
estimation for yellow light (with λ = 580nm) N⊥ = a/λ ≈ 8 · 105. So the value of N⊥
is rather large and in view of Eq. (2.24) one might think that the effect of spreading
is not important. However, this is not the case because, as follows from Eq. (2.24),
t∗ ≈ 0.008s. Since the distance between the Sun and the Earth is approximately
t = 8 light minutes and this time is much greater than t∗, the value of a(t) (which
can be called the half-width of the wave packet) when the packet arrives to the Earth
is v∗t ≈ 28km. In this case standard geometrical interpretation obviously does not
apply. In addition, if we assume that the initial value of a is of the order of several wave
lengths then the value of N⊥ is much less and the width of the wave packet coming to
the Earth is much greater. An analogous estimation shows that even in the favorable
scenario the half-width of the wave packet coming to the Earth from Sirius will be
approximately equal to 15 · 106km but in less favorable situations the half-width will
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be much greater. Hence we come to the conclusion that even in favorable scenarios
the assumption that photons are moving along classical trajectories does not apply
and a problem arises whether or not this situation is in agreement with experiment.

For illustration we consider the following example. Let the Earth be at
point A and the center of Sirius be at point B. Suppose for simplicity that the Earth is
a pointlike particle. Suppose that Sirius emitted a photon such that its wave function
in momentum space has a narrow distribution around the mean value directed not
along BA but along BC such that the angle between BA and BC is α. As noted
in Sec. 2.5, there is no WPS in momentum space but, as follows from Eq. (2.23),
the function a(t) defining the mean value of the radius of the coordinate photon
wave function in perpendicular directions is a rapidly growing function of t. Let us
assume for simplicity that α ≪ 1. Then if L is the length of AB, the distance from
A to BC is approximately d = Lα. So if this photon is treated as a point moving
along the classical trajectory then the observer on the Earth will not see the photon.
Let us now take into account the effect of WPS in directions perpendicular to the
photon momentum. The front of the photon wave function passes the Earth when
t ≈ t1 = L/c. As follows from Eq. (2.23) and the definition of the quantity N⊥,
if t1 ≫ t∗ then a(t1) = L/(2πN⊥). If a(t1) is of the order of d or greater and we
look in the direction AD such that AD is antiparallel to BC then there is a nonzero
probability that we will detect this photon. So we can see photons coming from Sirius
in the angular range which is of the order of a(t1)/L. If R is the radius of Sirius and
a(t1) is of the order of R or greater, the image of Sirius will be blurred. As noted
above, a very optimistic estimation of a(t1) is 15 · 106km. However, one can expect
that a more realistic value of N⊥ is not so large and then the estimation of a(t1) gives
a much greater value. Since R = 1.1 · 106km this means that the image of Sirius will
be extremely blurred. Moreover, in the above angular range we can detect photons
emitted not only by Sirius but also by other objects. Since the distance to Sirius is
”only” 8.6 light years, for the majority of stars the effect of WPS will be pronounced
even to a much greater extent. So if WPS is considerable then we will see not separate
stars but an almost continuous background from many objects.

In the case of planets it is believed that we see a light reflected according
to the laws of geometrical optics. Therefore photons of this light are in wave packet
states and WPS for them can be estimated by using Eq. (2.23). The effect of blurring
depends on the relation between the radii of planets and the corresponding quantities
a(t1) = L/(2πN⊥). Then it is obvious that if N⊥ is not very large then even the
images of planets will be blurred.

In the infrared and radio astronomy wave lengths are much greater than
in the optical region but typical values of aph are expected to be much greater. As
a consequence, predictions of standard quantum theory on blurring of astronomical
images are expected to be qualitatively the same as in the optical region.

In the case of gamma-ray bursts (GRBs) wave lengths are much less than
in the optical region but this is outweighed by the facts that, according to the present
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understanding of the GRB phenomenon (see e.g. Ref. [64]), gamma quanta created
in GRBs typically travel to Earth for billions of years and typical values of aph are
expected to be much less than in the optical region. The location of sources of
GBRs are determined with a good accuracy and the data can be explained only
assuming that the gamma quanta are focused into narrow jets (i.e. GRBs are not
spherically symmetric) which are observable when Earth lies along the path of those
jets. However, in view of the above discussion, the results on WPS predicted by
standard quantum theory are fully incompatible with the data on GRBs.

A striking example illustrating the problem with the WPS effect follows.
The phenomenon of the relic (CMB) radiation is treated as a case where the approxi-
mation of the blackbody radiation works with a very high accuracy. As noted above,
photons emitted in this radiation are treated as moving along classical trajectories
i.e. that they are in wave packet states. Since their wave lengths are much greater
than wave lengths in the optical region and the time of their travel to Earth is several
billions of years, the quantity a(t1) should be so large that no anisotropy of CMB
should be observable. Meanwhile the anisotropy is observable and in the literature
different mechanisms of the anisotropy are discussed (see e.g. Ref. [65]). However,
the effect of WPS is not discussed.

On the other hand, the effect of WPS is important only if a particle travels
a rather long distance. Hence one might expect that in experiments on the Earth this
effect is negligible. Indeed, one might expect that in typical experiments on the Earth
the quantity t1 is so small that a(t1) is much less than the size of any macroscopic
source of light. However, a conclusion that the effect of WPS is negligible for any
experiment on the Earth might be premature.

As an example, consider the case of protons in the LHC accelerator. Ac-
cording to Ref. [66], protons in the LHC ring injected at the energy E = 450GeV
should be accelerated to the energy E = 7TeV within one minute during which the
protons will turn around the 27km ring approximately 674729 times. Hence the length
of the proton path is of the order of 18 ·106km. The protons cannot be treated as free
particles since they are accelerated by strong magnets. A problem of how the width
of the proton wave function behaves in the presence of strong electromagnetic field
is very complicated and the solution of the problem is not known yet. It is always
assumed that the WPS effect for the protons can be neglected. We will consider a
model problem of the WPS for a free proton which moves for t1 = 1min with the
energy in the range [0.45, 7]TeV .

In nuclear physics the size of the proton is usually assumed to be a quantity
of the order of 10−13cm. Therefore for estimations we take a = 10−13cm. Then the
quantity t∗ defined after Eq. (2.22) is not greater than 10−19s, i.e. t∗ ≪ t1. Hence, as
follows from Eq. (2.22), the quantity a(t1) is of the order of 500km if E = 7TeV and
in the case when E = 450GeV this quantity is by a factor of 7/0.45 ≈ 15.6 greater.
This fully unrealistic result cannot be treated as a paradox since, as noted above, the
protons in the LHC ring are not free. Nevertheless it shows that a problem of what
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standard theory predicts on the width of proton wave functions in the LHC ring is
far from being obvious.

Consider now WPS effects for radio wave photons. In radiolocation it is
important that a beam from a directional antenna has a narrow angular distribution
and a narrow distribution of wave lengths. Hence photons from the beam can be
treated as (approximately) moving along classical trajectories. This makes it possible
to communicate even with very distant space probes. For this purpose a set of radio
telescopes can be used but for simplicity we consider a model where signals from a
space probe are received by one radio telescope having the diameter D of the dish.

The Cassini spacecraft can transmit to Earth at three radio wavelengths:
14cm, 4cm and 1cm [67]. A radio telescope on Earth can determine the position of
Cassini with a good accuracy if it detects photons having momenta in the angular
range of the order of D/L where L is the distance to Cassini. The main idea of using
a system of radiotelescopes is to increase the effective value of D. As a consequence
of the fact that the radio signal sent from Cassini has an angular divergence which is
much greater than D/L, only a small part of photons in the signal can be detected.

Consider first the problem on classical level. For the quantity a = acl we
take the value of 1m which is of the order of the radius of the Cassini antenna. If
α = λ/(2πa) and L(t) is the length of the classical path then, as follows from Eq.
(2.23), acl(t) ≈ L(t)α. As a result, even for λ = 1cm we have acl(t) ≈ 1.6 · 106km.
Hence if the photons in the beam are treated as (approximately) pointlike particles,
one might expect that only a [D/acl(t)]

2 part of the photons can be detected.
Consider now the problem on quantum level. The condition t ≫ t∗ is

satisfied for both, the classical and quantum problems. Then, as follows from Eq.
(2.23), aph(t) = acl(t)acl/aph, i.e. the quantity aph(t) is typically greater than acl(t)
and in Sec. 2.7 this effect is called the WPW paradox. The fact that only photons
in the angular range D/L can be detected can be described by projecting the states
χ = χ(p, t) (see Eqs. (2.17), and (2.18)) onto the states χ1 = Pχ where χ1(p, t) =
ρ(p)χ(p, t) and the form factor ρ(p) is significant only if p is in the needed angular
range. We choose ρ(p) = exp(−p2

⊥a
2
1/2h̄

2) where a1 is of the order of h̄L/(p0D).
Since a1 ≫ aph, it follows from Eqs. (2.17), and (2.18) that ||Pχ||2 = (aph/a1)

2.
Then, as follows from Eq. (2.23), (aph/a1)

2 is of the order of [D/aph(t)]
2 as expected

and this quantity is typically much less than [D/acl(t)]
2. Hence the WPW paradox

would make communications with space probes much more difficult.
Consider now the effect called Shapiro time delay. The meaning of the

effect is as follows. An antenna on Earth sends a signal to Mercury, Venus or an
interplanetary space probe and receives the reflected signal. If the path of the signal
nearly grazes the Sun then the gravitational influence of the Sun deflects the path
from a straight line. As a result, the path becomes longer by S ≈ 75km and the
signals arrive with a delay S/c ≈ 250µs. This effect is treated as the fourth test of
GR and its theoretical consideration is based only on classical geometry. In particular,
it is assumed that the radio signal is moving along the classical trajectory.
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However, in standard quantum theory the length of the path has an un-
certainty which can be defined as follows. As a consequence of WPS, the uncertainty
of the path is

∆L(t) = [L(t)2 + a(t)2]1/2 − L(t) ≈ a(t)2/2L(t) = L(t)α2/2

In contrast to the previous example, this quantity is quadratic in α and one might
think that it can be neglected. However, this is not the case. For example, in the first
experiment on measuring the Shapiro delay [68] signals with the frequency 8GHz were
sent by the MIT Haystack radar antenna [69] having the diameter 37m. If we take
for aph a very favorable value which equals the radius of the antenna then α2 ≈ 10−7.
As a result, when the signal is sent to Venus, ∆L(t) ≈ 25km but since aph is typically
much less than acl then in view of the WPW paradox the value of ∆L(t) will be
much greater. However, even the result 25km is incompatible with the fact that the
accuracy of the experiment was of the order of 5%.

In classical consideration the Shapiro delay is defined by the parameter
γ which depends on the theory and in GR γ = 1. At present the available ex-
perimental data are treated such that the best test of γ has been performed in
measuring the Shapiro delay when signals from the DSS-25 antenna [70] with the
frequencies 7.175GHz and 34.136GHz were sent to the Cassini spacecraft when it
was 7AU away from the Earth. The results of the experiment are treated such that
γ−1 = (2.1±2.3) ·10−5 [71]. For estimating the quantity ∆L(t) in this case we take a
favorable scenario when the frequency is 34.136GHz and aph equals the radius of the
DSS-25 antenna which is 17m. Then α ≈ 8 · 10−5 and ∆L(t) ≈ 6.7km but in view of
the WPW effect this quantity will be much greater. This is obviously incompatible
with the fact that the accuracy of computing γ is of the order of 10−5.

Our last example is as follows. The astronomical objects called pulsars are
treated such that they are neutron stars with radii much less than radii of ordinary
stars. Therefore if mechanisms of pulsar electromagnetic radiation were the same as
for ordinary stars then the pulsars would not be visible. The fact that pulsars are
visible is explained as a consequence of the fact that they emit beams of light which
can only be seen when the light is pointed in the direction of the observer with some
periods which are treated as periods of rotation of the neutron stars. In popular
literature this is compared with the light of a lighthouse. However, by analogy with
the case of a signal sent from Cassini, only a small part of photons in the beam can
reach the Earth. At present the pulsars have been observed in different regions of the
electromagnetic spectrum but the first pulsar called PSR B1919+21 was discovered
in 1967 as a radio wave radiation with λ ≈ 3.7m [72]. This pulsar is treated as
the neutron star with the radius R = 0.97km and the distance from the pulsar to
Earth is 2283 light years. If for estimating acl(t) we assume that acl = R then we
get α ≈ 6 · 10−4 and acl(t) ≈ 1.3ly ≈ 12 · 1012km. Such an extremely large value of
spreading poses a problem whether even predictions of classical electrodynamics are
compatible with the fact that pulsars are observable. However, in view of the WPW
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paradox, the value of aph(t) will be even much greater and no observation of pulsars
would be possible.

Our conclusion is that we have several fundamental paradoxes posing a
problem whether predictions of standard quantum theory for the WPS effect are
correct.

2.10 Discussion: is it possible to avoid the WPS

paradoxes in standard theory?

As shown in the preceding section, if one assumes that photons coming to Earth do
not interact with the interstellar or interplanetary medium and with each other then a
standard treatment of the WPS effect contradicts the facts that there is no blurring of
astronomical images, communication with space probes is possible, the Shapiro delay
can be explained in classical theory and GRBs and pulsars are observable. Hence a
question arises whether this assumption is legitimate.

As shown in textbooks on quantum optics (see e.g. Ref. [62] and references
therein)) quantum states describing the laser emission are strongly coherent and the
approximation of independent photons is not legitimate. As shown in Sec. 2.8, the
WPS effect in coherent states is pronounced in a much less extent than for individual
photons. However, laser emission can be created only at very special conditions when
energy levels are inverted, the emission is amplified in the laser cavity etc. At the
same time, the main part of the radiation emitted by stars is understood such that it
can be approximately described as the blackbody radiation and in addition a part of
the radiation consists of photons emitted from different atomic energy levels. In that
case the emission of photons is spontaneous rather than induced and one might think
that the photons can be treated independently. Several authors (see e.g. Ref. [73]
and references therein) discussed a possibility that at some conditions the inverted
population and amplification of radiation in stellar atmospheres might occur and so
a part of the radiation can be induced. This problem is now under investigation.
Hence we adopt a standard assumption that a main part of the radiation from stars
is spontaneous. In addition, there is no reason to think that radiation of GRBs, radio
antennas, space probes or pulsars is laser like.

The next question is whether the interaction of photons in the above phe-
nomena is important or not. As explained in standard textbooks on QED (see e.g.
Ref. [12]), the photon-photon interaction can go only via intermediate creation of
virtual electron-positron or quark-antiquark pairs. If ω is the photon frequency, m
is the mass of the charged particle in the intermediate state and e is the electric
charge of this particle then in the case when h̄ω ≪ mc2 the total cross section of the
photon-photon interaction is [12]

σ =
56

5πm2

139

902
(
e2

h̄c
)4(

h̄ω

mc2
)6 (2.52)
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For photons of visible light the quantities h̄ω/(mc2) and σ are very small and for radio
waves they are even smaller by several orders of magnitude. At present the effect of
the direct photon-photon interaction has not been detected, and experiments with
strong laser fields were only able to determine the upper limit of the cross section
[74].

The problem of WPS in the ultrarelativistic case has been discussed in a
wide literature. As already noted, in Ref. [61] the effect of WPS has been discussed in
the Fresnel approximation for a two-dimensional model and the author shows that in
the direction perpendicular to the group velocity of the wave spreading is important.
He considers WPS in the framework of classical electrodynamics. We believe that
considering this effect from quantum point of view is even simpler since the photon
wave function satisfies the relativistic Schrödinger equation which is linear in ∂/∂t.
As noted in Sec. 2.6, this function also satisfies the wave equation but it is simpler
to consider an equation linear in ∂/∂t than that quadratic in ∂/∂t. However, in
classical theory there is no such an object as the photon wave function and hence
one has to solve either a system of Maxwell equations or the wave equation. There
is also a number of works where the authors consider WPS in view of propagation of
classical waves in a medium such that dissipation is important (see e.g. Ref. [75]).
In Ref. [76] the effect of WPS has been discussed in view of a possible existence of
superluminal neutrinos. The authors consider only the dynamics of the wave packet
in the longitudinal direction in the framework of the Dirac equation. They conclude
that wave packets describing ultrarelativistic fermions do not experience WPS in this
direction. However, the authors do not consider WPS in perpendicular directions.

In view of the above discussion, standard treatment of WPS leads to sev-
eral fundamental paradoxes of modern theory. To the best of our knowledge, those
paradoxes have never been discussed in the literature. For resolving the paradoxes
one could discuss several possibilities. One of them might be such that the interac-
tion of light with the interstellar or interplanetary medium cannot be neglected. On
quantum level a process of propagation of photons in the medium is rather compli-
cated because several mechanisms of propagation should be taken into account. For
example, a possible process is such that a photon can be absorbed by an atom and
reemitted. This process makes it clear why the speed of light in the medium is less
than c: because the atom which absorbed the photon is in an excited state for some
time before reemitting the photon. However, this process is also important from the
following point of view: even if the coordinate photon wave function had a large width
before absorption, as a consequence of the collapse of the wave function, the wave
function of the emitted photon will have in general much smaller dimensions since
after detection the width is defined only by parameters of the corresponding detector.
If the photon encounters many atoms on its way, this process does not allow the
photon wave function to spread out significantly. Analogous remarks can be made
about other processes, for example about rescattering of photons on large groups of
atoms, rescattering on elementary particles if they are present in the medium etc.
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However, such processes have been discussed in Theory B and, as noted in Sec. 2.9,
they probably result in more blurring than is seen.

The interaction of photons with the interstellar or interplanetary medium
might also be important in view of hypotheses that the density of the medium is much
greater than usually believed. Among the most popular scenarios are dark energy,
dark matter etc. As shown in our papers (see e.g. Refs. [17, 18, 77]) and in Sec. 3.6),
the phenomenon of the cosmological acceleration can be easily and naturally explained
from first principles of quantum theory without involving dark energy, empty space-
background and other artificial notions. However, the other scenarios seem to be
more realistic and one might expect that they will be intensively investigated. A
rather hypothetical possibility is that the propagation of photons in the medium has
something in common with the induced emission when a photon induces emission
of other photons in practically the same direction. In other words, the interstellar
medium amplifies the emission as a laser. This possibility seems to be not realistic
since it is not clear why the energy levels in the medium might be inverted.

We conclude that at present in standard theory there are no realistic sce-
narios which can explain the WPS paradoxes. In the remaining part of the chapter
we propose a solution of the problem proceeding from a consistent definition of the
position operator.

2.11 Consistent construction of position operator

The above results give grounds to think that the reason of the paradoxes which
follow from the behavior of the coordinate photon wave function in perpendicular
directions is that standard definition of the position operator in those directions does
not correspond to realistic measurements of coordinates. Before discussing a consis-
tent construction, let us make the following remark. On elementary level students
treat the mass m and the velocity v as primary quantities such that the momentum
is mv and the kinetic energy is mv2/2. However, from the point of view of Special
Relativity, the primary quantities are the momentum p and the total energy E and
then the mass and velocity are defined as m2c4 = E2 − p2c2 and v = pc2/E, re-
spectively. This example has the following analogy. In standard quantum theory the
primary operators are the position and momentum operators and the orbital angular
momentum operator is defined as their cross product. However, the operators P and
L are consistently defined as representation operators of the Poincare algebra while
the definition of the position operator is a problem. Hence a question arises whether
the position operator can be defined in terms of P and L.

One might seek the position operator such that on classical level the re-
lation r × p = L will take place. Note that on quantum level this relation is not
necessary. Indeed, the very fact that some elementary particles have a half-integer
spin shows that the total angular momentum for those particles does not have the or-
bital nature but on classical level the angular momentum can be always represented
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as a cross product of the radius-vector and standard momentum. However, if the
values of p and L are known and p 6= 0 then the requirement that r × p = L does
not define r uniquely. One can define parallel and perpendicular components of r as
r = r||p/p+ r⊥ where p = |p|. Then the relation r×p = L defines uniquely only r⊥.
Namely, as follows from this relation, r⊥ = (p× L)/p2. On quantum level r⊥ should
be replaced by a selfadjoint operator R⊥ defined as

R⊥j =
h̄

2p2
ejkl(pkLl + Llpk) =

h̄

p2
ejklpkLl −

ih̄

p2
pj

= ih̄
∂

∂pj
− i

h̄

p2
pjpk

∂

∂pk
− ih̄

p2
pj (2.53)

where ejkl is the absolutely antisymmetric tensor, e123 = 1, a sum over repeated
indices is assumed and we assume that if L is given by Eq. (2.12) then the orbital
momentum is h̄L.

We define the operators F and G such that R⊥ = h̄F/p and G is the
operator of multiplication by the unit vector n = p/p. A direct calculation shows
that these operators satisfy the following relations:

[Lj , Fk] = iejklFl, [Lj , Gk] = iejklFl, G2 = 1, F2 = L2 + 1

[Gj, Gk] = 0, [Fj , Fk] = −iejklLl, ejkl{Fk, Gl} = 2Lj

LG = GL = LF = FL = 0, FG = −GF = i (2.54)

The first two relations show that F and G are the vector operators as expected. The
result for the anticommutator shows that on classical level F ×G = L and the last
two relations show that on classical level the operators in the triplet (F,G,L) are
mutually orthogonal.

Note that if the momentum distribution is narrow and such that the mean
value of the momentum is directed along the z axis then it does not mean that on
the operator level the z component of the operator R⊥ should be zero. The matter
is that the direction of the momentum does not have a definite value. One might
expect that only the mean value of the operator R⊥ will be zero or very small.

In addition, an immediate consequence of the definition (2.53) follows:
Since the momentum and angular momentum operators commute with the Hamil-
tonian, the distribution of all the components of r⊥ does not depend on time. In
particular, there is no WPS in directions defined by R⊥. This is also clear from the
fact that R⊥ = h̄F/p where the operator F acts only over angular variables and the
Hamiltonian depends only on p. On classical level the conservation of R⊥ is obvious
since it is defined by the conserving quantities p and L. It is also obvious that since
a free particle is moving along a straight line, a vector from the origin perpendicular
to this line does not change with time.

The above definition of the perpendicular component of the position op-
erator is well substantiated since on classical level the relation r × p = L has been
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verified in numerous experiments. However, this relation does not make it possible
to define the parallel component of the position operator and a problem arises what
physical arguments should be used for that purpose.

A direct calculation shows that if ∂/∂p is written in terms of p and angular
variables then

ih̄
∂

∂p
= GR|| +R⊥ (2.55)

where the operator R|| acts only over the variable p:

R|| = ih̄(
∂

∂p
+

1

p
) (2.56)

The correction 1/p is related to the fact that the operator R|| is Hermitian since in
variables (p,n) the scalar product is given by

(χ2, χ1) =

∫

χ2(p,n)
∗χ1(p,n)p

2dpdo (2.57)

where do is the element of the solid angle.
While the components of standard position operator commute with each

other, the operators R|| and R⊥ satisfy the following commutation relation:

[R||,R⊥] = −ih̄
p
R⊥, [R⊥j ,R⊥k] = −ih̄

2

p2
ejklLl (2.58)

An immediate consequence of these relation follows: Since the operator R|| and differ-
ent components of R⊥ do not commute with each other, the corresponding quantities
cannot be simultaneously measured and hence there is no wave function ψ(r||, r⊥) in
coordinate representation.

In standard theory −h̄2(∂/∂p)2 is the operator of the quantity r2. As
follows from Eq. (2.54), the two terms in Eq. (2.55) are not strictly orthogonal and
on the operator level −h̄2(∂/∂p)2 6= R2

|| +R2
⊥. A direct calculation using Eqs. (2.54)

and (2.55) gives

∂2

∂p2
=

∂2

∂p2
+

2

p

∂

∂p
− L2

p2
, −h̄2 ∂

2

∂p2
= R2

|| +R2
⊥ − h̄2

p2
(2.59)

in agreement with the expression for the Laplacian in spherical coordinates. In semi-
classical approximation, (h̄2/p2) ≪ R2

⊥ since the eigenvalues of L2 are l(l + 1), in
semiclassical states l ≫ 1 and, as follows from Eq. (2.54), R2

⊥ = [h̄2(l2 + l + 1)/p2].
As follows from Eq. (2.58), [R||, p] = −ih̄, i.e. in the longitudinal direction

the commutation relation between the coordinate and momentum is the same as in
standard theory. One can also calculate the commutators between the different com-
ponents of R⊥ and p. Those commutators are not given by such simple expressions
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as in standard theory but it is easy to see that all of them are of the order of h̄ as it
should be.

Equation (2.55) can be treated as an implementation of the relation r =
r||p/|p|+ r⊥ on quantum level. As argued in Secs. 2.1 and 2.2, the standard position
operator ih̄∂/∂pj in the direction j is not consistently defined if pj is not sufficiently
large. One might think however that since the operator R|| contains ih̄∂/∂p, it is
defined consistently if the magnitude of the momentum is sufficiently large.

In summary, we propose to define the position operator not by the set
(ih̄∂/∂px, ih̄∂/∂py , ih̄∂/∂pz) but by the operators R|| and R⊥. Those operators are
defined from different considerations. As noted above, the definition of R⊥ is based
on solid physical facts while the definition of R|| is expected to be more consistent
than the definition of standard position operator. However, this does not guarantee
that the operator R|| is consistently defined in all situations. As argued in Sec. 5.3,
in a quantum theory over a Galois field an analogous definition is not consistent for
macroscopic bodies (even if p is large) since in that case semiclassical approximation
is not valid. In the remaining part of the chapter we assume that for elementary
particles the above definition of R|| is consistent in situations when semiclassical
approximation applies.

One might pose the following question. What is the reason to work with
the parallel and perpendicular components of the position operator separately if,
according to Eq. (2.55), their sum is the standard position operator? The explanation
follows.

In quantum theory every physical quantity corresponds to a selfadjoint
operator but the theory does not define explicitly how a quantity corresponding to a
specific operator should be measured. There is no guaranty that for each selfadjoint
operator there exists a physical quantity which can be measured in real experiments.

Suppose that there are three physical quantities corresponding to the self-
adjoint operators A, B and C such that A + B = C. Then in each state the mean
values of the operators are related as Ā+ B̄ = C̄ but in situations when the operators
A and B do not commute with each other there is no direct relation between the dis-
tributions of the physical quantities corresponding to the operators A, B and C. For
example, in situations when the physical quantities corresponding to the operators
A and B are semiclassical and can be measured with a good accuracy, there is no
guaranty that the physical quantity corresponding to the operator C can be measured
in real measurements. As an example, the physical meaning of the quantity corre-
sponding to the operator Lx + Ly is problematic. Another example is the situation
with WPS in directions perpendicular to the particle momentum. Indeed, as noted
above, the physical quantity corresponding to the operator R⊥ does not experience
WPS and, as shown in Sec. 2.13, in the case of ultrarelativistic particles there is no
WPS in the parallel direction as well. However, standard position operator is a sum of
noncommuting operators corresponding to well defined physical quantities and, as a
consequence, there are situations when standard position operator defines a quantity
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which cannot be measured in real experiments.

2.12 New position operator and semiclassical

states

As noted in Sec. 2.2, in standard theory states are treated as semiclassical
in greatest possible extent if ∆rj∆pj = h̄/2 for each j and such states are called
coherent. The existence of coherent states in standard theory is a consequence of
commutation relations [pj, rk] = −ih̄δjk. Since in our approach there are no such
relations, a problem arises how to construct states in which all physical quantities p,
r||, n and r⊥ are semiclassical.

One of the ways to prove this is to calculate the mean values and uncer-
tainties of the operator R|| and all the components of the operator R⊥ in the state
defined by Eq. (2.17). The calculation is not simple since it involves three-dimensional
integrals with Gaussian functions divided by p2. The result is that these operators
are semiclassical in the state (2.17) if p0 ≫ h̄/b, p0 ≫ h̄/a and r0z has the same order
of magnitude as r0x and r0y.

However, a more natural approach is as follows. Since R⊥ = h̄F/p, the
operator F acts only over the angular variable n and R|| acts only over the variable
p, it is convenient to work in the representation where the Hilbert space is the space
of functions χ(p, l, µ) such that the scalar product is

(χ2, χ1) =
∑

lµ

∫ ∞

0

χ2(p, l, µ)
∗χ1(p, l, µ)dp (2.60)

and l and µ are the orbital and magnetic quantum numbers, respectively, i.e.

L2χ(p, l, µ) = l(l + 1)χ(p, l, µ), Lzχ(p, l, µ) = µχ(p, l, µ) (2.61)

The operator L in this space does not act over the variable p and the
action of the remaining components is given by

L+χ(l, µ) = [(l+µ)(l+1−µ)]1/2χ(l, µ−1), L−χ(l, µ) = [(l−µ)(l+1+µ)]1/2χ(l, µ+1)
(2.62)

where the ± components of vectors are defined such that Lx = L+ + L−, Ly =
−i(L+ − L−).
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A direct calculation shows that, as a consequence of Eq. (2.53)

F+χ(l, µ) = − i

2
[
(l + µ)(l + µ− 1)

(2l − 1)(2l + 1)
]1/2lχ(l − 1, µ− 1)

− i

2
[
(l + 2− µ)(l + 1− µ)

(2l + 1)(2l + 3)
]1/2(l + 1)χ(l + 1, µ− 1)

F−χ(l, µ) =
i

2
[
(l − µ)(l − µ− 1)

(2l − 1)(2l + 1)
]1/2lχ(l − 1, µ+ 1)

+
i

2
[
(l + 2 + µ)(l + 1 + µ)

(2l + 1)(2l + 3)
]1/2(l + 1)χ(l + 1, µ+ 1)

Fzχ(l, µ) = i[
(l − µ)(l + µ)

(2l − 1)(2l + 1)
]1/2lχ(l − 1, µ)

−i[ (l + 1− µ)(l + 1 + µ)

(2l + 1)(2l + 3)
]1/2(l + 1)χ(l + 1, µ) (2.63)

The operator G acts on such states as follows

G+χ(l, µ) =
1

2
[
(l + µ)(l + µ− 1)

(2l − 1)(2l + 1)
]1/2χ(l − 1, µ− 1)

−1

2
[
(l + 2− µ)(l + 1− µ)

(2l + 1)(2l + 3)
]1/2χ(l + 1, µ− 1)

G−χ(l, µ) = −1

2
[
(l − µ)(l − µ− 1)

(2l − 1)(2l + 1)
]1/2χ(l − 1, µ+ 1)

+
1

2
[
(l + 2 + µ)(l + 1 + µ)

(2l + 1)(2l + 3)
]1/2χ(l + 1, µ+ 1)

Gzχ(l, µ) = −[
(l − µ)(l + µ)

(2l − 1)(2l + 1)
]1/2χ(l − 1, µ)

−[
(l + 1− µ)(l + 1 + µ)

(2l + 1)(2l + 3)
]1/2χ(l + 1, µ) (2.64)

and now the operator R|| has a familiar form R|| = ih̄∂/∂p.
Therefore by analogy with Secs. 2.2 and 2.3 one can construct states which

are coherent with respect to (r||, p), i.e. such that ∆r||∆p = h̄/2. Indeed (see Eq.
(2.4)), the wave function

χ(p) =
b1/2

π1/4h̄1/2
exp[−(p − p0)

2b2

2h̄2
− i

h̄
(p− p0)r0] (2.65)

describes a state where the mean values of p and r|| are p0 and r0, respectively and

their uncertainties are h̄/(b
√
2) and b/

√
2, respectively. Strictly speaking, the analogy

between the given case and that discussed in Secs. 2.2 and 2.3 is not full since in the
given case the quantity p can be in the range [0.∞), not in (−∞,∞) as momentum

72



variables used in those sections. However, if p0b/h̄ ≫ 1 then the formal expression
for χ(p) at p < 0 is extremely small and so the normalization integral for χ(p) can be
formally taken from −∞ to ∞.

In such an approximation one can define wave functions ψ(r) in the r||
representation. By analogy with the consideration in Secs. 2.2 and 2.3 we define

ψ(r) =

∫

exp(
i

h̄
pr)χ(p)

dp

(2πh̄)1/2
(2.66)

where the integral is formally taken from −∞ to ∞. Then

ψ(r) =
1

π1/4b1/2
exp[−(r − r0)

2

2b2
+
i

h̄
p0r] (2.67)

Note that here the quantities r and r0 have the meaning of coordinates in the direction
parallel to the particle momentum, i.e. they can be positive or negative.

Consider now states where the quantities F and G are semiclassical. One
might expect that in semiclassical states the quantities l and µ are very large. In this
approximation, as follows from Eqs. (2.63) and (2.64), the action of the operators F
and G can be written as

F+χ(l, µ) = − i

4
(l + µ)χ(l − 1, µ− 1)− i

4
(l − µ)χ(l + 1, µ− 1)

F−χ(l, µ) =
i

4
(l − µ)χ(l − 1, µ+ 1) +

i

4
(l + µ)χ(l + 1, µ+ 1)

Fzχ(l, µ) = − i

2l
(l2 − µ2)1/2[χ(l + 1, µ)− χ(l − 1, µ)]

G+χ(l, µ) =
l + µ

4l
χ(l − 1, µ− 1)− l − µ

4l
χ(l + 1, µ− 1)

G−χ(l, µ) = − l − µ

4l
χ(l − 1, µ+ 1) +

l + µ

4l
χ(l + 1, µ+ 1)

Gzχ(l, µ) = − 1

2l
(l2 − µ2)1/2[χ(l + 1, µ) + χ(l − 1, µ)] (2.68)

In view of the remark in Sec. 2.2 about semiclassical vector quantities,
consider a state χ(l, µ) such that χ(l, µ) 6= 0 only if l ∈ [l1, l2], µ ∈ [µ1, µ2] where
l1, µ1 > 0, δ1 = l2 + 1 − l1, δ2 = µ2 + 1 − µ1, δ1 ≪ l1, δ2 ≪ µ1 µ2 < l1 and
µ1 ≫ (l1 − µ1). This is the state where the quantity µ is close to its maximum value
l. As follows from Eqs. (2.61) and (2.62), in this state the quantity Lz is much
greater than Lx and Ly and, as follows from Eq. (2.68), the quantities Fz and Gz

are small. So on classical level this state describes a motion of the particle in the
xy plane. The quantity Lz in this state is obviously semiclassical since χ(l, µ) is the
eigenvector of the operator Lz with the eigenvalue µ. As follows from Eq. (2.68),
the action of the operators (F+, F−, G+, G−) on this state can be described by the
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following approximate formulas:

F+χ(l, µ) = −il0
2
χ(l − 1, µ− 1), F−χ(l, µ) =

il0
2
χ(l + 1, µ+ 1)

G+χ(l, µ) =
1

2
χ(l − 1, µ− 1), G−χ(l, µ) =

1

2
χ(l + 1, µ+ 1) (2.69)

where l0 is a value from the interval [l1, l2].
Consider a simple model when χ(l, µ) = exp[i(lα − µβ)]/(δ1δ2)

1/2 when
l ∈ [l1, l2] and µ ∈ [µ1, µ2]. Then a simple direct calculation using Eq. (2.69) gives

Ḡx = cosγ, Ḡy = −sinγ, F̄x = −l0sinγ, F̄y = −l0cosγ

∆Gx = ∆Gy = (
1

δ1
+

1

δ2
)1/2, ∆Fx = ∆Fy = l0(

1

δ1
+

1

δ2
)1/2 (2.70)

where γ = α− β. Hence the vector quantities F and G are semiclassical since either
|cosγ| or |sinγ| or both are much greater than (δ1 + δ2)/(δ1δ2).

2.13 New position operator and WPS

If the space of states is implemented according to the scalar product (2.60) then the
dependence of the wave function on t is

χ(p, k, µ, t) = exp[− i

h̄
(m2c2 + p2)1/2ct]χ(p, k, µ, t = 0) (2.71)

As noted in Secs. 2.3 and 2.5, there is no WPS in momentum space and this is natural
in view of momentum conservation. Then, as already noted, the distribution of the
quantity r⊥ does not depend on time and this is natural from the considerations
described in Sec. 2.11.

At the same time, the dependence of the r|| distribution on time can be
calculated in full analogy with Sec. 2.3. Indeed, consider, for example a function
χ(p, l, µ, t = 0) having the form

χ(p, l, µ, t = 0) = χ(p, t = 0)χ(l, µ) (2.72)

Then, as follows from Eqs. (2.66) and (2.71),

ψ(r, t) =

∫

exp[− i

h̄
(m2c2 + p2)1/2ct+

i

h̄
pr]χ(p, t = 0)

dp

(2πh̄)1/2
(2.73)

Suppose that the function χ(p, t = 0) is given by Eq. (2.65). Then in full
analogy with the calculations in Sec. 2.3 we get that in the nonrelativistic case the
r|| distribution is defined by the wave function

ψ(r, t) =
1

π1/4b1/2
(1+

ih̄t

mb2
)−1/2exp[−(r − r0 − v0t)

2

2b2(1 + h̄2t2

m2b4
)
(1− ih̄t

mb2
)+

i

h̄
p0r−

ip20t

2mh̄
] (2.74)
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where v0 = p0/m is the classical speed of the particle in the direction of the particle
momentum. Hence the WPS effect in this direction is similar to that given by Eq.
(2.8) in standard theory.

In the opposite case when the particle is ultrarelativistic, Eq. (2.73) can
be written as

ψ(r, t) =

∫

exp[
i

h̄
p(r − ct)]χ(p, t = 0)

dp

(2πh̄)1/2
(2.75)

Hence, as follows from Eq. (2.67):

ψ(r, t) =
1

π1/4b1/2
exp[−(r − r0 − ct)2

2b2
+
i

h̄
p0(r − ct)] (2.76)

In particular, for an ultrarelativistic particle there is no WPS in the direction of
particle momentum and this is in agreement with the results of Sec. 2.5.

We conclude that in our approach an ultrarelativistic particle (e.g. the
photon) experiences WPS neither in the direction of its momentum nor in transverse
directions, i.e. the WPS effect for an ultrarelativistic particle is absent at all.

Let us note that the absence of WPS in transverse directions is simply
a consequence of the fact that a consistently defined operator R⊥ commutes with
the Hamiltonian, i.e. r⊥ is a conserving physical quantity. On the other hand, the
longitudinal coordinate cannot be conserving since a particle is moving along the
direction of its momentum. However, in a special case of ultrarelativistic particle the
absence of WPS is simply a consequence of the fact that the wave function given by
Eq. (2.75) depends on r and t only via a combination of r − ct.

Consider now the spherically symmetric model discussed in Sec. 2.9 when
the momentum wave function is described by Eq. (2.42). As noted in Sec. 2.9,
this state is not semiclassical and hence a choice of the position operator adequately
describing this state is problematic. As noted in Sec. 2.9, the standard choice leads
to the result given by Eq. (2.51) which is counterintuitive. We now consider what
happens when the state (2.42) is described by the position operator proposed in Sec.
2.11.

Since the angular momentum of the state (2.42) is zero, it follows from
Eq. (2.53) that ||R⊥χ|| ≤ λ||χ||. Therefore when we consider large distances, the
contribution of R⊥ can be neglected. Then, as follows from Eq. (2.55), the position
operator in this situation is R = GR||. In this approximation different components
of the position operator commute with each other. Therefore one can define the
coordinate wave function which in the given case again has the form (2.46).

Since p = Gp, G acts only on angular variables and R|| acts only on the
variable p we conclude that in the given case the angular parts of the position and
momentum operators are the same in contrast to the situation in standard theory
where those parts are related to each other by the Fourier transform.

As noted in Sec. 2.9, in standard theory the angular resolution correspond-
ing to Eq. (2.51) is a quantity of the order of λ/d while from obvious geometrical
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considerations one might think that this quantity should be of the order of R/L.
However, now the value of the angular resolution is exactly what it should be from
the geomentical considerations.

Indeed, as noted in Sec. 2.9, for calculating the angular resolution one
should project the coordinate wave function on the state having the support inside
the volume V where the photon will be measured. Suppose that the coordinate wave
function is spherically symmetric with respect to the origin characterized by r0 = 0
and one of the conditions characterizing the volume is such that the angular variables
are in the range within the element do of the solid angle. Then in view of the fact
that angular variables in the coordinate and momentum wave functions are the same,
any measurement of the photon momentum inside V can give only the results where
the photon momentum is inside do. Therefore, as noted in Sec. 2.9, for a pointlike
source of light the angular resolution is of the order of d/L and for a star with the
radius R the resolution is of the order of R/L. Hence, in contrast to the situation
discussed in Sec. 2.9, there is no blurring of astronomical images because the angular
resolution is always ideal and does not depend on d. However, details of astronomical
objects will be distinguishable only if d is rather large because, as follows from Eq.
(2.49), the norm of the function Pψ(r, t) is of the order of d/L.

2.14 Summary

In this chapter we consider a problem of constructing position operator in quantum
theory. As noted in Sec. 2.1, this operator is needed in situations where semiclassical
approximation works with a high accuracy and the example with the spherically sym-
metric case discussed at the end of the preceding section indicates that this operator
can be useful in other problems.

A standard choice of the position operator in momentum space is ih̄∂/∂p.
A motivation for this choice is discussed in Sec. 2.2. We note that the standard defini-
tion is not consistent since ih̄∂/∂pj cannot be a physical position operator in directions
where the momentum is small. Physicists did not pay attention to the inconsistency
probably for the following reason: as explained in standard textbooks on quantum
mechanics, the transition from quantum to classical theory can be performed such
that if the coordinate wave function contains a rapidly oscillating exponent exp(iS/h̄)
where S is the classical action then in the formal limit h̄→ 0 the Schrödinger equation
becomes the Hamilton-Jacobi equation.

However, an inevitable consequence of standard quantum theory is the
effect of wave packet spreading (WPS). This fact has not been considered as a draw-
back of the theory. Probably the reasons are that for macroscopic bodies this effect
is extremely small while in experiments on the Earth with atoms and elementary
particles spreading probably does not have enough time to manifest itself. However,
for photons travelling to the Earth from distant objects this effect is considerable,
and it seems that this fact has been overlooked by physicists.
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As shown in Sec. 2.9, if the WPS effect for photons travelling to Earth
from distant objects is as given by standard theory then we have several fundamental
paradoxes: a) if the major part of photons emitted by stars are in wave packet states
(what is the most probable scenario) then we should see not stars but only an almost
continuous background from all stars; b) no anisotropy of the relic radiation could be
observable; c) the effect of WPS is incompatible with the data on gamma-ray bursts;
d) communication with distant space probes could not be possible; e) the Shapiro
delay could not be explained only in the framework of classical theory; f) the fact
that we can observe pulsars could not be explained. In addition, the consideration in
Secs. 2.9 and 2.13 poses the following questions: g) how is it possible to verify that the
angular resolution of a star in the part of the spectrum corresponding to transitions
between atomic levels is of the order of λ/d rather than R/L?; h) are predictions
of standard theory on the WPS effect for protons in the LHC ring compatible with
experimental data? We have also noted that in the scenario when the quantities N⊥
are not very large, even images of planets will be blurred.

In Sec. 2.7 it is shown that, from the point of view of standard quantum
theory, there exists the WPW paradox that after some period of time the transversal
widths of the coordinate wave functions for photons comprising a classical wave packet
will be typically much greater than the transversal width of the classical packet as a
whole. This situation seems to be fully unphysical since, as noted in Sec. 2.7, different
photons in a classical wave packet do not interfere with each other. The calculations in
Sec. 2.5 show that the reason of the WPW paradox is that in directions perpendicular
to the particle momentum the standard position operator is defined inconsistently. At
the same time, as shown in Sec. 2.8, fow coherent states the WPS effect is pronounced
in a much less extent than for individual photons.

We propose a new definition of the position operator which we treat as
consistent for the following reasons. Our position operator is defined by two compo-
nents - in the direction along the momentum and in perpendicular directions. The
first part has a familiar form ih̄∂/∂p and is treated as the operator of the longitudinal
coordinate if the magnitude of p is rather large. At the same condition the position
operator in the perpendicular directions is defined as a quantum generalization of the
relation r⊥×p = L. So in contrast to the standard definition of the position operator,
the new operator is expected to be physical only if the magnitude of the momentum
is rather large.

As a consequence of our construction, WPS in directions perpendicular to
the particle momentum is absent regardless of whether the particle is nonrelativistic
or relativistic. Moreover, for an ultrarelativistic particle the effect of WPS is absent
at all.

As noted in Sec. 2.7, in standard quantum theory photons comprising
a classical electromagnetic wave packet cannot be (approximately) treated as point-
like particles in view of the WPW paradox. However, in our approach, in view of
the absence of WPS for massless particles, the usual intuition is restored and photons
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comprising a divergent classical wave packet can be (approximately) treated as point-
like particles. Moreover, the phenomenon of divergence of a classical wave packet can
now be naturally explained simply as a consequence of the fact that different photons
in the packet have different momenta.

Our result resolves the above paradoxes and, in view of the above discus-
sion, also poses a problem whether the results of classical electrodynamics can be
applied for wave packets moving for a long period of time. For example, as noted in
Sec. 2.9, even classical theory predicts that when a wave packet emitted in gamma-
ray bursts or by a pulsar reaches the Earth, the width of the packet is extremely large
(while the value predicted by standard quantum theory is even much greater) and this
poses a problem whether such a packet can be detected. We believe that a natural
explanation of why classical theory does not apply in this case is as follows. As noted
in Sec. 2.4, classical electromagnetic fields should be understood as a result of tak-
ing mean characteristics for many photons. Then the fields will be (approximately)
continuous if the density of the photons is high. However, for a divergent beam of
photons their density decreases with time. Hence after a long period of time the
mean characteristics of the photons in the beam cannot represent continuous fields.
In other words, in this situation the set of photons cannot be effectively described by
classical electromagnetic fields.

A picture that a classical wave packet can be treated as a collection of (al-
most) pointlike photons also sheds new light on the explanation of known phenomena.
Suppose that a wide beam of visible light falls on a screen which is perpendicular to
the direction of light. Suppose that the total area of the screen is S but the surface
contains slits with the total area S1. We are interested in the question of what part
of the light will pass the screen. The answer that the part equals S1/S follows from
the picture that the light consists of many almost pointlike photons moving along
geometrical trajectories and hence only the S1/S part of the photons will pass the
surface. Numerous experiments show that deviations from the above answer begin to
manifest in interference experiments where dimensions of slits and distances between
them have the order of tens or hundreds of microns or even less. In classical theory
interference is explained as a phenomenon arising when the wave length of the clas-
sical electromagnetic wave becomes comparable to dimensions of slits and distances
between them. However, as noted in Sec. 2.4, the notion of wave length does not have
the usual meaning on quantum level. From the point of view of particle theory, the
phenomenon of interference has a natural explanation that it occurs when dimensions
of slits and distances between them become comparable to the typical width of the
photon wave function.

Our results on the position operator also pose a problem how the inter-
ference phenomenon should be explained on the level of single photons. The usual
qualitative explanation is as follows. Suppose that the mean momentum of a photon
is directed along the z axis perpendicular to a screen. If the (x, y) dependence of
the photon wave function is highly homogeneous then the quantities ∆px and ∆py
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are very small. When the photon passes the screen with holes, its wave function
is not homogeneous in the xy plane anymore. As a result, the quantities ∆px and
∆py become much greater and the photon can be detected in points belonging to the
geometrical shadow. However, such an explanation is problematic for the following
reason. Since the mean values of the x and y components of the photon momentum
are zero, as noted in Secs. 2.2 and 2.4, the (x, y) dependence of the wave function
cannot be semiclassical and, as it has been noted throughout the paper, in that case
standard position operator in the xy plane is not consistently defined.

Different components of the new position operator do not commute with
each other and, as a consequence, there is no wave function in coordinate representa-
tion. In particular, there is no quantum analog of the coordinate Coulomb potential
(see the discussion in Sec. 2.1). A possibility that coordinates can be noncommuta-
tive has been first discussed by Snyder [78] and it is implemented in several modern
theories. In those theories the measure of noncommutativity is defined by a param-
eter l called the fundamental length (the role of which can be played e.g. by the
Planck length or the Schwarzschild radius). In the formal limit l → 0 the coordinates
become standard ones related to momenta by a Fourier transform. As shown in Sec.
2.9, this is unacceptable in view of the WPS paradoxes. One of ideas of those the-
ories is that with a nonzero l it might be possible to resolve difficulties of standard
theory where l = 0 (see e.g. Ref. [79] and references therein). At the same time, in
our approach there can be no notion of fundamental length since commutativity of
coordinates takes place only in the formal limit h̄→ 0.

The position operator proposed in this chapter might be also important in
view of the following. There exists a wide literature discussing the Einstein-Podolsky-
Rosen paradox, locality in quantum theory, quantum entanglement, Bell’s theorem
and similar problems (see e.g. Ref. [58] and references therein). Consider, for ex-
ample, the following problem in standard theory. Let at t = 0 particles 1 and 2 be
localized inside finite volumes V1 and V2, respectively, such that the volumes are very
far from each other. Hence the particles don’t interact with each other. However, as
follows from Eq. (2.14), their wave functions will overlap at any t > 0 and hence the
interaction can be transmitted even with an infinite speed. This is often characterized
as quantum nonlocality, entanglement and/or action at a distance.

Consider now this problem in the framework of our approach. Since in this
approach there is no wave function in coordinate representation, there is no notion of
a particle localized inside a finite volume. In addition, as noted in Sec. 1.2, standard
treatment of time might be problematic. Hence a problem arises whether on quantum
level the notions of locality or nonlocality have a physical meaning. In our approach
spreading does not take place in directions perpendicular to the particle momenta
and for ultrarelativistic particles spreading does not occur at all. Hence, at least
in the case of ultrarelativistic particles, this kind of interaction does not occur in
agreement with classical intuition that no interaction can be transmitted with the
speed greater than c. This example poses a problem whether the position operator
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should be modified not only in directions perpendicular to particle momenta but also
in longitudinal directions such that the effect of WPS should be excluded at all.

The above discussion shows that the problem of transition from quantum
theory to classical one should be reformulated. This is not an academic but extremely
important problem of modern physics. Indeed, if we believe that quantum theory is
fundamental then it should describe not only atoms and elementary particles but
even the motion of bodies in the Solar System and in the World. So we need to know
how the evolution of macroscopic bodies should be described in quantum theory and
what is the correct choice of position operator.

As noted above, in directions perpendicular to the particle momentum the
choice of the position operation is based only on the requirement that semiclassical
approximation should reproduce the standard relation r⊥×p = L. This requirement
seems to be beyond any doubts since on classical level this relation is confirmed
in numerous experiments. At the same time, the choice ih̄∂/∂p of the coordinate
operator in the longitudinal direction is analogous to that in standard theory and
hence one might expect that this operator is physical if the magnitude of p is rather
large.

As shown in Chap. 4, the construction of the position operator described
in this chapter for the case of Poincare invariant theory can be generalized to the
case of de Sitter (dS) invariant theory. In this case the interpretation of the position
operator is even more important than in Poincare invariant theory. The reason is
that even the free two-body mass operator in the dS theory depends not only on the
relative two-body momentum but also on the distance between the particles.

As argued in Chap. 5, in dS theory over a Galois field the assumption that
the dS analog of the operator ih̄∂/∂p is the operator of the longitudinal coordinate
is not valid for macroscopic bodies (even if p is large) since in that case semiclassical
approximation is not valid. We have proposed a modification of the position operator
such that quantum theory reproduces for the two-body mass operator the mean value
compatible with the Newton law of gravity and precession of Mercury’s perihelion.
Then a problem arises how quantum theory can reproduce classical evolution for
macroscopic bodies.

Our result for ultrarelativistic particles can be treated as ideal: quan-
tum theory reproduces the motion along a classical trajectory without any spreading.
However, this is only a special case of one free elementary particle. If quantum the-
ory is treated as more general than the classical one then it should describe not only
elementary particles and atoms but even the motion of macroscopic bodies in the
Solar System and in the World. We believe that the assumption that the evolu-
tion of macroscopic bodies can be described by the Schrödinger equation is unphys-
ical. For example, if the motion of the Earth is described by the evolution operator
exp[−iH(t2 − t1)/h̄] where H is the Hamiltonian of the Earth then the quantity
H(t2 − t1)/h̄ becomes of the order of unity when t2 − t1 is a quantity of the order of
10−68s if the Hamiltonian is written in nonrelativistic form and 10−76s if it is written
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in relativistic form. Such time intervals seem to be unphysical and so in the given case
the approximation when t is a continuous parameter seems to be unphysical too. In
modern theories (e.g. in the Big Bang hypothesis) it is often stated that the Planck
time tP ≈ 10−43s is a physical minimum time interval. However, at present there are
no experiments confirming that time intervals of the order of 10−43s can be measured.

The time dependent Schrödinger equation has not been experimentally
verified and the major theoretical arguments in favor of this equation are as follows:
a) the Hamiltonian is the generator of the time translation in the Minkowski space; b)
this equation becomes the Hamilton-Jacobi one in the formal limit h̄→ 0. However, as
argued in Chap. 1, quantum theory should not be based on the space-time background
and the conclusion b) is made without taking into account the WPS effect. Hence
the problem of describing evolution in quantum theory remains open.

The above examples show that at macroscopic level a consistent definition
of the transition from quantum to classical theory is the fundamental open problem.
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Chapter 3

Basic properties of dS quantum
theories

3.1 dS invariance vs. AdS and Poincare invariance

As already mentioned, one of the motivations for this work is to investigate whether
standard gravity can be obtained in the framework of a free theory. In standard
nonrelativistic approximation, gravity is characterized by the term −Gm1m2/r in
the mean value of the mass operator. Here G is the gravitational constant, m1 and
m2 are the particle masses and r is the distance between the particles. Since the
kinetic energy is always positive, the free nonrelativistic mass operator is positive
definite and therefore there is no way to obtain gravity in the framework of the free
theory. Analogously, in Poincare invariant theory the spectrum of the free two-body
mass operator belongs to the interval [m1 + m2,∞) while the existence of gravity
necessarily requires that the spectrum should contain values less than m1 +m2.

In theories where the symmetry algebra is the AdS algebra so(2,3), the
structure of IRs is well-known (see e.g. Ref. [80] and Chap. 8). In particular, for
positive energy IRs the AdS Hamiltonian has the spectrum in the interval [m,∞) and
m has the meaning of the mass. Therefore the situation is pretty much analogous to
that in Poincare invariant theories. In particular, the free two-body mass operator
again has the spectrum in the interval [m1 +m2,∞) and therefore there is no way to
reproduce gravitational effects in the free AdS invariant theory.

As noted in Sec. 1.4, the existing experimental data practically exclude
the possibility that Λ ≤ 0 and this is a strong argument in favor of dS symmetry vs.
Poincare and AdS ones. As argued in Sect. 1.3, quantum theory should start not
from space-time but from a symmetry algebra. Therefore the choice of dS symmetry
is natural and the cosmological constant problem does not exist. However, as noted
in Secs. 1.4 and 1.5, the majority of physicists prefer to start from a flat space-time
and treat Poincare symmetry as fundamental while dS one as emergent.

In contrast to the situation in Poincare and AdS invariant theories, the
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free mass operator in dS theory is not bounded below by the value of m1 +m2. The
discussion in Sect. 3.6 shows that this property by no means implies that the theory is
unphysical. Therefore if one has a choice between Poincare, AdS and dS symmetries
then the only chance to describe gravity in a free theory is to choose dS symmetry.

3.2 IRs of the dS algebra

In view of the definition of elementary particle discussed in Sec. 2.4, we accept that,
by definition, elementary particles in dS invariant theory are described by IRs of the
dS algebra by Hermitian operators. For different reasons, there exists a vast literature
not on such IRs but on UIRs of the dS group. References to this literature can be
found e.g., in our papers [36, 35, 37] where we used the results on UIRs of the dS group
for constructing IRs of the dS algebra by Hermitian operators. In this section we will
describe the construction proceeding from an excellent description of UIRs of the dS
group in a book by Mensky [46]. The final result is given by explicit expressions for
the operators Mab in Eqs. (3.16) and (3.17). The readers who are not interested in
technical details can skip the derivation.

The elements of the SO(1,4) group will be described in the block form

g =

∥

∥

∥

∥

∥

∥

g00 aT g04
b r c
g40 dT g44

∥

∥

∥

∥

∥

∥

(3.1)

where

a =

∥

∥

∥

∥

∥

∥

a1

a2

a3

∥

∥

∥

∥

∥

∥

, bT =
∥

∥ b1 b2 b3
∥

∥ , r ∈ SO(3) (3.2)

and the subscript T means a transposed vector.
UIRs of the SO(1,4) group belonging to the principle series of UIRs are

induced from UIRs of the subgroup H (sometimes called “little group”) defined as
follows [46]. Each element of H can be uniquely represented as a product of elements
of the subgroups SO(3), A and T: h = rτAaT where

τA =

∥

∥

∥

∥

∥

∥

cosh(τ) 0 sinh(τ)
0 1 0

sinh(τ) 0 cosh(τ)

∥

∥

∥

∥

∥

∥

aT =

∥

∥

∥

∥

∥

∥

1 + a2/2 −aT a2/2
−a 1 −a

−a2/2 aT 1− a2/2

∥

∥

∥

∥

∥

∥

(3.3)

The subgroup A is one-dimensional and the three-dimensional group T is the dS
analog of the conventional translation group (see e.g., Ref. [46, 81]). We believe it
should not cause misunderstandings when 1 is used in its usual meaning and when to
denote the unit element of the SO(3) group. It should also be clear when r is a true
element of the SO(3) group or belongs to the SO(3) subgroup of the SO(1,4) group.
Note that standard UIRs of the Poincare group are induced from the little group,
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which is a semidirect product of SO(3) and four-dimensional translations and so the
analogy between UIRs of the Poincare and dS groups is clear.

Let r → ∆(r; s) be an UIR of the group SO(3) with the spin s and τA →
exp(imdSτ) be a one-dimensional UIR of the group A, where mdS is a real parameter.
Then UIRs of the group H used for inducing to the SO(1,4) group, have the form

∆(rτAaT;mdS, s) = exp(imdSτ)∆(r; s) (3.4)

We will see below that mdS has the meaning of the dS mass and therefore UIRs of the
SO(1,4) group are defined by the mass and spin, by analogy with UIRs in Poincare
invariant theory.

Let G=SO(1,4) and X = G/H be the factor space (or coset space) of G
over H . The notion of the factor space is known (see e.g., Refs. [82, 46]). Each
element x ∈ X is a class containing the elements xGh where h ∈ H , and xG ∈ G is a
representative of the class x. The choice of representatives is not unique since if xG
is a representative of the class x ∈ G/H then xGh0, where h0 is an arbitrary element
from H , also is a representative of the same class. It is known that X can be treated
as a left G space. This means that if x ∈ X then the action of the group G on X can
be defined as follows: if g ∈ G then gx is a class containing gxG (it is easy to verify
that such an action is correctly defined). Suppose that the choice of representatives
is somehow fixed. Then gxG = (gx)G(g, x)H where (g, x)H is an element of H . This
element is called a factor.

The explicit form of the operators Mab depends on the choice of represen-
tatives in the space G/H . As explained in works on UIRs of the SO(1,4) group (see
e.g., Ref. [46]), to obtain the possible closest analogy between UIRs of the SO(1,4)
and Poincare groups, one should proceed as follows. Let vL be a representative of
the Lorentz group in the factor space SO(1,3)/SO(3) (strictly speaking, we should
consider SL(2, C)/SU(2)). This space can be represented as the velocity hyperboloid
with the Lorentz invariant measure

dρ(v) = d3v/v0 (3.5)

where v0 = (1 + v2)1/2. Let I ∈ SO(1, 4) be a matrix which formally has the same
form as the metric tensor η. One can show (see e.g., Refs. [46] for details) that
X = G/H can be represented as a union of three spaces, X+, X− and X0 such that
X+ contains classes vLh, X− contains classes vLIh and X0 has measure zero relative
to the spaces X+ and X− (see also Sec. 3.4).

As a consequence, the space of UIR of the SO(1,4) group can be imple-
mented as follows. If s is the spin of the particle under consideration, then we use
||...|| to denote the norm in the space of UIR of the group SU(2) with the spin s. Then
the space of UIR is the space of functions {f1(v), f2(v)} on two Lorentz hyperboloids
with the range in the space of UIR of the group SU(2) with the spin s and such that

∫

[||f1(v)||2 + ||f2(v)||2]dρ(v) <∞ (3.6)
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It is known that positive energy UIRs of the Poincare and AdS groups
(associated with elementary particles) are implemented on an analog of X+ while
negative energy UIRs (associated with antiparticles) are implemented on an analog
ofX−. Since the Poincare and AdS groups do not contain elements transforming these
spaces to one another, the positive and negative energy UIRs are fully independent.
At the same time, the dS group contains such elements (e.g. I [46, 81]) and for this
reason its UIRs can be implemented only on the union of X+ and X−. Even this fact
is a strong indication that UIRs of the dS group cannot be interpreted in the same
way as UIRs of the Poincare and AdS groups.

A general construction of the operators Mab follows. We first define right
invariant measures on G = SO(1, 4) and H . It is known (see e.g. Ref. [82]) that for
semisimple Lie groups (which is the case for the dS group), the right invariant measure
is simultaneously the left invariant one. At the same time, the right invariant measure
dR(h) on H is not the left invariant one, but has the property dR(h0h) = ∆(h0)dR(h),
where the number function h → ∆(h) on H is called the module of the group H . It
is easy to show [46] that

∆(rτAaT) = exp(−3τ) (3.7)

Let dρ(x) be a measure on X = G/H compatible with the measures on G and H .
This implies that the measure on G can be represented as dρ(x)dR(h). Then one can
show [46] that if X is a union of X+ and X− then the measure dρ(x) on each Lorentz
hyperboloid coincides with that given by Eq. (3.5). Let the representation space be
implemented as the space of functions ϕ(x) on X with the range in the space of UIR
of the SU(2) group such that

∫

||ϕ(x)||2dρ(x) <∞ (3.8)

Then the action of the representation operator U(g) corresponding to g ∈ G is

U(g)ϕ(x) = [∆((g−1, x)H)]
−1/2∆((g−1, x)H ;mdS, s)

−1ϕ(g−1x) (3.9)

One can directly verify that this expression defines a unitary representation. Its
irreducibility can be proved in several ways (see e.g. Ref. [46]).

As noted above, if X is the union of X+ and X−, then the representation
space can be implemented as in Eq. (3.4). Since we are interested in calculating only
the explicit form of the operators Mab, it suffices to consider only elements of g ∈ G
in an infinitely small vicinity of the unit element of the dS group. In that case one
can calculate the action of representation operators on functions having the carrier
in X+ and X− separately. Namely, as follows from Eq. (3.7), for such g ∈ G, one has
to find the decompositions

g−1vL = v′
Lr

′(τ ′)A(a
′)T (3.10)

and
g−1vLI = v”LIr”(τ”)A(a”)T (3.11)
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where r′, r” ∈ SO(3). In this expressions it suffices to consider only elements of H
belonging to an infinitely small vicinity of the unit element.

The problem of choosing representatives in the spaces SO(1,3)/SO(3) or
SL(2.C)/SU(2) is well-known in standard theory. The most usual choice is such that
vL as an element of SL(2,C) is given by

vL =
v0 + 1 + vσ
√

2(1 + v0)
(3.12)

Then by using a known relation between elements of SL(2,C) and SO(1,3) we obtain
that vL ∈ SO(1, 4) is represented by the matrix

vL =

∥

∥

∥

∥

∥

∥

v0 vT 0
v 1 + vvT/(v0 + 1) 0
0 0 1

∥

∥

∥

∥

∥

∥

(3.13)

As follows from Eqs. (3.4) and (3.9), there is no need to know the ex-
pressions for (a′)T and (a”)T in Eqs. (3.10) and (3.11). We can use the fact [46]
that if e is the five-dimensional vector with the components (e0 = 1, 0, 0, 0, e4 = −1)
and h = rτAaT, then he = exp(−τ)e regardless of the elements r ∈ SO(3) and aT.
This makes it possible to easily calculate (v′

L,v”L, (τ
′)A, (τ”)A) in Eqs. (3.10) and

(3.11). Then one can calculate (r′, r”) in these expressions by using the fact that the
SO(3) parts of the matrices (v′

L)
−1g−1vL and (v”L)

−1g−1vL are equal to r′ and r”,
respectively.

The relation between the operators U(g) and Mab follows. Let Lab be the
basis elements of the Lie algebra of the dS group. These are the matrices with the
elements

(Lab)
c
d = δcdηbd − δcbηad (3.14)

They satisfy the commutation relations

[Lab, Lcd] = ηacLbd − ηbcLad − ηadLbc + ηbdLac (3.15)

Comparing Eqs. (1.4) and (3.15) it is easy to conclude that the Mab should be the
representation operators of −iLab. Therefore if g = 1 + ωabL

ab, where a sum over
repeated indices is assumed and the ωab are such infinitely small parameters that
ωab = −ωba then U(g) = 1 + iωabM

ab.
We are now in position to write down the final expressions for the operators

Mab. Their action on functions with the carrier in X+ has the form

M(+) = l(v) + s, N(+) = −iv0
∂

∂v
+

s× v

v0 + 1

B(+) = mdSv + i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v] +

s× v

v0 + 1

E (+) = mdSv0 + iv0(v
∂

∂v
+

3

2
) (3.16)
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where J = {M23,M31,M12}, N = {M01,M02,M03}, B = {M41,M42,M43}, s is the
spin operator, l(v) = −iv × ∂/∂v and E = M40. At the same time, the action on
functions with the carrier in X− is given by

J(−) = l(v) + s, N(−) = −iv0
∂

∂v
+

s× v

v0 + 1

B(−) = −mdSv− i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v]− s× v

v0 + 1

E (−) = −mdSv0 − iv0(v
∂

∂v
+

3

2
) (3.17)

Note that the expressions for the action of the Lorentz algebra operators
on X+ and X− are the same and they coincide with the corresponding expressions
for IRs of the Poincare algebra. At the same time, the expressions for the action of
the operators M4µ on X+ and X− differ by sign.

In deriving Eqs. (3.16) and (3.17) we have used only the commutation
relations (1.4), no approximations have been made and the results are exact. In
particular, the dS space, the cosmological constant and the Riemannian geometry
have not been involved at all. Nevertheless, the expressions for the representation
operators is all we need to have the maximum possible information in quantum theory.
As shown in the literature (see e.g. Ref. [46]), the above construction of IRs applies
to IRs of the principle series where mdS is a nonzero real parameter. Therefore such
IRs are called massive.

A problem arises how mdS is related to the standard particle mass m in
Poincare invariant theory. In view of the contraction procedure described in Sec. 1.3,
one can assume that mdS > 0 and define m = mdS/R, P = B/R and E = E/R.
The set of operators (E,P) is the Lorentz vector since its components can be written
as M4ν/R (ν = 0, 1, 2, 3). Then, as follows from Eqs. (1.4), in the limit when
R → ∞, mdS → ∞ but mds/R is finite, one obtains from Eq. (3.16) a standard
positive energy representation of the Poincare algebra for a particle with the mass m
such that P = mv is the particle momentum and E = mv0 is the particle energy.
Analogously one obtains a negative energy representation from Eq. (3.17). Therefore
m is the standard mass in Poincare invariant theory and the operators of the Lorentz
algebra (N,J) have the same form for the Poincare and dS algebras.

In Sect. 1.4 we have argued that fundamental physical theory should not
contain dimensionful parameters at all. In this connection it is interesting to note that
the de Sitter mass mdS is a ratio of the radius of the World R to the Compton wave
length of the particle under consideration. Therefore even for elementary particles
the de Sitter masses are very large. For example, if R is of the order of 1026m then
the de Sitter masses of the electron, the Earth and the Sun are of the order of 1039,
1093 and 1099, respectively. The fact that even the dS mass of the electron is so large
might be an indication that the electron is not a true elementary particle. Moreover,
the present upper level for the photon mass is 10−18ev which seems to be an extremely
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tiny quantity. However, the corresponding dS mass is of the order of 1015 and so even
the mass which is treated as extremely small in Poincare invariant theory might be
very large in dS invariant theory.

The operator N contains i∂/∂v which is proportional to the standard
coordinate operator i∂/∂p. The factor v0 in N is needed for Hermiticity since the
volume element is given by Eq. (3.5). Such a construction can be treated as a
relativistic generalization of standard coordinate operator and then the orbital part
of N is proportional to the Newton-Wigner position operator [20]. However, as shown
in Chap. 2, this operator does not satisfy all the requirements for the coordinate
operator.

In Poincare invariant theory the operator I2P = E2 − P2 is the Casimir
operator, i.e., it commutes with all the representation operators. According to the
known Schur lemma in representation theory, all elements in the space of IR are
eigenvectors of the Casimir operators with the same eigenvalue. In particular, they
are the eigenvectors of the operator I2P with the eigenvalue m2. As follows from Eq.
(1.4), in the dS case the Casimir operator of the second order is

I2 = −1

2

∑

ab

MabM
ab = E2 +N2 −B2 − J2 (3.18)

and a direct calculation shows that for the operators (3.16) and (3.17) the numerical
value of I2 is m

2
dS − s(s+1)+ 9/4. In Poincare invariant theory the value of the spin

is related to the Casimir operator of the fourth order which can be constructed from
the Pauli-Lubanski vector. An analogous construction exists in dS invariant theory
but we will not dwell on this.

3.3 Absence of Weyl particles in dS invariant the-

ory

According to Standard Model, only massless Weyl particles can be fundamental ele-
mentary particles in Poincare invariant theory. Therefore a problem arises whether
there exist analogs of Weyl particles in dS invariant theory. In Poincare invariant
theory, Weyl particles are characterized not only by the condition that their mass is
zero but also by the condition that they have a definite helicity. Several authors in-
vestigated dS and AdS analogs of Weyl particles proceeding from covariant equations
on the dS and AdS spaces, respectively. For example, the authors of Ref. [83] show
that Weyl particles arise only when dS or AdS symmetries are broken to Lorentz
symmetry. At the level of IRs, the existence of analogs of Weyl particles is known
in the AdS case. In Ref. [41] we investigated such analogs by using the results of
Refs. [80] for standard IRs of the AdS algebra (i.e. IRs over the field of complex
numbers) and the results of Ref. [84] for IRs of the AdS algebra over a Galois field
(see also Sec. 8.3 of the present work). In the standard case the minimum value of
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the AdS energy for massless IRs with positive energy is Emin = 1 + s. In contrast to
the situation in Poincare invariant theory, where massless particles cannot be in the
rest state, massless particles in the AdS theory do have rest states and the value of
the z projection of the spin in such states can be −s,−s+1, ..., s as usual. However,
for any value of the energy greater than Emin, the spin state is characterized only
by helicity, which can take the values either s or −s, i.e., we have the same result
as in Poincare invariant theory. In contrast to IRs of the Poincare and dS algebra,
IRs describing particles in AdS theory belong to the discrete series of IRs and the
energy spectrum is discrete: E = Emin, Emin + 1, ...,∞. Therefore, strictly speaking,
rest states do not have measure zero. Nevertheless, the probability that the energy is
exactly Emin is extremely small and therefore there exists a correspondence between
Weyl particles in Poincare and AdS theories.

In Poincare invariant theory, IRs describing Weyl particles can be con-
structing by analogy with massive IRs but the little group is now E(2) instead of
SO(3) (see e.g. Sec. 2.5 in the textbook [2]). The matter is that the representation
operators of the SO(3) group transform rest states into themselves but for mass-
less particles there are no rest states. However, there exists another way of getting
massless IRs: one can choose the variables for massive IRs in such a way that the
operators of massless IRs can be directly obtained from the operators of massive IRs
in the limit m → 0. This construction has been described by several authors (see
e.g. Refs. [85, 86, 56] and references therein) and the main stages follow. First,
instead of the (0, 1, 2, 3) components of vectors, we work with the so called light front
components (+,−, 1, 2) where v± = (v0 ± v3)/

√
2 and analogously for other vectors.

We choose (v+,v⊥) as three independent components of the 4-velocity vector, where
v⊥ = (vx, vy). In these variables the measure (3.5) on the Lorentz hyperboloid be-
comes dρ(v+,v⊥) = dv+dv⊥/v

+. Instead of Eq. (3.12) we now choose representatives
of the SL(2,C)/SU(2) classes as

vL =
1

(v0 + vz)1/2

∥

∥

∥

∥

v0 + vz 0
vx + ivy 1

∥

∥

∥

∥

(3.19)

and by using the relation between the groups SL(2,C) and SO(1,3) we obtain that
the form of this representative in the Lorentz group is

vL =

∥

∥

∥

∥

∥

∥

∥

∥

∥

√
2v+ 0 0 0
v2
⊥√
2v+

1√
2v+

vx
v+

vy
v+√

2vx 0 1 0√
2vy 0 0 1

∥

∥

∥

∥

∥

∥

∥

∥

∥

(3.20)

where the raws and columns are in the order (+,−, x, y).
By using the scheme described in the preceding section, we can now cal-

culate the explicit form of the representation operators of the Lorentz algebra. In
this scheme the form of these operators in the IRs of the Poincare and dS algebras is
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the same and in the case of the dS algebra the action is the same for states with the
carrier in X+ and X−. The results of calculations are:

M+− = iv+
∂

∂v+
, M+j = iv+

∂

∂vj
, M12 = lz(v⊥) + sz

M−j = −i(vj ∂

∂v+
+ v−

∂

∂vj
)− ǫjl

v+
(sl + vlsz) (3.21)

where a sum over j, l = 1, 2 is assumed and ǫjl has the components ǫ12 = −ǫ21 = 1,
ǫ11 = ǫ22 = 0. In Poincare invariant theories one can define the standard four-
momentum p = mv and choose (p+,p⊥) as independent variables. Then the expres-
sions in Eq. (3.21) can be rewritten as

M+− = ip+
∂

∂p+
, M+j = ip+

∂

∂pj
, M12 = lz(p⊥) + sz

M−j = −i(pj ∂

∂p+
+ p−

∂

∂pj
)− ǫjl

p+
(msl + plsz) (3.22)

In dS invariant theory we can work with the same variables if m is defined as mdS/R.
As seen from Eqs. (3.22), only the operators M−j contain a dependence

on the operators sx and sy but this dependence disappears in the limit m → 0. In
this limit the operator sz can be replaced by its eigenvalue λ which now has the
meaning of helicity. In Poincare invariant theory the four-momentum operators P µ

are simply the operators of multiplication by pµ and therefore massless particles are
characterized only by one constant—helicity.

In dS invariant theory one can calculate the action of the operatorsM4µ by
analogy with the calculation in the preceding section. The actions of these operators
on states with the carrier in X+ and X− differ only by sign and the result for the
actions on states with the carrier in X+ is

M4− = mdSv
− + i[v−(v+

∂

∂v+
+ vj

∂

∂vj
+

3

2
)− ∂

∂v+
] +

1

v+
ǫjlv

jsl

M4j = mdSv
j + i[vj(v+

∂

∂v+
+ vl

∂

∂vl
+

3

2
) +

∂

∂vj
]− ǫjls

l

M4+ = mdSv
+ + iv+(v+

∂

∂v+
+ vj

∂

∂vj
+

3

2
) (3.23)

If we define m = mdS/R and pµ = mvµ then for the operators P µ we have

P− = p− +
ip−

mR
(p+

∂

∂p+
+ pj

∂

∂pj
+

3

2
)− im

R

∂

∂p+
+

1

Rp+
ǫjlp

jsl

P j = pj +
ipj

mR
(p+

∂

∂p+
+ pl

∂

∂pl
+

3

2
) +

im

R

∂

∂pj
− 1

R
ǫjls

l

P+ = p+ +
ip+

mR
(p+

∂

∂p+
+ pj

∂

∂pj
+

3

2
) (3.24)
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Then it is clear that in the formal limit R → ∞ we obtain the standard Poincare
result. However, when R is finite, the dependence of the operators P µ on sx and sy
does not disappear. Moreover, in this case we cannot take the limit m→ 0. Therefore
we conclude that in dS theory there are no Weyl particles, at least in the case when
elementary particles are described by IRs of the principle series. Mensky conjectured
[46] that massless particles in dS invariant theory might correspond to IRs of the
discrete series with −imdS = 1/2 but this possibility has not been investigated. In
any case, in contrast to the situation in Poincare invariant theory, the limit of massive
IRs when m→ 0 does not give Weyl particles and moreover, this limit does not exist.

3.4 Other implementations of IRs

In this section we briefly describe two more implementations of IRs of the dS algebra.
The first one is based on the fact that since SO(1,4)=SO(4)AT and H=SO(3)AT
[46], there also exists a choice of representatives which is probably even more natural
than those described above. Namely, we can choose as representatives the elements
from the coset space SO(4)/SO(3). Since the universal covering group for SO(4)
is SU(2)×SU(2) and for SO(3) — SU(2), we can choose as representatives the ele-
ments of the first multiplier in the product SU(2)×SU(2). Elements of SU(2) can be
represented by the points u = (u, u4) of the three-dimensional sphere S3 in the four-
dimensional space as u4 + iσu where σ are the Pauli matrices and u4 = ±(1− u2)1/2

for the upper and lower hemispheres, respectively. Then the calculation of the oper-
ators is similar to that described above and the results follow. The Hilbert space is
now the space of functions ϕ(u) on S3 with the range in the space of the IR of the
su(2) algebra with the spin s and such that

∫

||ϕ(u)||2du <∞ (3.25)

where du is the SO(4) invariant volume element on S3. The explicit calculation shows
that in this case the operators have the form

J = l(u) + s, B = iu4
∂

∂u
− s, E = (mdS + 3i/2)u4 + iu4u

∂

∂u

N = −i[ ∂
∂u

− u(u
∂

∂u
)] + (mdS + 3i/2)u− u× s+ u4s (3.26)

Since Eqs. (3.6), (3.16) and (3.17) on one hand and Eqs. (3.25) and (3.26) on the other
are the different implementations of one and the same representation, there exists a
unitary operator transforming functions f(v) into ϕ(u) and operators (3.16,3.17) into
operators (3.26). For example in the spinless case the operators (3.16) and (3.26) are
related to each other by a unitary transformation

ϕ(u) = exp(−imdS lnv0)v
3/2
0 f(v) (3.27)
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where the relation between the points of the upper hemisphere and X+ is u = v/v0
and u4 = (1 − u2)1/2. The relation between the points of the lower hemisphere and
X− is u = −v/v0 and u4 = −(1− u2)1/2.

The equator of S3 where u4 = 0 corresponds to X0 and has measure zero
with respect to the upper and lower hemispheres. For this reason one might think that
it is of no interest for describing particles in dS theory. Nevertheless, an interesting
observation is that while none of the components of u has the magnitude greater than
unity, the set X0 in terms of velocities is characterized by the condition that |v| is
infinitely large and therefore the standard Poincare momentum p = mv is infinitely
large too. This poses a question whether p always has a physical meaning. From
mathematical point of view Eq. (3.26) might seem more convenient than Eqs. (3.16)
and (3.17) since S3 is compact and there is no need to break it into the upper and
lower hemispheres. In addition, Eq. (3.26) is an explicit implementation of the idea
that since in dS invariant theory all the variables (x1, x2, x3, x4) are on equal footing
and so(4) is the maximal compact kinematical algebra, the operators M and B do
not depend on mdS. However, those expressions are not convenient for investigating
Poincare approximation since the Lorentz boost operators N depend on mdS.

Finally, we describe an implementation of IRs based on the explicit con-
struction of the basis in the representation space. This construction is based on the
method of su(2)×su(2) shift operators, developed by Hughes [87] for constructing
UIRs of the group SO(5). It will be convenient for us to deal with the set of operators
(J′,J′′, Rij) (i, j = 1, 2) instead of Mab. Here J′ and J” are two independent su(2)
algebras (i.e., [J′,J′′] = 0). In each of them one chooses as the basis the operators
(J+, J−, J3) such that J1 = J++J−, J2 = −ı(J+−J−) and the commutation relations
have the form

[J3, J+] = 2J+, [J3, J−] = −2J−, [J+, J−] = J3 (3.28)

The commutation relations of the operators J′ and J” with Rij have the form

[J ′
3, R1j] = R1j , [J ′

3, R2j ] = −R2j , [J ′′
3 , Ri1] = Ri1,

[J ′′
3 , Ri2] = −Ri2, [J ′

+, R2j ] = R1j , [J ′′
+, Ri2] = Ri1,

[J ′
−, R1j ] = R2j , [J ′′

−, Ri1] = Ri2, [J ′
+, R1j ] =

[J ′′
+, Ri1] = [J ′

−, R2j ] = [J ′′
−, Ri2] = 0 (3.29)

and the commutation relations of the operators Rij with each other have the form

[R11, R12] = 2J ′
+, [R11, R21] = 2J ′′

+,

[R11, R22] = −(J ′
3 + J ′′

3 ), [R12, R21] = J ′
3 − J ′′

3

[R11, R22] = −2J ′′
−, [R21, R22] = −2J ′

− (3.30)
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The relation between the sets (J′,J”, Rij) and M
ab is given by

J = (J′ + J′′)/2, B = (J′ − J′′)/2, M01 = i(R11 − R22)/2,

M02 = (R11 +R22)/2, M03 = −i(R12 +R21)/2,

M04 = (R12 −R21)/2 (3.31)

Then it is easy to see that Eq. (1.4) follows from Eqs. (3.29–3.31) and vice versa.
Consider the space of maximal su(2)× su(2) vectors, i.e., such vectors x

that J ′
+x = J ′′

+x = 0. Then from Eqs. (3.29) and (3.30) it follows that the operators

A++ = R11, A+− = R12(J
′′
3 + 1)− J ′′

−R11, A−+ = R21(J
′
3 + 1)− J ′

−R11,

A−− = −R22(J
′
3 + 1)(J ′′

3 + 1) + J ′′
−R21(J

′
3 + 1) +

J ′
−R12(J

′′
3 + 1)− J ′

−J
′′
−R11 (3.32)

act invariantly on this space. The notations are related to the property that if xkl

(k, l > 0) is the maximal su(2)×su(2) vector and simultaneously the eigenvector of
operators J ′

3 and J3” with the eigenvalues k and l, respectively, then A++xkl is the
eigenvector of the same operators with the values k + 1 and l + 1, A+−xkl - the
eigenvector with the values k + 1 and l− 1, A−+xkl - the eigenvector with the values
k − 1 and l + 1 and A−−xkl - the eigenvector with the values k − 1 and l − 1.

The basis in the representation space can be explicitly constructed as-
suming that there exists a vector e0 which is the maximal su(2)×su(2) vector such
that

J ′
3e0 = 0, J ′′

3 e0 = se0, A−−e0 = A−+e0 = 0, I2e
0 = [m2

dS − s(s+ 1) + 9/4]e0

(3.33)
Then, as shown in Ref. [35], the full basis of the representation space consists of
vectors

enrij = (J ′
−)

i(J ′′
−)

j(A++)n(A+−)re0 (3.34)

where n = 0, 1, 2, ..., r can take only the values 0, 1, ..., 2s and for the given n and s,
i can take the values 0, 1, ..., n+ r and j can take the values 0, 1, ..., n+ 2s− r.

These results show that IRs of the dS algebra can be constructed purely
algebraically without involving analytical methods of the theory of UIRs of the dS
group. As shown in Ref. [35], this implementation is convenient for generalizing
standard quantum theory to a quantum theory over a Galois field. In Chap. 4 we
consider in detail the algebraic construction of IRs in the spinless case and the results
are applied to gravity.

3.5 Physical interpretation of IRs of the dS alge-

bra

In Secs. 3.2–3.4 we discussed mathematical properties of IRs of the dS algebra. In
particular it has been noted that they are implemented on two Lorentz hyperboloids,
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not one as IRs of the Poincare algebra. Therefore the number of states in IRs of the
dS algebra is twice as big as in IRs of the Poincare algebra. A problem arises whether
this is compatible with a requirement that any dS invariant theory should become
a Poincare invariant one in the formal limit R → ∞. Although there exists a wide
literature on IRs of the dS group and algebra, their physical interpretation has not
been widely discussed. Probably one of the reasons is that physicists working on dS
QFT treat fields as more fundamental objects than particles (although the latter are
observables while the former are not).

In his book [46] Mensky notes that, in contrast to IRs of the Poincare
and AdS groups, IRs of the dS group characterized by mdS and −mdS are unitarily
equivalent and therefore the energy sign cannot be used for distinguishing particles
and antiparticles. He proposes an interpretation where a particle and its antiparticle
are described by the same IRs but have different space-time descriptions (defined
by operators intertwining IRs with representations induced from the Lorentz group).
Mensky shows that in the general case his two solutions still cannot be interpreted as a
particle and its antiparticle, respectively, since they are nontrivial linear combinations
of functions with different energy signs. However, such an interpretation is recovered
in Poincare approximation.

In view of the above discussion, it is desirable to give an interpretation of
IRs which does not involve space-time. In Ref. [37] we have proposed an interpreta-
tion such that one IR describes a particle and its antiparticle simultaneously. In this
section this analysis is extended.

3.5.1 Problems with physical interpretation of IRs

Consider first the case when the quantity mdS is very large. Then, as follows from
Eqs. (3.16) and (3.17), the action of the operators M4µ on states localized on X+

or X− can be approximately written as ±mdSv
µ, respectively. Therefore a question

arises whether the standard Poincare energy E can be defined as E =M04/R. Indeed,
with such a definition, states localized on X+ will have a positive energy while states
localized on X− will have a negative energy. Then a question arises whether this is
compatible with the standard interpretation of IRs, according to which the following
requirements should be satisfied:

Standard-Interpretation Requirements: Each element of the full represen-
tation space represents a possible physical state for the given elementary particle.
The representation describing a system of N free elementary particles is the tensor
product of the corresponding single-particle representations.

Recall that the operators of the tensor product are given by sums of the
corresponding single-particle operators. For example, if E (1) is the operator E for
particle 1 and E (2) is the operator E for particle 2 then the operator E for the free
system {12} is given by E (12) = E (1) + E (2). Here it is assumed that the action of
the operator E (j) (j = 1, 2) in the two-particle space is defined as follows. It acts
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according to Eq. (3.16) or (3.17) over its respective variables while over the variables
of the other particle it acts as the identity operator.

One could try to satisfy the standard interpretation as follows.
A) Assume that in Poincare approximation the standard energy should be

defined as E = ±E/R where the plus sign should be taken for the states with the
carrier in X+ and as the minus sign—for the states with the carrier in X−. Then the
energy will always be positive definite.

B) One might say that the choice of the energy sign is only a matter
of convention. Indeed, to measure the energy of a particle with the mass m one
has to measure its momentum p and then the energy can be defined not only as
(m2 + p2)1/2 but also as −(m2 + p2)1/2. In that case the standard energy in the
Poincare approximation could be defined as E = E/R regardless of whether the
carrier of the given state is in X+ or X−.

It is easy to see that either of the above possibilities is incompatible with
Standard-Interpretation Requirements. Consider, for example, a system of two free
particles in the case when mdS is very large. Then with a high accuracy the operators
E/R and B/R can be chosen diagonal simultaneously.

Let us first assume that the energy should be treated according to B).
Then a system of two free particles with the equal masses can have the same quantum
numbers as the vacuum (for example, if the first particle has the energy E0 = (m2 +
p2)1/2 and momentum p while the second one has the energy −E0 and the momentum
−p) what obviously contradicts experiment. For this and other reasons it is known
that in Poincare invariant theory the particles should have the same energy sign.
Analogously, if the single-particle energy is treated according to A) then the result
for the two-body energy of a particle-antiparticle system will contradict experiment.

We conclude that IRs of the dS algebra cannot be interpreted in the stan-
dard way since such an interpretation is physically meaningless even in Poincare
approximation. The above discussion indicates that the problem we have is similar
to that with the interpretation of the fact that the Dirac equation has solutions with
both, positive and negative energies.

As already noted, in Poincare and AdS theories there exist positive energy
IRs implemented on the upper hyperboloid and negative energy IRs implemented on
the lower hyperboloid. In the latter case Standard-Interpretation Requirements are
not satisfied for the reasons discussed above. However, we cannot declare such IRs
unphysical and throw them away. In QFT quantum fields necessarily contain both
types of IRs such that positive energy IRs are associated with particles while negative
energy IRs are associated with antiparticles. Then the energy of antiparticles can be
made positive after proper second quantization. In view of this observation, we will
investigate whether IRs of the dS algebra can be interpreted in such a way that one
IR describes a particle and its antiparticle simultaneously such that states localized
on X+ are associated with a particle while states localized on X− are associated with
its antiparticle.
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By using Eq. (3.6), one can directly verify that the operators (3.16) and
(3.17) are Hermitian if the scalar product in the space of IR is defined as follows.
Since the functions f1(v) and f2(v) in Eq. (3.6) have the range in the space of IR of
the su(2) algebra with the spin s, we can replace them by the sets of functions f1(v, j)
and f2(v, j), respectively, where j = −s,−s+1, ..., s. Moreover, we can combine these
functions into one function f(v, j, ǫ) where the variable ǫ can take only two values,
say +1 or -1, for the components having the carrier in X+ or X−, respectively. If now
ϕ(v, j, ǫ) and ψ(v, j, ǫ) are two elements of our Hilbert space, their scalar product is
defined as

(ϕ, ψ) =
∑

j,ǫ

∫

ϕ(v, j, ǫ)∗ψ(v, j, ǫ)dρ(v) (3.35)

where the subscript ∗ applied to scalar functions means the usual complex conjugation.
At the same time, we use ∗ to denote the operator adjoint to a given one.

Namely, if A is the operator in our Hilbert space then A∗ means the operator such
that

(ϕ,Aψ) = (A∗ϕ, ψ) (3.36)

for all such elements ϕ and ψ that the left hand side of this expression is defined.
Even in the case of the operators (3.16) and (3.17) we can formally treat

them as integral operators with some kernels. Namely, if Aϕ = ψ, we can treat this
relation as

∑

j′,ǫ′

∫

A(v, j, ǫ;v′, j′, ǫ′)ϕ(v′, j′, ǫ′)dρ(v′) = ψ(v, j, ǫ) (3.37)

where in the general case the kernel A(v, j, ǫ;v′, j′, ǫ′) of the operator A is a distribu-
tion.

As follows from Eqs. (3.35–3.37), if B = A∗ then the relation between the
kernels of these operators is

B(v, j, ǫ;v′, j′, ǫ′) = A(v′, j′, ǫ′;v, j, ǫ)∗ (3.38)

In particular, if the operator A is Hermitian then

A(v, j, ǫ;v′, j′, ǫ′)∗ = A(v′, j′, ǫ′;v, j, ǫ) (3.39)

and if, in addition, its kernel is real then the kernel is symmetric, i.e.,

A(v, j, ǫ;v′, j′, ǫ′) = A(v′, j′, ǫ′;v, j, ǫ) (3.40)

In particular, this property is satisfied for the operators mdSv0 and mdSv in Eqs.
(3.16) and (3.17). At the same time, the operators

l(v) − iv0
∂

∂v
− i[

∂

∂v
+ v(v

∂

∂v
) +

3

2
v] − iv0(v

∂

∂v
+

3

2
) (3.41)
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which are present in Eqs. (3.16) and (3.17), are Hermitian but have imaginary kernels.
Therefore, as follows from Eq. (3.39), their kernels are antisymmetric:

A(v, j, ǫ;v′, j′, ǫ′) = −A(v′, j′, ǫ′;v, j, ǫ) (3.42)

In standard approach to quantum theory, the operators of physical quan-
tities act in the Fock space of the given system. Suppose that the system consists of
free particles and their antiparticles. Strictly speaking, in our approach it is not clear
yet what should be treated as a particle or antiparticle. The considered IRs of the dS
algebra describe objects such that (v, j, ǫ) is the full set of their quantum numbers.
Therefore we can define the annihilation and creation operators (a(v, j, ǫ), a(v, j, ǫ)∗)
for these objects. If the operators satisfy the anticommutation relations then we
require that

{a(v, j, ǫ), a(v′, j′, ǫ′)∗} = δjj′δǫǫ′v0δ
(3)(v − v′) (3.43)

while in the case of commutation relations

[a(v, j, ǫ), a(v′, j′, ǫ′)∗] = δjj′δǫǫ′v0δ
(3)(v − v′) (3.44)

In the first case, any two a-operators or any two a∗ operators anticommute with each
other while in the second case they commute with each other.

The problem of second quantization can now be formulated such that IRs
should be implemented as Fock spaces, i.e. states and operators should be expressed
in terms of the (a, a∗) operators. A possible implementation follows. We define the
vacuum state Φ0 such that it has a unit norm and satisfies the requirement

a(v, j, ǫ)Φ0 = 0 ∀ v, j, ǫ (3.45)

The image of the state ϕ(v, j, ǫ) in the Fock space is defined as

ϕF =
∑

j,ǫ

∫

ϕ(v, j, ǫ)a(v, j, ǫ)∗dρ(v)Φ0 (3.46)

and the image of the operator with the kernel A(v, j, ǫ;v′, j′, ǫ′) in the Fock space is
defined as

AF =
∑

j,ǫ,j′,ǫ′

∫ ∫

A(v, j, ǫ;v′, j′, ǫ′)a(v, j, ǫ)∗a(v′, j′, ǫ′)dρ(v)dρ(v′) (3.47)

One can directly verify that this is an implementation of IR in the Fock space. In
particular, the commutation relations in the Fock space will be preserved regardless of
whether the (a, a∗) operators satisfy commutation or anticommutation relations and,
if any two operators are adjoint in the implementation of IR described above, they
will be adjoint in the Fock space as well. In other words, we have a ∗ homomorphism
of Lie algebras of operators acting in the space of IR and in the Fock space.
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We now require that in Poincare approximation the energy should be pos-
itive definite. Recall that the operators (3.16) and (3.17) act on their respective
subspaces or in other words, they are diagonal in the quantum number ǫ.

Suppose that mdS > 0 and consider the quantized operator corresponding
to the dS energy E in Eq. (3.16). In Poincare approximation, E (+) = mdSv0 is fully
analogous to the standard free energy and therefore, as follows from Eq. (3.47), its
quantized form is

(E (+))F = mdS

∑

j

∫

v0a(v, j, 1)
∗a(v, j, 1)dρ(v) (3.48)

This expression is fully analogous to the quantized Hamiltonian in standard theory
and it is known that the operator defined in such a way is positive definite.

Consider now the operatorM
(−)
04 . In Poincare approximation its quantized

form is

(E (−))F == −mdS

∑

j

∫

v0a(v, j,−1)∗a(v, j,−1)dρ(v) (3.49)

and this operator is negative definite, what is unacceptable.
One might say that the operators a(v, j,−1) and a(v, j,−1)∗ are “non-

physical”: a(v, j,−1) is the operator of object’s annihilation with the negative energy,
and a(v, j,−1)∗ is the operator of object’s creation with the negative energy.

We will interpret the operator (E (−))F as that related to antiparticles. In
QFT the annihilation and creation operators for antiparticles are present in quantized
fields with the coefficients describing negative energy solutions of the corresponding
covariant equation. This is an implicit implementation of the idea that the creation
or annihilation of an antiparticle can be treated, respectively as the annihilation or
creation of the corresponding particle with the negative energy. In our case this idea
can be implemented explicitly.

Instead of the operators a(v, j,−1) and a(v, j,−1)∗, we define new op-
erators b(v, j) and b(v, j)∗. If b(v, j) is treated as the “physical” operator of an-
tiparticle annihilation then, according to the above idea, it should be proportional
to a(v,−j,−1)∗. Analogously, if b(v, j)∗ is the “physical” operator of antiparticle
creation, it should be proportional to a(v,−j,−1). Therefore

b(v, j) = η(j)a(v,−j,−1)∗ b(v, j)∗ = η(j)∗a(v,−j,−1) (3.50)

where η(j) is a phase factor such that

η(j)η(j)∗ = 1 (3.51)

As follows from this relations, if a particle is characterized by additive quantum
numbers (e.g., electric, baryon or lepton charges) then its antiparticle is characterized
by the same quantum numbers but with the minus sign. The transformation described
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by Eqs. (3.50) and (3.51) can also be treated as a special case of the Bogolubov
transformation discussed in a wide literature on many-body theory (see, e.g., Chap.
10 in Ref. [88] and references therein).

Since we treat b(v, j) as the annihilation operator and b(v, j)∗ as the cre-
ation one, instead of Eq. (3.45) we should define a new vacuum state Φ̃0 such that

a(v, j, 1)Φ̃0 = b(v, j)Φ̃0 = 0 ∀ v, j, (3.52)

and the images of states localized in X− should be defined as

ϕ
(−)
F =

∑

j,ǫ

∫

ϕ(v, j,−1)b(v, j)∗dρ(v)Φ̃0 (3.53)

In that case the (b, b∗) operators should be such that in the case of anticommutation
relations

{b(v, j), b(v′, j′)∗} = δjj′v0δ
(3)(v − v′), (3.54)

and in the case of commutation relations

[b(v, j), b(v′, j′)∗] = δjj′v0δ
(3)(v − v′) (3.55)

We have to verify whether the new definition of the vacuum and one-particle states
is a correct implementation of IR in the Fock space. A necessary condition is that
the new operators should satisfy the commutation relations of the dS algebra. Since
we replaced the (a, a∗) operators by the (b, b∗) operators only if ǫ = −1, it is obvious
from Eq. (3.47) that the images of the operators (3.16) in the Fock space satisfy Eq.
(1.4). Therefore we have to verify that the images of the operators (3.17) in the Fock
space also satisfy Eq. (1.4).

Consider first the case when the operators a(v, j, ǫ) satisfy the anticom-
mutation relations. By using Eq. (3.50) one can express the operators a(v, j,−1)
in terms of the operators b(v, j). Then it follows from the condition (3.50) that the
operators b(v, j) indeed satisfy Eq. (3.55). If the operator AF is defined by Eq. (3.47)
and is expressed only in terms of the (a, a∗) operators at ǫ = −1, then in terms of the
(b, b∗)-operators it acts on states localized in X− as

AF =
∑

j,j′

∫ ∫

A(v, j,−1;v′, j′,−1)η(j′)η(j)∗b(v,−j)b(v′,−j′)∗dρ(v)dρ(v′) (3.56)

As follows from Eq. (3.55), this operator can be written as

AF = C −
∑

j,j′

∫ ∫

A(v′,−j′,−1;v,−j,−1)η(j)η(j′)∗b(v, j)∗b(v′, j′)dρ(v)dρ(v′)

(3.57)
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where C is the trace of the operator AF

C =
∑

j

∫

A(v, j,−1;v, j,−1)dρ(v) (3.58)

and in general it is some an indefinite constant. The existence of infinities in the
standard approach is the well-known problem. Usually the infinite constant is elimi-
nated by requiring that all quantized operators should be written in the normal form
or by using another prescriptions. However, in dS theory this constant cannot be
eliminated since IRs are defined on the space which is a direct some of X+ and X−,
and the constant inevitably arise when one wishes to have an interpretation of IRs in
terms of particles and antiparticles. In Sec. 8.8 we consider an example when a con-
stant, which is infinite in standard theory, becomes zero in GFQT but this result can
be obtained only if the IR is implemented by using a basis characterized by discrete
numbers.

In this chapter we assume that neglecting the constant C can be somehow
justified. In that case if the operator AF is defined by Eq. (3.47) then in the case
of anticommutation relations its action on states localized in X− can be written as
in Eq. (3.57) with C = 0. Then, taking into account the properties of the kernels
discussed above, we conclude that in terms of the (b, b∗)-operators the kernels of the
operators (mdSv)F change their sign while the kernels of the operators in Eq. (3.41)
remain the same. In particular, the operator (−mdSv0)F acting on states localized on
X− has the same kernel as the operator (mdsv0)F acting on states localized in X+ has
in terms of the a-operators. This implies that in Poincare approximation the energy
of the states localized in X− is positive definite, as well as the energy of the states
localized in X+.

Consider now how the spin operator changes when the a-operators are
replaced by the b-operators. Since the spin operator is diagonal in the variable v, it
follows from Eq. (3.57) that the transformed spin operator will have the same kernel
if

si(j, j
′) = −η(j)η(j′)∗si(−j′,−j) (3.59)

where si(j, j
′) is the kernel of the operator si. For the z component of the spin operator

this relation is obvious since sz is diagonal in (j, j′) and its kernel is sz(j, j
′) = jδjj′.If

we choose η(j) = (−1)(s−j) then the validity of Eq. (3.59) for s = 1/2 can be verified
directly while in the general case it can be verified by using properties of 3j symbols.

The above results for the case of anticommutation relations can be sum-
marized as follows. If we replace mdS by −mdS in Eq. (3.17) then the new set of
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operators

J′ = l(v) + s, N′ = −iv0
∂

∂v
+

s× v

v0 + 1
,

B′ = mdSv− i[
∂

∂v
+ v(v

∂

∂v
) +

3

2
v]− s× v

v0 + 1
,

E ′ = mdSv0 − iv0(v
∂

∂v
+

3

2
) (3.60)

obviously satisfies the commutation relations (1.4). The kernels of these operators
define quantized operators in terms of the (b, b∗)-operators in the same way as the
kernels of the operators (3.16) define quantized operators in terms of the (a, a∗)-
operators. In particular, in Poincare approximation the energy operator acting on
states localized in X− can be defined as E ′ = E ′/R and in this approximation it is
positive definite.

At the same time, in the case of commutation relation the replacement
of the (a, a∗)-operators by the (b, b∗)-operators is unacceptable for several reasons.
First of all, if the operators a(v, j, ǫ) satisfy the commutation relations (3.44), the
operators defined by Eq. (3.50) will not satisfy Eq. (3.55). Also, the r.h.s. of
Eq. (3.57) will now have the opposite sign. As a result, the transformed operator
E will remain negative definite in Poincare approximation and the operators (3.41)
will change their sign. In particular, the angular momentum operators will no longer
satisfy correct commutation relations.

We have shown that if the definitions (3.45) and (3.46) are replaced by
(3.52) and (3.53), respectively, then the images of both sets of operators in Eq. (3.16)
and Eq. (3.17) satisfy the correct commutation relations in the case of anticom-
mutators. A question arises whether the new implementation in the Fock space is
equivalent to the IR described in Sec. 3.2. For understanding the essence of the
problem, the following very simple pedagogical example might be useful.

Consider a representation of the SO(2) group in the space of functions
f(ϕ) on the circumference ϕ ∈ [0, 2π] where ϕ is the polar angle and the points
ϕ = 0 and ϕ = 2π are identified. The generator of counterclockwise rotations is
A = −id/dϕ while the generator of clockwise rotations is B = id/dϕ. The equator
of the circumference contains two points, ϕ = 0 and ϕ = π and has measure zero.
Therefore we can represent each f(ϕ) as a superposition of functions with the carriers
in the upper and lower semi circumferences, S+ and S−. The operators A and B are
defined only on differentiable functions. The Hilbert space H contains not only such
functions but a set of differentiable functions is dense in H . If a function f(ϕ) is
differentiable and has the carrier in S+ then Af(ϕ) and Bf(ϕ) also have the carrier
in S+ and analogously for functions with the carrier in S−. However, we cannot define
a representation of the SO(2) group such that its generator is A on functions with
the carrier in S+ and B on functions with the carrier in S− because a counterclock-
wise rotation on S+ should be counterclockwise on S− and analogously for clockwise
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rotations. In other words, the actions of the generator on functions with the carriers
in S+ and S− cannot be independent.

In the case of finite dimensional representations, any IR of a Lie algebra
by Hermitian operators can be always extended to an UIR of the corresponding Lie
group. In that case the UIR has a property that any state is its cyclic vector i.e. the
whole representation space can be obtained by acting by representation operators on
this vector and taking all possible linear combinations. For infinite dimensional IRs
this is not always the case and there should exist conditions for IRs of Lie algebras by
Hermitian operators to be extended to corresponding UIRs. This problem has been
extensively discussed in the mathematical literature (see e.g. Ref. [82]). By analogy
with finite dimensional IRs, one might think that in the case of infinite dimensional
IRs there should exist an analog of the cyclic vector. In Sec. 3.4 we have shown that
for infinite dimensional IRs of the dS algebra this idea can be explicitly implemented
by choosing a cyclic vector and acting on this vector by operators of the enveloping
algebra of the dS algebra. This construction shows that the action of representation
operators on states with the carrier in X+ should define its action on states with the
carrier in X−, i.e. the action of representation operators on states with the carriers
in X+ and X− are not independent.

3.5.2 Example of transformation mixing particles and an-

tiparticles

We treated states localized in X+ as particles and states localized in X− as cor-
responding antiparticles. However, the space of IR contains not only such states.
There is no rule prohibiting states with the carrier having a nonempty intersection
with both, X+ and X−. Suppose that there exists a unitary transformation belonging
to the UIR of the dS group such that it transforms a state with the carrier in X+ to
a state with the carrier in X−. If the Fock space is implemented according to Eqs.
(3.45) and (3.46) then the transformed state will have the form

ϕ
(−)
F =

∑

j

∫

ϕ(v, j)a(v, j,−1)∗dρ(v)Φ0 (3.61)

while with the implementation in terms of the (b, b∗) operators it should have the
form (3.53). Since the both states are obtained from the same state with the carrier
in X+, they should be the same. However, they cannot be the same. This is clear
even from the fact that in Poincare approximation the former has a negative energy
while the latter has a positive energy.

Our construction shows that the interpretation of states as particles and
antiparticles is not always consistent. It can be only approximately consistent when
we consider only states localized either in X+ or in X− and only transformations
which do not mix such states. In quantum theory there is a superselection rule (SSR)
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prohibiting states which are superpositions of states with different electric, baryon or
lepton charges. In general, if states ψ1 and ψ2 are such that there are no physical
operators A such that (ψ2, Aψ1) 6= 0 then the SSR says that the state ψ = ψ1 + ψ2 is
prohibited. The meaning of the SSR is now widely discussed (see e.g., Ref. [89] and
references therein). Since the SSR implies that the superposition principle, which is
a key principle of quantum theory, is not universal, several authors argue that the
SSR should not be present in quantum theory. Other authors argue that the SSR is
only a dynamical principle since, as a result of decoherence, the state ψ will quickly
disappear and so it cannot be observable.

We now give an example of a transformation, which transforms states
localized in X+ to ones localized in X− and vice versa. Let I ∈ SO(1, 4) be a matrix
which formally coincides with the metric tensor η. If this matrix is treated as a
transformation of the dS space, it transforms the North pole (0, 0, 0, 0, x4 = R) to the
South pole (0, 0, 0, 0, x4 = −R) and vice versa. As already explained, in our approach
the dS space is not involved and in Secs. 3.2–3.4 the results for UIRs of the dS
group have been used only for constructing IRs of the dS algebra. This means that
the unitary operator U(I) corresponding to I is well defined and we can consider its
action without relating I to a transformation of the dS space.

If vL is a representative defined by Eq. (3.13) then it is easy to verify that
IvL = (−v)LI and, as follows from Eq. (3.9), if ψ1 is localized in X+ then ψ2 =
U(I)ψ1 will be localized in X−. Therefore U(I) transforms particles into antiparticles
and vice versa. In Secs. 1.2 and 1.3 we argued that the notion of empty space-time
background is unphysical and that unitary transformations generated by self-adjoint
operators may not have a usual interpretation. The example with U(I) gives a good
illustration of this point. Indeed, if we work with dS space, we might expect that all
unitary transformations corresponding to the elements of the group SO(1,4) act in the
space of IR only kinematically, in particular they transform particles to particles and
antiparticles to antiparticles. However, in QFT in curved space-time this is not the
case. Nevertheless, this is not treated as an indication that standard notion of the dS
space is not physical. Although fields are not observable, in QFT in curved space-time
they are treated as fundamental and single-particle interpretations of field equations
are not tenable (moreover, some QFT theorists state that particles do not exist). For
example, as shown in Ref. [90], solutions of fields equations are superpositions of
states which usually are interpreted as a particle and its antiparticle, and in dS space
neither coefficient in the superposition can be zero. This result is compatible with
the Mensky’s one [46] described in the beginning of this section. One might say that
our result is in agreement with those in dS QFT since UIRs of the dS group describe
not a particle or antiparticle but an object such that a particle and its antiparticle
are different states of this object (at least in Poincare approximation). However, as
noted above, in dS QFT this is not treated as the fact that dS space is unphysical.

The matrix I belongs to the component of unity of the group SO(1,4).
For example, the transformation I can be obtained as a product of rotations by 180
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degrees in planes (1, 2) and (3, 4). Therefore, U(I) can be obtained as a result of
continuous transformations exp[i(M12ϕ1 + M34ϕ2)] when the values of ϕ1 and ϕ2

change from zero to π. Any continuous transformation transforming a state with the
carrier inX+ to the state with the carrier inX− is such that the carrier should crossX0

at some values of the transformation parameters. As noted in the preceding section,
the set X0 is characterized by the condition that the standard Poincare momentum is
infinite and therefore, from the point of view of intuition based on Poincare invariant
theory, one might think that no transformation when the carrier crosses X0 is possible.
However, as we have seen in the preceding section, in variables (u1, u2, u3, u4) the
condition u4 = 0 defines the equator of S3 corresponding to X0 and this condition is
not singular. So from the point of view of dS theory, nothing special happens when
the carrier crosses X0. We observe only either particles or antiparticles but not their
linear combinations because Poincare approximation works with a very high accuracy
and it is very difficult to perform transformations mixing states localized in X+ and
X−.

3.5.3 Summary

As follows from the above discussion, objects belonging to IRs of the dS algebra can be
treated as particles or antiparticles only if Poincare approximation works with a high
accuracy. As a consequence, the conservation of electric, baryon and lepton charges
can be only approximate.

At the same time, our discussion shows that the approximation when one
IR of the dS algebra splits into independent IRs for a particle and its antiparticle
can be valid only in the case of anticommutation relations. Since it is a reasonable
requirement that dS theory should become the Poincare one at certain conditions,
the above results show that in dS invariant theory only fermions can be elementary.

Let us now consider whether there exist neutral particles in dS invariant
theory. In AdS and Poincare invariant theories, neutral particles are described as
follows. One first constructs a covariant field containing both IRs, with positive
and negative energies. Therefore the number of states is doubled in comparison
with the IR. However, to satisfy the requirement that neutral particles should be
described by real (not complex) fields, one has to impose a relation between the
creation and annihilation operators for states with positive and negative energies.
Then the number of states describing a neutral field again becomes equal to the
number of states in the IR. In contrast to those theories, IRs of the dS algebra are
implemented on both, upper and lower Lorentz hyperboloids and therefore the number
of states in IRs is twice as big as for IRs of the Poincare and AdS algebras. Even
this fact shows that in dS invariant theory there can be no neutral particles since it
is not possible to reduce the number of states in an IR. Another argument is that, as
follows from the above construction, dS invariant theory is not C invariant. Indeed,
C invariance in standard theory means that representation operators are invariant
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under the interchange of a-operators and b-operators. However, in our case when
a-operators are replaced by b-operators, the operators (3.16) become the operators
(3.60). Those sets of operators coincide only in Poincare approximation while in
general the operatorsM4µ in Eqs. (3.16) and (3.60) are different. Therefore a particle
and its antiparticle are described by different sets of operators. We conclude that in
dS invariant theory neutral particles cannot be elementary.

3.6 dS quantum mechanics and cosmological re-

pulsion

The results on IRs can be applied not only to elementary particles but even to macro-
scopic bodies when it suffices to consider their motion as a whole. This is the case
when the distances between the bodies are much greater that their sizes. In this sec-
tion we consider the operators M4µ not only in Poincare approximation but taking
into account dS corrections. If those corrections are small, one can neglect transfor-
mations mixing states on the upper and lower Lorentz hyperboloids (see the discussion
in the preceding section) and describe the representation operators for a particle and
its antiparticle by Eqs. (3.16) and (3.60), respectively.

We define E = E/R, P = B/R and m = mdS/R. Consider the non-
relativistic approximation when |v| ≪ 1. If we wish to work with units where the
dimension of velocity is m/s, we should replace v by v/c. If p = mv then it is
clear from the expressions for B in Eqs. (3.16) and (3.60) that p becomes the real
momentum P only in the limit R → ∞. At this stage we do not have any coordinate
space yet. However, if we assume that semiclassical approximation is valid, then,
by analogy with standard quantum mechanics, we can define the position operator
r as i∂/∂p. As discussed in Chap. 2, such a definition encounters problems in
view of the WPS effect. However, as noted in this chapter, this effect is a pure
quantum phenomenon and for macroscopic bodies it is negligible. The problem of
the cosmological acceleration is meaningful only for macroscopic bodies when classical
approximation applies.

Since the commutators of R|| and R⊥ with different components of p are
proportional to h̄ and the operator r is a sum of the parallel and perpendicular com-
ponents (see Eq. (9.6)), in classical approximation we can neglect those commutators
and treat p and r as usual vectors. Then as follows from Eq. (3.16)

P = p+mcr/R, H = p2/2m+ cpr/R, N = −mr (3.62)

where H = E −mc2 is the classical nonrelativistic Hamiltonian and, as follows from
Eqs. (3.60)

P = p−mcr/R, H = p2/2m− cpr/R, N = −mr (3.63)
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As follows from these expressions, in both cases

H(P, r) =
P2

2m
− mc2r2

2R2
(3.64)

The last term in Eq. (3.64) is the dS correction to the non-relativistic
Hamiltonian. It is interesting to note that the non-relativistic Hamiltonian depends
on c although it is usually believed that c can be present only in relativistic theory.
This illustrates the fact mentioned in Sec. 1.4 that the transition to nonrelativistic
theory understood as |v| ≪ 1 is more physical than that understood as c → ∞.
The presence of c in Eq. (3.64) is a consequence of the fact that this expression is
written in standard units. In nonrelativistic theory c is usually treated as a very large
quantity. Nevertheless, the last term in Eq. (3.64) is not large since we assume that
R is very large.

The result given by Eq. (1.7) is now a consequence of the Hamilton equa-
tions for the Hamiltonian given by Eq. (3.64). In our approach this result has been
obtained without using dS space and Riemannian geometry while the fact that Λ 6= 0
should be treated not such that the space-time background has a curvature (since
the notion of the space-time background is meaningless) but as an indication that
the symmetry algebra is the dS algebra rather than the Poincare one. Therefore for
explaining the fact that Λ 6= 0 there is no need to involve dark energy or any other
quantum fields.

Another way to show that our results are compatible with GR is as follows.
The well-known result of GR is that if the metric is stationary and differs slightly from
the Minkowskian one then in the nonrelativistic approximation the curved space-time
can be effectively described by a gravitational potential ϕ(r) = (g00(r)− 1)/2c2. We
now express x0 in Eq. (1.5) in terms of a new variable t as x0 = t+ t3/6R2− tx2/2R2.
Then the expression for the interval becomes

ds2 = dt2(1− r2/R2)− dr2 − (rdr/R)2 (3.65)

Therefore, the metric becomes stationary and ϕ(r) = −r2/2R2 in agreement with Eq.
(3.64).

Consider now a system of two free particles described by the variables Pj

and rj (j = 1, 2). Define the standard nonrelativistic variables

P12 = P1 +P2, q12 = (m2P1 −m1P2)/(m1 +m2)

R12 = (m1r1 +m2r2)/(m1 +m2), r12 = r1 − r2 (3.66)

Then, as follows from Eqs. (3.62) and (3.63), in the nonrelativistic approximation
the two-particle quantities P, E and N are given by

P = P12, E =M +
P2

12

2M
− Mc2R2

12

2R2
, N = −MR12 (3.67)
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where

M =M(q12, r12) = m1 +m2 +Hnr(r12,q12), Hnr(r,q) =
q2

2m12
− m12c

2r2

2R2
(3.68)

and m12 is the reduced two-particle mass.
It now follows from Eqs. (3.18) and (3.67) that M has the meaning of the

two-body mass since in the nonrelativistic approximation M2 = I2/R
2 where now

I2 is the Casimir operator of the second order for the two-body system. Therefore
M(q12, r12) is the internal two-body Hamiltonian. Then, as a consequence of the
Hamilton equations, in semiclassical approximation the relative acceleration is given
by the same expression (1.7) but now a is the relative acceleration and r is the
relative radius vector. As noted in Sec. 1.2, equations of motions for systems of free
particles can be obtained even without the Hamilton equations but assuming that
the coordinates and momenta are related to each other by Eq. (1.2). This question
is discussed in Sec. 5.7.

The fact that two free particles have a relative acceleration is known for
cosmologists who consider dS symmetry on classical level. This effect is called the
dS antigravity. The term antigravity in this context means that the particles repulse
rather than attract each other. In the case of the dS antigravity the relative accelera-
tion of two free particles is proportional (not inversely proportional!) to the distance
between them. This classical result (which in our approach has been obtained with-
out involving dS space and Riemannian geometry) is a special case of dS symmetry
on quantum level when semiclassical approximation works with a good accuracy.

As follows from Eq. (3.68), the dS antigravity is not important for local
physics when r ≪ R. At the same time, at cosmological distances the dS antigravity
is much stronger than any other interaction (gravitational, electromagnetic etc.).
One can consider the quantum two-body problem with the Hamiltonian given by Eq.
(3.68). Then it is obvious that the spectrum of the operator Hnr is purely continuous
and belongs to the interval (−∞,∞) (see also Refs. [36, 37] for details). This does
not mean that the theory is unphysical since stationary bound states in standard
theory become quasistationary with a very large lifetime if R is large.

Our final remark follows. The consideration in this chapter involves only
standard quantum-mechanical notions and in semiclassical approximation the results
on the cosmological acceleration are compatible with GR. As argued in Sect. 2.2,
the standard coordinate operator has some properties which do not correspond to
what is expected from physical intuition; however, at least from mathematical point
of view, at cosmological distances semiclassical approximation is valid with a very
high accuracy. At the same time, as discussed in the next chapter, when distances
are much less than cosmological ones, this operator should be modified. Then, as a
consequence of the fact that in dS invariant theory the spectum of the mass operator
for a free two-body system is not bounded below by (m1+m2) it is possible to obtain
gravity as a pure kinematical consequence of dS symmetry on quantum level.
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Chapter 4

Algebraic description of irreducible
representations

4.1 Construction of IRs in discrete basis

In Sec. 3.4 we have mentioned a possibility that IRs of the so(1,4) algebra can
be constructed in a pure algebraic approach such that the basis is characterized
only by discrete quantum numbers. In this chapter a detailed consideration of this
approach is given for the spinless case and in the next chapter the results are applied
to gravity. First of all, to make relations between standard theory and GFQT more
straightforward, we will modify the commutation relations (1.4) by writing them in
the form

[Mab,M cd] = −2i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (4.1)

One might say that these relations are written in units h̄/2 = c = 1. However, as
noted in Sect. 1.4, fundamental quantum theory should not involve quantities h̄ and c
at all, and Eq. (4.1) indeed does not contain these quantities. The reason for writing
the commutation relations in the form (4.1) rather than (1.4) is that in this case the
minimum nonzero value of the angular momentum is 1 instead of 1/2. Therefore the
spin of fermions is odd and the spin of bosons is even. This will be convenient in
GFQT where 1/2 is a very large number (see Chap. 6).

As already noted, the results on IRs can be applied not only to elementary
particles but even to macroscopic bodies when it suffices to consider their motion as
a whole. This is the case when the distances between the bodies are much greater
that their sizes. In Poincare invariant theory, IRs describing massless Weyl particles
can be obtained as a limit of massive IRs when m → 0 with a special choice of
representatives in the factor space SL(2, C)/SU(2). However, as shown in Sec. 3.3,
in dS theory such a limit does not exist and therefore there are no Weyl particles in
dS theory. In standard theory it is believed that the photon is a true massless particle
but, as noted in Sec. 3.3, if, for example, R is of the order of 1026m then the upper
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limit for the photon dS mass is of the order of 1015. In the present work we assume
that the photon can be described by IRs of the principle series discussed above.

In all macroscopic experiments the orbital angular momenta of macro-
scopic bodies and even photons are very large. As an example, consider a photon
moving in approximately radial direction away from the Earth surface. Suppose that
the photon energy equals the bound energy of the ground state of the hydrogen atom
27.2ev. Then in units c = h̄ = 1 this energy is of the order of 107/cm. Hence even if
the level arm of the photon trajectory is of the order of 1cm, the value of the orbital
angular momentum is of the order of 107. In other experiments with photons and
macroscopic bodies this value is greater by many orders of magnitude. Therefore the
spin terms in J can be neglected. Since v0 > |v|, the orbital part of the operator N is
also much greater than its spin part. The orbital part of the operator B is typically
much greater than its spin part; this is clear even from the fact that in Poincare
limit this part is proportional to R while the spin does not depend on R. In view
of these remarks, we will not consider spin effects. Hence our goal is to construct
massive spinless IRs in a discrete basis. By analogy with the method of little group
in standard theory, one can first choose states which can be treated as rest ones and
then obtain the whole representation space by acting on such states by certain linear
combinations of representation operators.

Since B is a possible choice of the dS analog of the momentum operator,
one might think that rest states e0 can be defined by the condition Be0 = 0. However,
in the general case this is not consistent since, as follows from Eq. (4.1), different
components of B do not commute with each other: as follows from Eq. (4.1) and the
definitions of the operators J and B in Sect. 3.2,

[J j , Jk] = [Bj, Bk] = 2iejklJ
l, [J j, Bk] = 2iejklB

l (4.2)

where a sum over repeated indices is assumed. Therefore a subspace of elements e0
such that Bje0 = 0 (j = 1, 2, 3) is not closed under the action of the operators Bj .

Let us define the operators J′ = (J+B)/2 and J” = (J−B)/2. As follows
from Eq. (4.1), they satisfy the commutation relations

[J
′j , J”k] = 0, [J

′j, J
′k] = 2iejklJ

′l, [J”j , J”k] = 2iejklJ
”l (4.3)

Since in Poincare limit B is much greater than J, as an analog of the momentum
operator one can treat J′ instead of B. Then one can define rest states e0 by the
condition that J′e0 = 0. In this case the subspace of rest states is defined consistently
since it is invariant under the action of the operators J′. Since the operators J′ and
J” commute with each other, one can define the internal angular momentum of the
system as a reduction of J” on the subspace of rest states. In particular, in Ref. [35]
we used such a construction for constructing IRs of the dS algebra in the method of
SU(2)×SU(2) shift operators proposed by Hughes for constructing IRs of the SO(5)
group [87]. In the spinless case the situation is simpler since for constructing IRs it
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suffices to choose only one vector e0 such that

J′e0 = J”e0 = 0, I2e0 = (w + 9)e0 (4.4)

The last requirement reflects the fact that all elements from the representation space
are eigenvectors of the Casimir operator I2 with the same eigenvalue. When the
representation operators satisfy Eq. (4.1), the numerical value of the operator I2 is
not as indicated at the end of Sec. (3.2) but

I2 = w − s(s+ 2) + 9 (4.5)

where w = m2
dS . Therefore for spinless particles the numerical value equals w + 9.

As follows from Eq. (4.1) and the definitions of the operators (J,N,B, E)
in Secs. 3.2 and (3.4), in addition to Eqs. 4.2, the following relations are satisfied:

[E ,N] = 2iB, [E ,B] = 2iN, [J, E ] = 0, [Bj , Nk] = 2iδjkE , [J j, Nk] = 2iejklN
l (4.6)

We define e1 = 2Ee0 and

en+1 = 2Een − [w + (2n+ 1)2]en−1 (4.7)

These definitions make it possible to find en for any n = 0, 1, 2.... As follows from Eqs.
(4.2), (4.6) and (4.7), Jen = 0 and B2en = 4n(n+2)en. We use the notation Jx = J1,
Jy = J2, Jz = J3 and analogously for the operators N and B. Instead of the (xy)
components of the vectors it may be sometimes convenient to use the ± components
such that Jx = J+ + J−, Jy = −i(J+ − J−) and analogously for the operators N and
B. We now define the elements enkl as

enkl =
(2k + 1)!!

k!l!
(J−)

l(B+)
ken (4.8)

Then a direct calculation using Eqs. (4.2-4.8) gives
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Eenkl =
n+ 1− k

2(n + 1)
en+1,kl +

n + 1 + k

2(n+ 1)
[w + (2n+ 1)2]en−1,kl

N+enkl =
i(2k + 1− l)(2k + 2− l)

8(n+ 1)(2k + 1)(2k + 3)
{en+1,k+1,l −

[w + (2n+ 1)2]en−1,k+1,l} −
i

2(n+ 1)
{(n + 1− k)(n+ 2− k)en+1,k−1,l−2 −

(n+ k)(n+ 1 + k)[w + (2n+ 1)2]en−1,k−1,l−2}

N−enkl =
−i(l + 1)(l + 2)

8(n+ 1)(2k + 1)(2k + 3)
{en+1,k+1,l+2 −

[w + (2n+ 1)2]en−1,k+1,l+2}+
i

2(n+ 1)
{(n + 1− k)(n+ 2− k)en+1,k−1,l −

(n+ k)(n+ 1 + k)[w + (2n+ 1)2]en−1,k−1,l}

Nzenkl =
−i(l + 1)(2k + 1− l)

4(n+ 1)(2k + 1)(2k + 3)
{en+1,k+1,l+1 −

[w + (2n+ 1)2]en−1,k+1,l+1} −
i

n+ 1
{(n+ 1− k)(n + 2− k)en+1,k−1,l−1 −

(n+ k)(n+ 1 + k)[w + (2n+ 1)2]en−1,k−1,l−1} (4.9)

B+enkl =
(2k + 1− l)(2k + 2− l)

2(2k + 1)(2k + 3)
en,k+1,l −

2(n+ 1− k)(n + 1 + k)en,k−1,l−2

B−enkl =
(l + 1)(l + 2)

2(2k + 1)(2k + 3)
en,k+1,l+2 +

2(n+ 1− k)(n + 1 + k)en,k−1,l

Bzenkl =
(l + 1)(2k + 1− l)

2(2k + 1)(2k + 3)
en,k+1,l+1 −

4(n+ 1− k)(n + 1 + k)en,k−1,l−1

J+enkl = (2k + 1− l)enk,l−1 J−enkl = (l + 1)enk,l+1

Jzenkl = 2(k − l)enkl (4.10)

where at a fixed value of n, k = 0, 1, ...n, l = 0, 1, ...2k and if l and k are not in this
range then enkl = 0. Therefore, the elements enkl form a basis of the spinless IR with
a given w.

The next step is to define a scalar product compatible with the Hermiticity
of the operators (E ,B,N,J). Since B2 + J2 is the Casimir operator for the so(4)
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subalgebra and
(B2 + J2)enkl = 4n(n+ 2)enkl (4.11)

the vectors enkl with different values of n should be orthogonal. Since J2 is the
Casimir operator of the so(3) subalgebra and J2enkl = 4k(k + 1)enkl, the vectors enkl
with different values of k also should be orthogonal. Finally, as follows from the
last expression in Eq. (4.10), the vectors enkl with the same values of n and k and
different values of l should be orthogonal since they are eigenvectors of the operator
Jz with different eigenvalues. Therefore, the scalar product can be defined assuming
that (e0, e0) = 1 and a direct calculation using Eqs. (4.4-4.8) gives

(enkl, enkl) = (2k + 1)!C l
2kC

k
nC

k
n+k+1

n
∏

j=1

[w + (2j + 1)2] (4.12)

where Ck
n = n!/[(n − k)!k!] is the binomial coefficient. At this point we do not

normalize basis vectors to one since, as will be discussed below, the normalization
(4.12) has its own advantages.

Instead of l we define a new quantum number µ = k − l which can take
values −k,−k + 1, ...k. Each element of the representation space can be written as
x =

∑

nkµ c(n, k, µ)enkµ where the set of the coefficients c(n, k, µ) can be called the
wave function in the (nkµ) representation. As follows from Eqs. (4.9) and (4.10), the
action of the representation operators on the wave function can be written as
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Ec(n, k, µ) = n− k

2n
c(n− 1, k, µ) +

n + 2 + k

2(n+ 2)
[w + (2n+ 3)2]

c(n + 1, k, µ)

N+c(n, k, µ) =
i(k + µ)(k + µ− 1)

8(2k − 1)(2k + 1)
{ 1
n
c(n− 1, k − 1, µ− 1)−

1

n + 2
[w + (2n+ 3)2]c(n + 1, k − 1, µ− 1)} −

i(n− 1− k)(n− k)

2n
c(n− 1, k + 1, µ− 1) +

i(n + k + 2)(n+ k + 3)

2(n + 2)
[w + (2n+ 3)2]c(n+ 1, k + 1, µ− 1)

N−c(n, k, µ) =
−i(k − µ)(k − µ− 1)

8(2k − 1)(2k + 1)
{ 1
n
c(n− 1, k − 1, µ+ 1)−

1

n + 2
[w + (2n+ 3)2]c(n + 1, k − 1, µ+ 1)}+

i(n− 1− k)(n− k)

2n
c(n− 1, k + 1, µ+ 1)−

i(n + k + 2)(n+ k + 3)

2(n + 2)
[w + (2n+ 3)2]c(n+ 1, k + 1, µ+ 1)

Nzc(n, k, µ) =
−i(k − µ)(k + µ)

4(2k − 1)(2k + 1)
{ 1
n
c(n− 1, k − 1, µ)−

1

n + 2
[w + (2n+ 3)2]c(n + 1, k − 1, µ)} −

i(n− 1− k)(n− k)

n
c(n− 1, k + 1, µ) +

i(n + k + 2)(n+ k + 3)

n+ 2
[w + (2n+ 3)2]c(n+ 1, k + 1, µ) (4.13)

B+c(n, k, µ) =
(k + µ)(k + µ− 1)

2(2k − 1)(2k + 1)
c(n, k − 1, µ− 1)−

2(n− k)(n+ 2 + k)c(n, k + 1, µ− 1)

B−c(n, k, µ) = −(k − µ)(k − µ− 1)

2(2k − 1)(2k + 1)
c(n, k − 1, µ+ 1) +

2(n− k)(n+ 2 + k)c(n, k + 1, µ+ 1)

Bzc(n, k, µ) = − (k − µ)(k + µ)

(2k − 1)(2k + 1)
c(n, k − 1, µ)−

4(n− k)(n+ 2 + k)c(n, k + 1, µ)

J+c(n, k, µ) = (k + µ)c(n, k, µ− 1) J−c(n, k, µ) = (k − µ)c(n, k, µ+ 1)

Jzc(n, k, µ) = 2µc(n, k, µ) (4.14)
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It is seen from the last expression that the meaning of the quantum number µ is such
that c(n, k, µ) is the eigenfunction of the operator Jz with the eigenvalue 2µ, i.e. µ is
the standard magnetic quantum number.

We use ẽnkµ to denote basis vectors normalized to one and c̃(n, k, µ) to
denote the wave function in the normalized basis. As follows from Eq. (4.12), the
vectors ẽnkµ can be defined as

ẽnkµ = {(2k + 1)!Ck−µ
2k Ck

nC
k
n+k+1

n
∏

j=1

[w + (2j + 1)2]}−1/2enkµ (4.15)

A direct calculation using Eqs. (4.12-4.15) shows that the action of the representation
operators on the wave function in the normalized basis is given by
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E c̃(n, k, µ) = 1

2
[
(n− k)(n+ k + 1)

n(n+ 1)
(w + (2n+ 1)2)]1/2c̃(n− 1, k, µ) +

1

2
[
(n+ 1− k)(n+ k + 2)

(n+ 1)(n+ 2)
(w + (2n+ 3)2)]1/2c̃(n+ 1, k, µ)]

N+c̃(n, k, µ) =
i

4
[

(k + µ)(k + µ− 1)

(2k − 1)(2k + 1)(n+ 1)
]1/2

{[ (n+ k)(n + k + 1)

n
(w + (2n+ 1)2)]1/2c̃(n− 1, k − 1, µ− 1)−

[
(n+ 2− k)(n+ 1− k)

n + 2
(w + (2n+ 3)2)]1/2c̃(n+ 1, k − 1, µ− 1)} −

i

4
[
(k + 2− µ)(k + 1− µ)

(2k + 1)(2k + 3)(n+ 1)
]1/2

{[ (n− k)(n− k − 1)

n
(w + (2n+ 1)2)]1/2c̃(n− 1, k + 1, µ− 1)−

[
(n+ k + 2)(n+ k + 3)

n+ 2
(w + (2n+ 3)2)]1/2c̃(n + 1, k + 1, µ− 1)]}

N−c̃(n, k, µ) = − i

4
[

(k − µ)(k − µ− 1)

(2k − 1)(2k + 1)(n+ 1)
]1/2

{[ (n+ k)(n + k + 1)

n
(w + (2n+ 1)2)]1/2c̃(n− 1, k − 1, µ+ 1)−

[
(n+ 2− k)(n+ 1− k)

n + 2
(w + (2n+ 3)2)]1/2c̃(n+ 1, k − 1, µ+ 1)}+

i

4
[
(k + 2 + µ)(k + 1 + µ)

(2k + 1)(2k + 3)(n+ 1)
]1/2

{[ (n− k)(n− k − 1)

n
(w + (2n+ 1)2)]1/2c̃(n− 1, k + 1, µ+ 1)−

[
(n+ k + 2)(n+ k + 3)

n+ 2
(w + (2n+ 3)2)]1/2c̃(n + 1, k + 1, µ+ 1)]}

Nz c̃(n, k, µ) = − i

2
[

(k − µ)(k + µ)

(2k − 1)(2k + 1)(n+ 1)
]1/2

{[ (n+ k)(n + k + 1)

n
(w + (2n+ 1)2)]1/2c̃(n− 1, k − 1, µ)−

[
(n+ 2− k)(n+ 1− k)

n + 2
(w + (2n+ 3)2)]1/2c̃(n+ 1, k − 1, µ)} −

i

2
[
(k + 1− µ)(k + 1 + µ)

(2k + 1)(2k + 3)(n+ 1)
]1/2

{[ (n− k)(n− k − 1)

n
(w + (2n+ 1)2)]1/2c̃(n− 1, k + 1, µ)−

[
(n+ k + 2)(n+ k + 3)

n+ 2
(w + (2n+ 3)2)]1/2c̃(n + 1, k + 1, µ)]} (4.16)
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B+c̃(n, k, µ) = [
(k + µ)(k + µ− 1)(n+ 1− k)(n+ 1 + k)

(2k − 1)(2k + 1)
]1/2c̃(n, k − 1, µ− 1)

−[
(k + 2− µ)(k + 1− µ)(n− k)(n + k + 2)

(2k + 1)(2k + 3)
]1/2c̃(n, k + 1, µ− 1)

B−c̃(n, k, µ) = −[
(k − µ)(k − µ− 1)(n+ 1− k)(n + 1 + k)

(2k − 1)(2k + 1)
]1/2c̃(n, k − 1, µ+ 1)

+[
(k + 2 + µ)(k + 1 + µ)(n− k)(n + k + 2)

(2k + 1)(2k + 3)
]1/2c̃(n, k + 1, µ+ 1)

Bz c̃(n, k, µ) = −2[
(k − µ)(k + µ)(n+ 1− k)(n+ 1 + k)

(2k − 1)(2k + 1)
]1/2c̃(n, k − 1, µ)

−2[
(k + 1− µ)(k + 1 + µ)(n− k)(n + k + 2)

(2k + 1)(2k + 3)
]1/2c̃(n, k + 1, µ)

J+c̃(n, k, µ) = [(k + µ)(k + 1− µ)]1/2c̃(n, k, µ− 1)

J−c̃(n, k, µ) = [(k − µ)(k + 1 + µ)]1/2c̃(n, k, µ+ 1)

Jz c̃(n, k, µ) = 2µc̃(n, k, µ) (4.17)

4.2 Semiclassical approximation

Consider now the semiclassical approximation in the ẽnkl basis. As noted in Secs.
3.2 and 3.6, the operator B is the dS analog of the usual momentum P such that
in Poincare limit B = 2RP. The operator J has the same meaning as in Poincare
invariant theory. Then it is clear from Eqs. (4.13) and (4.14) that a necessary
condition for the semiclassical approximation is that the quantum numbers (nkµ) are
much greater than 1 (in agreement with the remarks in the preceding section). By
analogy with the discussion of the semiclassical approximation in Secs. 2.2 and 3.6,
we assume that a state is semiclassical if its wave function has the form

c̃(n, k, µ) = a(n, k, µ)exp[i(−nϕ + kα− µβ)] (4.18)

where a(n, k, µ) is an amplitude, which is not small only in some vicinities of n = n0,
k = k0 and µ = µ0. We also assume that when the quantum numbers (nkµ) change
by one, the main contribution comes from the rapidly oscillating exponent. Then, as
follows from the first expression in Eq. (4.16), the action of the dS energy operator
can be written as

E c̃(n, k, µ) ≈ 1

n0

[(n0 − k0)(n0 + k0)(w + 4n2
0)]

1/2cos(ϕ)c̃(n, k, µ) (4.19)

Therefore the semiclassical wave function is approximately the eigenfunction of the
dS energy operator with the eigenvalue

1

n0
[(n0 − k0)(n0 + k0)(w + 4n2

0)]
1/2cosϕ.
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We will use the following notations. When we consider not the action of
an operator on the wave function but its approximate eigenvalue in the semiclassical
state, we will use for the eigenvalue the same notation as for the operator and this
should not lead to misunderstanding. Analogously, in eigenvalues we will write n,
k and µ instead of n0, k0 and µ0, respectively. By analogy with Eq. (4.19) we can
consider eigenvalues of the other operators and the results can be represented as

E =
1

n
[(n− k)(n + k)(w + 4n2)]1/2cosϕ

Nx = (w + 4n2)1/2{−sinϕ
k

[µcosαcosβ + ksinαsinβ] +

cosϕ

n
[µsinαcosβ − kcosαsinβ]}

Ny = (w + 4n2)1/2{−sinϕ
k

[µcosαsinβ − ksinαcosβ] +

cosϕ

n
[µsinαsinβ + kcosαcosβ]}

Nz = [(k − µ)(k + µ)(w + 4n2)]1/2(
1

k
sinϕcosα− 1

n
cosϕsinα)

Bx =
2

k
[(n− k)(n+ k)]1/2[µcosαcosβ + ksinαsinβ]

By =
2

k
[(n− k)(n+ k)]1/2[µcosαsinβ − ksinαcosβ]

Bz = −2

k
[(k − µ)(k + µ)(n− k)(n+ k)]1/2cosα

Jx = 2[(k − µ)(k + µ)]1/2cosβ Jy = 2[(k − µ)(k + µ)]1/2sinβ

Jz = 2µ (4.20)

Since B is the dS analog of p and in classical theory J = r×p, one might expect that
BJ = 0 and, as follows from the above expressions, this is the case. It also follows
that B2 = 4(n2 − k2) and J2 = 4k2 in agreement with Eq. (4.11).

In Sec. 3.6 we described semiclassical wave functions by six parameters
(r,p) while in the basis ẽnkl the six parameters are (n, k, µ, ϕ, α, β). Since in the
dS theory the ten representation operators are on equal footing, it is also possible to
describe a semiclassical state by semiclasscal eigenvalues of these operators. However,
we should have four constraints for them. As follows from Eqs. (3.18) and (3.23), the
constraints can be written as

E2 +N2 −B2 − J2 = w N×B = −EJ (4.21)

As noted in Sec. 3.6, in Poincare limit E = 2RE, B = 2Rp (since we have replaced
Eq. (1.4) by Eq. (4.1)) and the values of N and J are much less than E and B.
Therefore the first relation in Eq. (4.21) is the Poincare analog of the well-known
relation E2 − p2 = m2.
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The quantities (nkµϕαβ) can be expressed in terms of semiclassical eigen-
values (E ,N,B,J) as follows. The quantities (nkµ) can be found from the relations

B2 + J2 = 4n2 J2 = 4k2 Jz = 2µ (4.22)

and then the angles (ϕαβ) can be found from the relations

cosϕ =
2En

B(w + 4n2)1/2
sinϕ = − BN

B(w + 4n2)1/2

cosα = −JBz/(BJ⊥) sinα = (B× J)z/(BJ⊥)

cosβ = Jx/J⊥ sinβ = Jy/J⊥ (4.23)

where B = |B|, J = |J| and J⊥ = (J2
x + J2

y )
1/2. In semiclassical approximation,

uncertainties of the quantities (nkµ) should be such that ∆n≪ n, ∆k ≪ k and ∆µ≪
µ. On the other hand, those uncertainties cannot be very small since the distribution
in (nkµ) should be such that all the ten approximate eigenvalues (E ,N,B,J) should
be much greater than their corresponding uncertainties. The assumption is that for
macroscopic bodies all these conditions can be satisfied.

In Sec. 3.6 we discussed operators in Poincare limit and corrections to
them, which lead to the dS antigravity. A problem arises how the Poincare limit
should be defined in the basis defined in the present chapter. In contrast to Sec. 3.6,
we can now work not with the unphysical quantities v or p = mv defined on the
Lorentz hyperboloid but directly with semiclassical eigenvalues of the representation
operators. In contrast to Sec. 3.6, we now define p = B/(2R), m = w1/2/(2R)
and E = (m2 + p2)1/2. Then Poincare limit can be defined by the requirement that
when R is large, the quantities E and B are proportional to R while N and J do not
depend on R. In this case, as follows from Eq. (4.21), in Poincare limit E = 2RE
and B = 2Rp.

4.3 Position operator in dS theory

By analogy with constructing a physical position operator in Sec. 2.11, the position
operator in dS theory can be found from the following considerations. Since the
operators B and J are consistently defined as representation operators of the dS
algebra and we have defined p as B/2R, one might seek the position operator such
that on classical level the relation r × p = J/2 will take place (the factor 1/2 is a
consequence of the fact that we work with units where h̄/2 = 1). On classical level
one can define parallel and perpendicular components of r as r = r||B/|B|+ r⊥ and
analogously N = N||B/|B| + N⊥. Then the relation r × p = J/2 defines uniquely
only r⊥ and it follows from the second relation in Eq. (4.21) that N⊥ = −2Er⊥.
However, it is not clear yet how r|| should be defined and whether the last relation is
also valid for the parallel components of N and r. As follows from the second relation
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in Eq. (4.23), it will be valid if |sinϕ| = r||/R, i.e. ϕ is the angular coordinate.
As noted in Sec. 2.2, semiclassical approximation for a physical quantity can be
valid only in states where this quantity is rather large. Therefore if R is very large
then ϕ is very small if the distances are not cosmological (i.e. they are much less
than R). Hence the problem arises whether this approximation is valid. This is a
very important problem since in standard approach it is assumed that nevertheless
ϕ can be considered semiclassically. Suppose first that this is the case and consider
corrections to Poincare limit in classical limit.

Since B = 2Rp and J/2 = r⊥ × p then it follows from Eq. (4.22) that
in first order in 1/R2 we have k2/n2 = r2⊥/R

2. Therefore as follows from the first
expression in Eq. (4.20), in first order in 1/R2 the results on E and N can be
represented as

E = 2ER(1− r2

2R2
), N = −2Er (4.24)

Hence the result for the energy is in agreement with Eq. (3.64) while the result for
N is in agreement with Eq. (3.16).

Consider now constructing the position operator on quantum level. In
view of the remarks in Sec. 4.1, we assume the approximation n, k, |µ| ≫ 1. Let us
define Hermitian operators A and B which act as

Ac̃(n, k, µ) = i

2
[c̃(n+ 1, k, µ)− c̃(n− 1, k, µ)]

Bc̃(n, k, µ) = 1

2
[c̃(n+ 1, k, µ) + c̃(n− 1, k, µ)] (4.25)

and the operators F and G which act as (compare with Eqs. (2.63) and (2.64))

F+c̃(n, k, µ) = − i

4
[(k + µ)c̃(n, k − 1, µ− 1) + (k − µ)c̃(n, k + 1, µ− 1)]

F−c̃(n, k, µ) =
i

4
[(k − µ)c̃(n, k − 1, µ+ 1) + (k + µ)c̃(n, k + 1, µ+ 1)]

Fz c̃(n, k, µ) =
i

2

√

k2 − µ2[c̃(n, k − 1, µ)− c̃(n, k + 1, µ)] (4.26)

G+c̃(n, k, µ) =
1

4k
[(k + µ)c̃(n, k − 1, µ− 1)− (k − µ)c̃(n, k + 1, µ− 1)]

G−c̃(n, k, µ) = − 1

4k
[(k − µ)c̃(n, k − 1, µ+ 1)− (k + µ)c̃(n, k + 1, µ+ 1)]

Gz c̃(n, k, µ) = −
√

k2 − µ2

2k
[c̃(n, k − 1, µ) + c̃(n, k + 1, µ)] (4.27)

Then, as follows from Eqs. (4.16) and (4.17), the representation operators can be
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written as

E c̃(n, k, µ) =
√
n2 − k2

n
(w + 4n2)1/2B, N = −(w + 4n2)1/2(AG+

1

n
BF)

B = 2
√
n2 − k2G, J±c̃(n, k, µ) =

√

k2 − µ2c̃(n, k, µ∓ 1)

Jzc̃(n, k, µ) = 2µc̃(n, k, µ) (4.28)

and, as follows from Eqs. (4.26,7.15,4.28)

[Jj , Fk] = 2iejklFl, [Jj , Gk] = 2iejklGl, G2 = 1, F2 = k2

[Gj , Gk] = 0, [Fj, Fk] = − i

2
ejklJl, ejkl{Fk, Gl} = Jj

JG = GJ = JF = FJ = 0, FG = −GF = i (4.29)

The first two relations show that F and G are the vector operators as expected. The
third relation shows that G can be treated as an operator of the unit vector along
the direction of the momentum. The result for the anticommutator shows that on
classical level F × G = J/2 and the last two relations show that on classical level
the operators in the triplet (F,G,J) are mutually orthogonal. Hence we have a full
analogy with the corresponding results in Poincare invariant theory (see Sec. 2.11).

Let us define the operators R|| and R⊥ as

R|| = RA, R⊥ =
R

n
F (4.30)

Then taking into account that (w+4n2)1/2 = 2RE, the expression for N in Eq. (4.28)
can be written as

N = −2ER||G− 2EBR⊥ (4.31)

If the function c̃(n, k, µ) depends on ϕ as in Eq. (4.18) and ϕ is of the order of r/R
then, as follows from Eq. (4.25), in the approximation when the terms of the order of
(r/R)2 in N can be neglected, B ≈ 1. In the approximation when n can be replaced
by a continuous variable Rp

R|| = ih̄
∂

∂p
, R⊥ =

h̄

p
F (4.32)

where the dependence on h̄ is restored. Hence in this approximation

N = −2ER||G− 2ER⊥ (4.33)

and this result can be treated as an implementation of the decomposition N =
N||B/|B| + N⊥ on the operator level. The semiclassical result N = −2Er will take
place if in semiclassical approximation R|| can be replaced by r|| and R⊥ can be
replaced by r⊥.
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In the approximation when n can be replaced by the continuous variable
Rp, the commutation relations between R||, different components of R⊥ and different
components of p = pG are the same as in Sec. 2.11. Hence the operators R|| and
R⊥ can be treated as the parallel and transverse components of the position operator
in dS theory. In particular, by analogy with the consideration in Chap. 2 we can
conclude that in dS theory there is no WPS in directions transverse to B and there
is no wave function in coordinate representation.

We now investigate the properties of the operatorsA and B since, as shown
in the next chapter, these operators are present in the two-body mass and distance
operators. The relations between the operators A, B and n are

[A, n] = iB [B, n] = −iA [A,B] = 0 A2 + B2 = 1 (4.34)

As noted in Sec. 2.2, in standard quantum theory the semiclassical wave
function in momentum space contains a factor exp(−ipx). Since n is now the dS
analog of pR, we assume that c̃(n, k, µ) contains a factor exp(−inϕ), i.e. the angle ϕ
is the dS analof of r||/R. It is reasonable to expect that since all the ten representation
operators of the dS algebra are angular momenta, in dS theory one should deal only
with angular coordinates which are dimensionless. If we assume that in semiclassical
approximation the main contributions in Ac̃(n, k, µ) and Bc̃(n, k, µ) come from the
rapidly oscillating exponent then

Ac̃(n, k, µ) ≈ sinϕc̃(n, k, µ) Bc̃(n, k, µ) ≈ cosϕc̃(n, k, µ) (4.35)

in agreement with the first two expressions in Eq. (4.23). Therefore ϕ is indeed the
dS analog of r||/R and if r|| ≪ R we recover the result that N|| ≈ −2Er||. Eq. (4.35)
can be treated in such a way that A is the operator of the quantity sinϕ and B is
the operator of the quantity cosϕ. However, the following question arises. As noted
in Sect. 2.2, semiclassical approximation for a quantity can be correct only if this
quantity is rather large. At the same time, we assume that A is the operator of the
quantity which is very small if R is large.

If ϕ is small, we have sinϕ ≈ ϕ and in this approximation A can be treated
as the operator of the angular variable ϕ. This seems natural since, as shown in Sec.
2.11, in Poincare invariant theory the operator of the longitudinal coordinate is id/dp
and A is the finite difference analog of derivative over n. When ϕ is not small, the
argument that A is the operator of the quantity sinϕ follows. Since

arcsinϕ =
∞
∑

l=0

(2l)!ϕ2l+1

4l(l!)2(2l + 1)
,

Φ =
∞
∑

l=0

(2l)!A2l+1

4l(l!)2(2l + 1)

can be treated as the operator of the quantity ϕ. Indeed, as follows from this expres-
sion and Eq. (4.34), [Φ, n] = i what is the dS analog of the relation [R||, p] = ih̄ (see
Sec. 2.11).
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Chapter 5

Two-body systems in discrete basis

5.1 Two-body mass operator and the cosmological

acceleration in discrete basis

Consider now a system of two free particles in dS theory. As follows from Eq. (3.18),
in this case the Casimir operator of the second order is

I2 = −1

2

∑

ab

(M
(1)
ab +M

(2)
ab )(M

ab(1) +Mab(2)) (5.1)

As explained in the preceding chapter, for our purposes spins of the particles can be
neglected. Then, as follows from Eq. (4.5)

I2 = w1 + w2 + 2E1E2 + 2N1N2 − 2B1B2 − 2J1J2 + 18 (5.2)

where the subscripts 1 and 2 are used to denote operators for particle 1 and 2,
respectively. By analogy with Eq. (4.5), one can define the two-body operator W ,
which is an analog of the quantity w:

I2 = W − S2 + 9 (5.3)

where S is the two-body spin operator which is the total angular momentum in the
rest frame of the two-body system. Then, as follows from Eqs. (5.2) and (5.3),

W = w1 + w2 + 2(w1 + 4n2
1)

1/2(w2 + 4n2
2)

1/2 − 2F − 2B1B2 − 2J1J2 + S2 + 9 (5.4)

where in this chapter we use F to denote the operator

F = (w1 + 4n2
1)

1/2(w2 + 4n2
2)

1/2 − E1E2 + 2N1N2 (5.5)

Let I2P be the Casimir operator of the second order in Poincare invariant
theory. If E is the two-body energy operator in Poincare invariant theory and P is
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the two-body Poincare momentum then I2P = E2 −P2. This operator is sometimes
called the mass operator squared although in general I2P is not positive definite (e.g.
for tachyons). However, for macroscopic bodies it is positive definite, i.e. can be
represented as M2

0 , the classical value of which is M2
0 = m2

1 +m2
2 + 2E1E2 − 2p1p2.

As follows from Eq. (5.4)

W = W0 − 2F − 2J1J2 + S2 + 9 (5.6)

where

W0 = w1 + w2 + 2(w1 + 4n2
1)

1/2(w2 + 4n2
2)

1/2 − 2B1B2 = 4R2M2
0 (5.7)

Consider first the case when semiclassical approximation is valid. In Sec.
3.6 we discussed operators in Poincare limit and corrections to them, which lead to
the dS antigravity. A problem arises how the dS antigravity can be recovered in the
discrete basis defined in the preceding chapter. Let us assume that the longitudinal
part of the position operator is such that Eq. (4.24) is valid. Then as follows from
Eq. (4.24), F = 2E1E2r

2 where r = r1−r2. LetM
2 = W/4R2 be the mass squared in

Poincare invariant theory with dS corrections. In the nonrelativistic approximation
the last three terms in the r.h.s. of Eq. (5.6) can be neglected. Then if M =
m1 + m2 + Hnr where Hnr is the nonrelativistic Hamiltonian in the c.m. frame, it
follows from Eq. (5.6) and the expression for F that in first order in 1/R2

H(r,q) =
q2

2m12
− m12r

2

2R2
(5.8)

i.e. the same result as that given by Eq. (3.68). As a consequence, the result for the
cosmological acceleration obtained in the discrete basis is the same as in the basis
discussed in Chap. 3. Note that the correction to the Hamiltonian is always negative
and proportional to m12 in the nonrelativistic approximation.

In deriving the result given by Eq. (5.8), as well as in deriving the result
given by Eq. (3.68), the notions of dS space, metric and connection have not been
used. This is an independent argument that the cosmological acceleration is simply
a kinematical effect in dS theory and can be explained without dark energy, empty
space-time and other artificial notions.

Consider now a general case, i.e. we will not assume that Eq. (4.24) is
necessarily valid. Then, as follows from Eq. (4.28)

F = (w1 + 4n2
1)

1/2(w2 + 4n2
2)

1/2G

G = 1− { 1

n1n2
[
√

(n2
1 − k21)(n

2
2 − k22) + F1F2]B1B2 +A1A2G1G2 +

1

n1
F1G2B1A2 +

1

n2
G1F2A1B2} (5.9)

where the single-particle operators (Aj,Bj,Fj ,Gj) (j = 1, 2) are defined in Sec. 4.3.
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5.2 Two-body relative distance operator

In Sec. 4.3 we discussed semiclassical approximation for the single-particle position
operator in dS theory. In this section we investigate how the relative distance operator
can be defined in this theory. As already noted, among the operators of the dS algebra
there are no operators which can be identified with the distance operator but there are
reasons to think that in semiclassical approximation the values of E and N are given
by Eq. (4.24). From the point of view of our experience in Poincare invariant theory,
the dependence of E on r might seem to be unphysical since the energy depends on
the choice of the origin. However, only invariant quantities have a physical meaning;
in particular the two-body mass can depend only on relative distances which do not
depend on the choice of the origin.

In view of Eq. (4.24) one might think that the operator D̃ = E2N1−E1N2

might be a good operator which in semiclassical approximation is proportional to
E1E2r at least in main order in 1/R2. However, the operator D defining the relative
distance should satisfy the following conditions. First of all, it should not depend on
the motion of the two-body system as a whole; in particular it should commute with
the operator which is treated as a total momentum in dS theory. As noted in Sec. 4.1,
the single-particle operator J′ is a better candidate for the total momentum operator
than B. Now we use J′ to denote the total two-particle operator J′

1+J′
2. Analogously,

we use J” to denote the total two-particle operator J1” + J2”. As noted in Sec. 4.1,
J” can be treated as the internal angular momentum operator. Therefore, since D
should be a vector operator with respect to internal rotations, it should properly
commute with J”. In summary, the operator D should satisfy the relations

[J
′j , Dk] = 0 [J”j , Dk] = 2iejklD

l (5.10)

By using Eqs. (4.2) and (4.6) one can explicitly verify that the operator

D = E2N1 − E1N2 −N1 ×N2 (5.11)

indeed satisfies Eq. (5.10). If Poincare approximation is satisfied with a high accuracy
then obviously D ≈ D̃.

In contrast to the situation in standard quantum mechanics, different com-
ponents of D do not commute with each other and therefore are not simultaneously
measurable. As shown in Chap. 2, if in Poincare invariant theory the position opera-
tor is defined in a consistent way, its different components also do not commute with
each other (see Sec. 2.11). However, since [D2,J”] = 0, by analogy with quantum
mechanics one can choose (D2,J”2, J”

z ) as a set of diagonal operators. The result of
explicit calculations is

D2 = (E2
1 +N2

1)(E2
2 +N2

2)− (E1E2 +N1N2)
2 − 4(J1B2 + J2B1)− 4J1J2 (5.12)

It is obvious that in typical situations the last two terms in this expression are much
less than the first two terms and for this reason we accept an approximation

D2 ≈ (E2
1 +N2

1)(E2
2 +N2

2)− (E1E2 +N1N2)
2 (5.13)
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Then, as follows from Eqs. (4.28, (5.5) and (5.9), in the approximation when n1, n2 ≫
1

D2 ≈ (w1 + 4n2
1)(w2 + 4n2

2)(2−G)G (5.14)

Hence the knowledge of the operator G is needed for calculating both, the two-body
mass and distance operators.

At this point no assumption that semiclassical approximation is valid has
been made. If Eq. (4.24) is valid then, as follows from Eq. (5.13), in first order in 1/R2

D2 = 16E2
1E

2
2R

2r2 where r = |r|. In particular, in the nonrelativistic approximation
D2 = 16m2

1m
2
2R

2r2, i.e. D2 is proportional to r2 what justifies treating D as a dS
analog of the relative distance operator.

By analogy with standard theory, we can consider the two-body system in
its c.m. frame. Since we choose B+J as the dS analog of momentum, the c.m. frame
can be defined by the condition B1+J2+B2+J2 = 0. Therefore, as follows from Eq.
(4.22), n1 = n2. This is an analog of the condition that the magnitudes of particle
momenta in the c.m. frame are the same. Another simplification can be achieved if
the position of particle 2 is chosen as the origin. Then J2 = 0, J1 = (r⊥ ×B1)/2R,
B2 = 2n2. In quantum theory these relations can be only approximate if semiclassical
approximation is valid. Then, as follows from Eqs. (4.29) and (4.30), the expression
for G in Eq. (5.9) has a much simpler form:

G = 1−
√

n2
1 − k21
n1

(B1B2 −A1A2) (5.15)

In the approximation when Bi can be replaced by cosϕi and Ai - by sinϕi (i =
1, 2), we can again recover the above result D2 = 16E2

1E
2
2R

2r2 if |ϕ1 + ϕ2| = r||/R
since |ϕi| = |r||i|/R, k21/n2

1 = r2⊥/R
2 and the particle momenta are approximately

antiparallel.
We conclude that if standard semiclassical approximation is valid then dS

corrections to the two-body mass operator are of the order of (r/R)2. This result is
in agreement with standard intuition that dS corrections can be important only at
cosmological distances while in the Solar System these corrections are negligible. On
the other hand, as it has been already noted, those conclusions are based on belief that
the angular distance ϕ, which is of the order of r/R, can be considered semiclassically
in spite of the fact that it is very small. In the next section we investigate whether this
is the case. Since from now on we are interested only in distances which are much less
than cosmological ones, we will investigate what happens if all corrections of the order
of r/R and greater are neglected. In particular, we accept the approximation that
|B1| = 2n1, |B2| = 2n2 and the c.m. frame is defined by the condition B1 +B2 = 0.

By analogy with standard theory, it is convenient to consider the two-body
mass operator if individual particle momenta n1 and n2 are expressed in terms of the
total and relative momenta N and n. In the c.m. frame we can assume that B1 is
directed along the positive direction of the z axis and then B2 is directed along the
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negative direction of the z axis. Therefore the quantum number N characterizing the
total dS momentum can be defined as N = n1 − n2. In nonrelativistic theory the
relative momentum is defined as q = (m2p1 − m1p2)/(m1 +m2) and in relativistic
theory as q = (E2p1−E1p2)/(E1+E2). Therefore, taking into account the fact that
in the c.m. frame the particle momenta are directed in opposite directions, one might
define n as n = (m2n1 +m1n2)/(m1 +m2) or n = (E2n1 + E1n2)/(E1 + E2). These
definitions involve Poincare masses and energies. Another possibility is n = (n1 +
n2)/2. In all these cases we have that n→ (n+1) when n1 → (n1+1), n2 → (n2+1)
and n → (n − 1) when n1 → (n1 − 1), n2 → (n2 − 1). In what follows, only this
feature is important.

Although so far we are working in standard dS quantum theory over com-
plex numbers, we will argue in the next chapters that fundamental quantum theory
should be finite. We will consider a version of quantum theory where complex num-
bers are replaced by a Galois field. Let ψ1(n1) and ψ2(n2) be the functions describing
the dependence of single-particle wave functions on n. Then in our approach only
those functions ψ1(n1) and ψ2(n2) are physical which have a finite carrier in n1 and
n2, respectively. Therefore we assume that ψ1(n1) can be different from zero only
if n1 ∈ [n1min, n1max] and analogously for ψ2(n2). If n1max = n1min + δ1 − 1 then
a necessary condition that n1 is semiclassical is δ1 ≪ n1. At the same time, since
δ1 is the dS analog of ∆p1R and R is very large, we expect that δ1 ≫ 1. We use
ν1 to denote n1 − n1min. Then if ψ1(ν1) = a1(ν1)exp(−iϕ1ν1), we can expect by
analogy with the consideration in Sect. 2.2 that the state ψ1(ν1) will be semiclassi-
cal if |ϕ1δ1| ≫ 1 since in this case the exponent makes many oscillations on [0, δ1].
Even this condition indicates that ϕ1 cannot be extremely small. Analogously we can
consider the wave function of particle 2, define δ2 as the width of its dS momentum
distribution and ν2 = n2 − n2min. The range of possible values of N and n is shown

Figure 5.1: Range of possible values of N and n.

in Fig. 5.1 where it is assumed that δ1 ≥ δ2. The minimum and maximum values of

126



N are Nmin = n1min − n2max and Nmax = n1max − n2min, respectively. Therefore N
can take δ1 + δ2 values. Each incident dashed line represents a set of states with the
same value of N and different values of n. We now use nmin and nmax to define the
minimum and maximum values of the relative dS momentum n. For each fixed value
of N those values are different, i.e. they are functions of N . Let δ(N) = nmax − nmin

for a given value of N . It is easy to see that δ(N) = 0 when N = Nmin and N = Nmax

while for other values of N , δ(N) is a natural number in the range (0, δmax] where
δmax = min(δ1, δ2). The total number of values of (N, n) is obviously δ1δ2, i.e.

Nmax
∑

N=Nmin

δ(N) = δ1δ2 (5.16)

As follows from Eq. (4.25)

(B1B2−A1A2)ψ1(n1)ψ2(n2) =
1

2
[ψ1(n1+1)ψ2(n2+1)+ψ1(n1−1)ψ2(n2−1)] (5.17)

Therefore in terms of the variables N and n

(B1B2 −A1A2)ψ(N, n) =
1

2
[ψ(N, n+ 1) + ψ(N, n− 1)] (5.18)

Hence the operator (B1B2−A1A2) does not act on the variable N while its action on
the variable n is described by the same expressions as the actions of the operators Bi

(i = 1, 2) on the corresponding wave functions. Therefore, considering the two-body
system, we will use the notation B = B1B2 − A1A2 and formally the action of this
operator on the internal wave function is the same as in the second expression in Eq.
(4.25). With this notation and with neglecting terms of the order of r/R and higher,
Eqs. (5.6) and (5.15) can be written as

G = 1− B, W =W0 − 2(w1 + 4n2
1)

1/2(w2 + 4n2
2)

1/2G (5.19)

Since both, the operator D2 and the dS correction to the operator W
are defined by the same operator G, physical quantities corresponding to D2 and W
will be semiclassical or not depending on whether the quantity corresponding to G
is semiclassical or not. As follows from Eq. (4.34), the spectrum of the operator B
can be only in the range [0,1] and therefore, as follows from Eq. (5.19), the same is
true for the spectrum of the operator G. Hence, as follows from Eq. (5.19), any dS
correction to the operator W is negative and in the nonrelativistic approximation is
proportional to particle masses.

5.3 Validity of semiclassical approximation

Since classical mechanics works with a very high accuracy at macroscopic level, one
might think that the validity of semiclassical approximation at this level is beyond any
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doubts. However, to the best of our knowledge, this question has not been investigated
quantitavely. As discussed in Sect. 2.2, such quantities as coordinates and momenta
are semiclassicall if their uncertainties are much less than the corresponding mean
values. Consider wave functions describing the motion of macroscopic bodies as a
whole (say the wave functions of the Sun, the Earth, the Moon etc.). It is obvious
that uncertainties of coordinates in these wave functions are much less than the
corresponding macroscopic dimensions. What are those uncertainties for the Sun, the
Earth, the Moon, etc.? What are the uncertainties of their momenta? In standard
quantum mechanics, the validity of semiclassical approximation is defined by the
product ∆r∆p while each uncertainty by itself can be rather large. On the other
hand, as shown in Chap. 2, the standard position operator should be reconsidered.
Do we know what scenario for the distribution of momenta and coordinates takes
place for macroscopic bodies?

In this section we consider several models of the function ψ(n) where it
is be possible to explicitly calculate Ḡ and ∆G and check whether the condition
∆G ≪ |Ḡ| (showing that the quantity G in the state ψ is semiclassical) is satisfied.
As follows from Eq. (4.34), [G, n] = iA where formally the action of this operator
on the internal wave function is the same as in the first expression in Eq. (4.25).
Therefore, as follows from Eq. (2.2), ∆G∆n ≥ Ā/2.

As noted in Sect. 2.2, one might think that a necessary condition for
the validity of semiclassical approximation is that the exponent in the semiclassical
wave function makes many oscillations in the region where the wave function is not
small. We will consider wave functions ψ(n) containing exp(−iϕn) such that ψ(n)
can be different from zero only if n ∈ [nmin, nmax]. Then, if δ = nmax − nmin + 1, the
exponent makes |ϕ|δ/2π oscillations on [nmin, nmax] and ϕ should satisfy the condition
|ϕ| ≫ 1/δ. The problem arises whether this condition is sufficient.

Our first example is such that ψ(n) = exp(−iϕn)/δ1/2 if n ∈ [nmin, nmax].
Then a simple calculation gives

Ḡ = 1− cosϕ+
1

δ
cosϕ, ∆G =

(δ − 1)1/2cosϕ

δ
, Ā = (1− 1

δ
)sinϕ

n̄ = (nmin + nmax)/2, ∆n = δ(
1− 1/δ2

12
)1/2 (5.20)

Since ϕ is of the order of r/R, we will always assume that ϕ ≪ 1. Therefore for the
validity of the condition ∆G≪ Ḡ, |ϕ| should be not only much greater than 1/δ but
even much greater than 1/δ1/4. Note also that ∆G∆n is of the order of δ1/2, i.e. much
greater than Ā. This result shows that the state ψ(ν) is strongly non-semiclassical.
The calculation shows that for ensuring the validity of semiclassical approximation,
one should consider functions ψ(ν) which are small when n is close to nmin or nmax.

The second example is ψ(ν) = const Cν
δ exp(−iϕν) where ν = n − nmin

and const can be defined from the normalization condition. Since Cν
δ = 0 when ν < 0

or ν > δ, this function is not zero only when ν ∈ [0, δ]. The result of calculations is
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that const2 = 1/Cδ
2δ and

Ḡ = 1− cosϕ+
cosϕ

δ + 1
, ∆G = [

sin2ϕ

δ + 1
+

2

δ2
+O(

1

δ3
)]1/2, Ā =

δsinϕ

δ + 1

n̄ =
1

2
(nmin + nmax), ∆n =

δ

2(2δ − 1)1/2
(5.21)

Now for the validity of the condition ∆G≪ Ḡ, |ϕ| should be much greater than 1/δ1/2

and ∆G∆n is of the order of |Ā| which shows that the function is semiclassical. The
matter is that ψ(ν) has a sharp peak at ν = δ/2 and by using Stirling’s formula
it is easy to see that the width of the peak is of the order of δ1/2. It is also clear
from the expression for Ḡ that this quantity equals the semiclassical value 1 − cosϕ
with a high accuracy only when |ϕ| ≫ 1/δ1/2. This example might be considered as
an indication that a semiclassical wave function such that the condition |ϕ| ≫ 1/δ
is sufficient, should satisfy the following properties. On one hand the width of the
maximum should be of the order of δ and on the other the function should be small
when n is close to nmin or nmax.

In view of this remark, the third example is ψ(ν) = const exp(−iϕν)ν(δ−
ν) if n ∈ [nmin, nmax]. Then the normalization condition is const2 = [δ(δ4 − 1)/30]−1

and the result of calculations is

Ḡ = 1− cosϕ+
5cosϕ

δ2
+O(

1

δ3
), Ā = sinϕ (1− 5

δ2
), n̄ = (nmin + nmax)/2

G2 = (1− cosϕ)2 +
10

δ2
(cosϕ− cos2ϕ) +

15cosϕ

δ3
+O(

1

δ4
)

∆G =
1

δ
[10sin2ϕ+

15cosϕ

δ
+O(

1

δ2
)]1/2, ∆n =

δ

2
√
7

(5.22)

Now Ḡ ≈ 1− cosϕ if |ϕ| ≫ 1/δ but ∆G≪ |Ḡ| only if |ϕ| ≫ 1/δ3/4 and ∆G∆n is of
the order of |Ā| only if |ϕ| ≫ 1/δ1/2. The reason why the condition |ϕ| ≫ 1/δ is not
sufficient is that G2 approximately equals its classical value (1 − cosϕ)2 only when
|ϕ| ≫ 1/δ3/4. The term with 1/δ3 in G2 arises because when ν is close to 0, ψ(ν) is
proportional only to the first degree of ν and when ν is close to δ, it is proportional
to δ − ν.

Our last example is ψ(ν) = const exp(−iϕν)[ν(δ− ν)]2 if n ∈ [nmin, nmax].
It will suffice to estimate sums

∑δ
ν=1 ν

k by δk+1/(k + 1) + O(δk). In particular, the
normalization condition is const2 = 35 · 18/δ9 and the result of calculations is

Ḡ = 1− cosϕ+
6cosϕ

δ2
+O(

1

δ4
), Ā = sinϕ (1− 6

δ2
), n̄ = (nmin + nmax)/2

G2 = (1− cosϕ)2 +
12

δ2
(cosϕ− cos2ϕ) +O(

1

δ4
)

∆G =
1

δ
[12sin2ϕ+O(

1

δ2
)]1/2, ∆n =

δ

2
√
11

(5.23)
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In this example the condition |ϕ| ≫ 1/δ is sufficient to ensure that ∆G ≪ |Ḡ| and
∆G∆n is of the order of |Ā|.

At the same time, the following question arises. If we wish to perform
mathematical operations with a physical quantity in classical theory, we should guar-
antee that not only this quantity is semiclassical but a sufficient number of its powers
is semiclassical too. Since the classical value of G is proportional to ϕ2 and ϕ is small,
there is no guaranty that for the quantity G this is the case. Consider, for example,
whether G2 is semiclassical. It is clear from Eq. (5.23) that G2 is close to its classical
value (1 − cosϕ)2 if |ϕ| ≫ 1/δ. However, ∆(G2) will be semiclassical only if G4 is
close to its classical value (1− cosϕ)4. A calculation with the wave function from the
last example gives

G4 = (1− cosϕ)4 +
24

δ2
(1− cosϕ)3(3 + 4cosϕ) +

84

δ4
(1− cosϕ)2(64cos2ϕ+ 11cosϕ− 6) +

35 · 9
2δ5

+O(
1

δ6
) (5.24)

Therefore G4 will be close to its classical value (1 − cosϕ)4 only if |ϕ| ≫ 1/δ5/8.
Analogously, if ψ(ν) = const[ν(δ− ν)]3 then G2 will be semiclassical but G3 will not.
This consideration shows that a sufficient number of powers of G will be semiclassical
only if ψ(n) is sufficiently small in vicinities of nmin and nmax. On the other hand, in
the example described by Eq. (5.21), the width of maximum is much less than δ and
therefore the condition |ϕ| ≫ 1/δ is still insufficient.

The problem arises whether it is possible to find a wave function such that
the contributions of the values of ν close to 0 or δ is negligible while the effective
width of the maximum is or order δ. For example, it is known that for any segment
[a, b] and any ǫ < (b − a)/2 it is possible to find an infinitely differentiable function
f(x) on [a, b] such that f(x) = 0 if x /∈ [a, b] and f(x) = 1 if x ∈ [a+ǫ, b−ǫ]. However,
we cannot use such functions for several reasons. First of all, the values of ν can be
only integers: ν = 0, 1, 2, ...δ. Another reason is that for correspondence with GFQT
we can use only rational functions and even exp(−iνϕ) should be expressed in terms
of rational functions (see Sec. 6.1).

In view of this discussion, we accept that the functions similar to that
described in the second example give the best approximation for semiclassical ap-
proximation since in that case it is possible to prove that the condition |ϕ| ≫ 1/δ1/2

guarantees that sufficiently many quantities Gk (k = 1, 2, ...) will be semiclassical.
The first step of the proof is to show by induction that

Gkψ(ν) =
(−1)k

2k

2k
∑

l=0

C l
2k(−1)lψ(ν + k − l) (5.25)

Then the calculation of the explicit expression for Gk involves hypergeometric func-
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tions

F (−δ,−δ + k; k + 1; 1) =
∞
∑

l=0

(−δ)l(−δ + k)l
l!(k + 1)l

where (k)l is the Pochhammer symbol. Such sums are finite and can be calculated
by using the Saalschutz theorem [91]: F (−δ,−δ+ k; k+1; 1) = k!(2δ+ k)!/δ!(δ+ k)!.
As a result,

Gk =
(−1)k(δ!)2exp(−iϕk)
2k(δ + k)!(δ − k)!

F (−2k,−δ − k; δ − k + 1; exp[i(ϕ + π)]) (5.26)

The hypergeometric function in this expression can be rewritten by using the formula
[91]

F (a, b; 1 + a− b; z) = (1 + z)−aF [
a

2
,
a+ 1

2
; 1 + a− b;

4z

(1 + z)2
]

As a consequence

Gk =
2k(δ!)2

(δ + k)!(δ − k)!

k
∑

l=0

(−k)l(−k + 1
2
)l

l!(δ + 1− k)l
(sin

ϕ

2
)2(k−l) (5.27)

This result shows that Gk is given by a series in powers of 1/[δsin2(ϕ/2)]. Hence if
ϕ ≪ 1 but |ϕ| ≫ 1/δ1/2 we get that the classical expression for Gk is (Gk)class =
2ksin2k(ϕ/2) and the semiclassical approximation for Gk is valid since if k ≪ δ then

∆(Gk)

Gk
=

(2k2 − k)1/2

δ1/2sin(ϕ/2)
+O(

1

δsin2(ϕ/2)
) (5.28)

Since ϕ is of the order of r/R, the condition |ϕ| ≫ 1/δ1/2 is definitely
satisfied at cosmological distances while the problem arises whether it is satisfied in
the Solar System. Since δ can be treated as 2R∆q where ∆q is the width of the
relative momentum distribution in the internal two-body wave function, ϕδ is of the
order of r∆q. For understanding what the order of magnitude of this quantity is,
one should have estimations of ∆q for macroscopic wave functions. However, to the
best of our knowledge, the existing theory does not make it possible to give reliable
estimations of this quantity.

Below we argue that ∆q is of the order of 1/rg where rg is the gravitational
(Schwarzschild) radius of the component of the two-body system which has the greater
mass. Then ϕδ is of the order of r/rg. This is precisely the parameter defining
when standard Newtonian gravity is a good approximation to GR. For example, the
gravitational radius of the Earth is of the order of 0.01m while the radius of the Earth
is RE = 6.4× 106m. Therefore RE/rg is of the order of 10

9. The gravitational radius
of the Sun is of the order of 3000m, the distance from the Sun to the Earth is or
order 150 × 109m and so r/rg is of the order of 108. At the same time, the above
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discussion shows that the condition ϕδ ≫ 1 is not sufficient for ensuring semiclassical
approximation while the condition |ϕ| ≫ 1/δ1/2 is. Hence we should compare the
quantities r/R and (rg/R)

1/2. Then it is immediately clear that the requirement
|ϕ| ≫ 1/δ1/2 will not be satisfied if R is very large. For example, if R is of the
order of 1026m then in the example with the Earth r/R is of the order of 10−19 and
(rg/R)

1/2 is of the order of 10−14 while in the example with the Sun r/R is of the
order of 10−15 and (rg/R)

1/2 is of the order of 10−10. Therefore in these examples the
requirement |ϕ| ≫ 1/δ1/2 is not satisfied.

Our concusion is as follows. As shown in Chap. 2, even in standard
Poincare invariant theory the position operator should be defined not by the set
(ih̄∂/∂px, ih̄∂/∂py , ih̄∂/∂pz) but by the operators (R||,R⊥). At the same time, the
distance operator can be still defined in the standard way, i.e. by the operator
−h̄2(∂/∂p)2. However, explicit examples discussed in this section show that for
macroscopic bodies semiclassical approximation can be valid only if standard dis-
tance operator is modified too.

5.4 Distance operator for macroscopic bodies

As noted in Chap. 2, standard position operator in quantum theory is defined by
the requirement that the momentum and coordinate representations are related to
each other by a Fourier transform and this requirement is postulated by analogy with
classical electrodynamics. However, as discussed in Chap. 2, the validity of such a
requirement is problematic and there exist situations when standard position operator
does not work. In addition, in Poincare invariant theories there is no parameter R;
in particular rapidly oscillating exponents do not contain this parameter.

In the case of macroscopic bodies a new complication arises. It will be
argued in the next chapters that in GFQT the width δ of the n-distribution for a
macroscopic body is inversely proportional to its mass. Therefore for nuclei and
elementary particles the quantity δ is much greater than for macroscopic bodies and
the requirement |ϕ| ≫ 1/δ1/2 can be satisfied in some situations. On the other hand,
such a treatment of the distance operator for macroscopic bodies is incompatible
with semiclassical approximation since, as discussed in the preceding section, if the
distances are not cosmological then ϕ is typically much less than 1/δ1/2. Hence the
interpretation of the distance operator for macroscopic bodies should be modified.

As noted in Secs. 2.2 and 2.3, in standard theory the semiclassical wave
function in momentum space has the form exp(−irp)a(p) where the amplitude a(p)
has a sharp maximum at the classical value of momentum p = p0 and r is the
classical radius-vector. This property is based on the fact that in standard theory the
coordinate and momentum representations are related to each other by the Fourier
transform. However, as shown in Chap. 2, the standard position operator should be
modified and hence the problem of the form of the semiclassical wave function should
be reconsidered. In this section we discuss how the semiclassical wave function in the
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n-representation should depend on the classical value ϕ.
As noted in Sec. 2.2, a necessary condition for semiclassical approxima-

tion is that the wave function should make many oscillations in the region where its
amplitude is not negligible. Hence if the rapidly oscillating exponent in the wave
function is exp(−iϕn) then the number of oscillations is of the order of ϕδ and this
number is large if ϕ ≫ 1/δ. As noted in the preceding section, this condition is
typically satisfied but for the validity of semiclassical approximation the value of ϕ
should be not only much greater than 1/δ but even much greater than 1/δ1/2. We
assume that in the general case rapidly oscillating exponent in the wave function is
not exp(−iϕn) but exp(−iχn) where χ is a function of ϕ such that χ(ϕ) = ϕ when
ϕ≫ 1/δ1/2 (in particular when ϕ is of the order of cosmological distances) while for
macroscopic bodies in the Solar System (when ϕ is very small), χ is a function of
ϕ = r/R to be determined. Note that when we discussed the operator D2 compatible
with the standard interpretation of the distance operator, we did not neglect J in
this operator and treated |ϕ| as r||/R. However, when we neglect all corrections of
the order of 1/R and higher, we neglect J in D2 and replace ϕ by χ which does not
vanish when R → ∞. As shown in Sect. 5.2, the operator D2 is rotationally invariant
since the internal two-body momentum operator is a reduction of the operator J” on
the two-body rest states, D satisfies Eq. (5.10) and therefore [J”,D2] = 0. Hence χ
can be only a function of r but not r||.

Ideally, a physical interpretation of an operator of a physical quantity
should be obtained from the quantum theory of measurements which should describe
the operator in terms of a measurement of the corresponding physical quantity. How-
ever, although quantum theory is known for 80+ years, the quantum theory of mea-
surements has not been developed yet. Our judgment about operators of different
physical quantities can be based only on intuition and comparison of theory and ex-
periment. As noted in Sect. 2.2, in view of our macroscopic experience, it seems
unreasonable that if the uncertainty ∆r of r does not depend on r then the relative
accuracy ∆r/r in the measurement of r is better when r is greater.

When exp(−iϕn) is replaced by exp(−iχn), the results obtained in the
preceding section remain valid but ϕ should be replaced by χ. Suppose that when ϕ
is of the order of 1/δ1/2 or less, χ = f(C(ϕδ)α) where C is a constant and f(x) is a
function such that f(x) = x+ o(x) where the correction o(x) will be discussed later.
Then if χ and ϕ are treated not as classical but as quantum physical quantities we
have that ∆χ ≈ Cϕα−1δα∆ϕ. If ϕ is replaced by χ then, as follows from the first
expression in Eq. (5.21), if χ ≫ 1/δ1/2 and χ≪ 1, the operator G can be treated as
the operator of the quantity χ2/2. Then it follows from the second expression in Eq.
(5.21) that ∆(χ2) is of the order of χ/δ1/2 and therefore ∆χ is of the order of 1/δ1/2.
As a consequence, ∆ϕ ≈ const · ϕ(ϕδ)−α/δ1/2. Since (ϕ≫ 1/δ), the accuracy of the
measurement of ϕ is better when α < 0. In that case the relative accuracy ∆ϕ/ϕ is
better for lesser values of ϕ and, as noted in Sect. 2.2, this is a desired behavior in
view of our macroscopic experience. Note also that the condition α < 0 is natural
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from the fact that χ≪ 1 is a necessary condition for the wave function in momentum
representation to be approximately continuous since the standard momentum is of
the order of n/R.

If α < 0 then ∆ϕ ≈ const · ϕ(ϕδ)|α|/δ1/2. In view of quantum mechanical
experience, one might expect that the accuracy should be better if δ is greater. On
the other hand, in our approach δ is inversely proportional to the masses of the bodies
under consideration and our macroscopic experience tells us that the accuracy of the
measurement of relative distance does not depend on the mass. Indeed, suppose
that we measure a distance by sending a light signal. Then the accuracy of the
measurement should not depend on whether the signal is reflected by the mass 1kg
or 1000kg. Therefore at macroscopic level the accuracy should not depend on δ.
Hence the optimal choice is α = −1/2. In that case ∆ϕ ≈ const · ϕ3/2 and χ =
f(C/(ϕδ)1/2). Then, if C is of the order of unity, the condition χ ≫ 1/δ1/2, which,
as explained in the preceding section, guarantees that semiclassical approximation is
valid, is automatically satisfied since in the Solar System we always have (R/r)1/2 ≫
1. We will see in the next section that such a dependence of χ on ϕ and δ gives a
natural explanation of the Newton law of gravity.

5.5 Newton’s law of gravity

As follows from Eqs. (5.21), with ϕ replaced by χ, the mean value of the operator
G is 1 − cosχ with a high accuracy. Consider two-body wave functions having the
form ψ(N, n) = [δ(N)/(δ1δ2)]

1/2ψ(n). As follows from Eq. (5.16), such functions are
normalized to one. Then, as follows from Eq. (5.19), the mean value of the operator
W can be written as

W = 4R2M2
0 +∆W, ∆W = −2[(w1 + 4n2

1)(w2 + 4n2
2)]

1/2F (δ1, δ2, ϕ)

F (δ1, δ2, ϕ) =
1

δ1δ2

Nmax
∑

N=Nmin

δ(N){1− cos[f(
C

(ϕδ(N))1/2
)]} (5.29)

Strictly speaking, the semiclassical form of the wave function exp(−iχn)a(n) cannot
be used if δ(N) is very small; in particular, it cannot be used when δ(N) = 0. We
assume that in these cases the internal wave function can be modified such that the
main contribution to the sum in Eq. (5.29) is given by those N where δ(N) is not
small.

If ϕ is so large that the argument α of cos in Eq. (5.29) is extremely small,
then the correction to Poincare limit is negligible. The next approximation is that
this argument is small such we can approximate cos(α) by 1 − α2/2. Then, taking
into account that f(α) = α + o(α) and that the number of values of N is δ1 + δ2 we
get

∆W = −C2[(w1 + 4n2
1)(w2 + 4n2

2)]
1/2 δ1 + δ2
δ1δ2|ϕ|

(5.30)
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Now, by analogy with the derivation of Eq. (5.8), it follows that the classical nonrel-
ativistic Hamiltonian is

H(r,q) =
q2

2m12
− m1m2RC

2

2(m1 +m2)r
(
1

δ1
+

1

δ2
) (5.31)

We see that the correction disappears if the width of the dS momentum distribution
for each body becomes very large. In standard theory (over complex numbers) there is
no limitation on the width of distribution while, as noted in the preceding section, in
semiclassical approximation the only limitation is that the width of the dS momentum
distribution should be much less than the mean value of this momentum. In the next
chapters we argue that in GFQT it is natural that the width of the momentum
distribution for a macroscopic body is inversely proportional to its mass. Then we
recover the Newton gravitational law. Namely, if

δj =
R

mjG′ (j = 1, 2), C2G′ = 2G (5.32)

then

H(r,q) =
q2

2m12

−G
m1m2

r
(5.33)

We conclude that in our approach gravity is simply a dS the correction to the standard
nonrelativistic Hamiltonian. This correction is spherically symmetric since, as noted
in the beginning of this section, when all corrections of the order of 1/R are neglected,
the dependence of D2 on J disappears.

5.6 Special case: very large m2

Consider a special case when m2 ≫ m1, |q| and we do not assume that particle
1 is nonrelativistic. As noted above, in the c.m. frame of the two-body system
n1 ≈ n2 ≈ n. Since in this reference frame the vectors B1 and B2 are approximately
antiparallel and |B1| ≈ |B2| ≈ 2n, it follows from Eq. (5.7) that

W 0 = [(w1+4n2)1/2+(w2+4n2)1/2]2 ≈ [(w1+4n2)1/2+w
1/2
2 ]2 ≈ w2+2w

1/2
2 (w1+4n2)1/2

(5.34)
since w2 ≫ w1, 4n

2.
Consider now the calculation of the quantity F (δ1, δ2, ϕ) in Eq. (5.29).

If the quantities δi (i = 1, 2) are inversely proportional to the corresponding masses
then δ1 ≫ δ2. Now it is clear from Fig. 5.1 that in the sum for F (δ1, δ2, ϕ) the
number of terms approximately equals δ1 and in almost all of them δ(N) = δ2. Hence
F (δ1, δ2, ϕ) ≈ 1 − cosχ where χ = f(C/(ϕδ2)

1/2). Then, as follows from Eqs. (5.29)
and (5.34)

W
1/2 ≈ w

1/2
2 + (w1 + 4n2)1/2cosχ (5.35)
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Equation (5.35) is derived neglecting all the corrections of the order of
1/R and higher; it particular it is assumed that k ≪ n. Hence the last term in Eq.
(5.35) differs from the first term in Eq. (4.20) only such that ϕ is replaced by χ.
This is a consequence of the fact that the latter has been derived by considering the
single-particle wave function and assuming that its wave function contains exp(−iϕn)
while the former has been derived by considering the wave function in the c.m. frame
and assuming that its dependence on the relative momentum variable n contains
exp(−iχn).

Since W = 4R2M2 where M is the standard two-body mass operator, it
follows from Eq. (5.35) that if m2 is very large then the mass operator of the two-
body problem is fully defined by the energy of free particle 1 in the c.m. frame of the
two-body system. For example, when f(x) ≈ x then by analogy with the derivation
of Eq. (5.33) we get that the energy of particle 1 in the c.m. frame is

Hrel(r,q) = (m2
1 + q2)1/2(1− Gm2

r
) (5.36)

and the nonrelativistic expression for this energy is

Hnr(r,q) =
q2

2m1
− Gm1m2

r
(5.37)

Let us stress that for example Eq. (5.37) is the nonrelativistic energy
of free particle 1 in the c.m. frame of the two-body system. In standard theory
this expression is treated as a result of gravitational interaction of particle 1 with
the massive body having the mass m2. Hence in our approach gravity is simply a
kinematical consequence of dS symmetry.

By analogy with the single-body case, the internal two-body wave func-
tion can be written as ψ(n, k, µ) where n is the quantum number characterizing the
magnitude of the relative dS momentum, k is the quantum number characterizing the
magnitude of the relative angular momentum and µ is the quantum number charac-
terizing the z projection of the relative angular momentum. If m1 ≪ m2 then in the
c.m. frame the radius-vector of particle 1 is much greater than the radius-vector of
particle 2. As noted above, in the c.m. frame n1 ≈ n2 ≈ n. Therefore the relative
angular momentum approximately equals the angular momentum of particle 1 in the
two-body c.m. frame. As a consequence, ψ(n, k, µ) can be treated as a wave function
of particle 1 in the c.m. frame. The only difference between this wave function and
the single-particle wave function for the free particle 1 is that in the case m1 ≪ m2

the width of the n-distribution in the c.m. frame equals δ2, not δ1 as for the free
particle 1. As a consequence, the energy of particle 1 in the c.m. frame is described
by Eqs. (5.36) and (5.37).

In view of the analogy between the description of free particle 1 and par-
ticle 1 in the two-body c.m. frame, for describing semiclassical values of the dS
operators of particle 1 in the c.m. frame one can use the results of Sec. 4.2 and Eq.
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(4.20) where ϕ is replaced by χ. The classical motion of particle 1 in the xy plane
such that Jz > 0 corresponds to the case α = −π/2 and µ = k. Then, taking into
account that k ≪ n, it follows from Eq. (4.20) that

Bx = −2nsinβ, By = 2ncosβ, Jz = 2k, Bz = Nz = J⊥ = 0

E = (w + 4n2)1/2cosχ, Nx = (w + 4n2)1/2(sinχsinβ − k

n
cosχcosβ)

Ny = (w + 4n2)1/2(−sinχcosβ − k

n
cosχsinβ) (5.38)

For describing vectors in the xy plane we will use the following notation.
If the vector A has the components (Ax, Ay) then we will write A = (Ax, Ay). As
in Sec. 4.2, the relation between the momentum q of particle 1 in the c.m. frame
and the vector B is q = B/2R, the standard energy E equals E/2R and the ⊥ and
|| components of the vector N are defined as in Sec. 4.3. Then, as follows from Eq.
(5.38), N⊥ = −2ERk(cosβ, sinβ)/n. Since r⊥ is defined such that N⊥ = −2Er⊥ and
n = Rq where q = |q| we get that r⊥ = k(cosβ, sinβ)/q and hence the vector r can
be written as r = r||(sinβ,−cosβ) + |r⊥|(cosβ, sinβ).

Since we work in units where h̄/2 = 1 then k = |r⊥|q and in standard units
Jz = L and |r⊥| = L/q. We now define the angles γ1 and γ2 such that β = π/2 + γ1,
sinγ2 = L/qr and cosγ2 = [1 − (L/qr)2]1/2 where r = |r|. Then the final result for
the vectors q and r can be writtens as

q = q(1− L2

q2r2
)1/2(cosϕ, sinϕ) +

L

r
(−sinϕ, cosϕ), r = r(cosϕ, sinϕ) (5.39)

where ϕ = γ1 − γ2 and we assume that sinχ > 0. The standard energy of particle 1
in the c.m. frame is E = (m2 + q2)1/2cosχ where m = m1 and χ is a finction of r
discussed in the preceding sections.

5.7 Classical equations of motion

Classical equations of motion should follow from quantum theory if the evolution
operator is known. By analogy with standard Schrödinger equation one might think
that the internal two-body evolution operator is exp(−iMt) whereM is the two-body
mass operator. However, as discussed in Sec. 1.2, the problem of time in quantum
theory has not been solved yet and such an evolution operator is problematic. Never-
theless, if the evolution operator is defined by M then on classical level the two-body
mass and the quantities corresponding to operators commuting withM are conserved.
In particular, if L is the classical value of J3 then L is conserved.

In this section we show that classical equations of motion for all standard
gravitational two-body problems can be obtained according to the following scheme.
We assume that classical values of the free two-body mass M and L are conserved.
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In the case when m1 ≪ m2 we assume that, according to Eq. (1.2), time is defined
such that

dr =
q

ǫ(q)
dt (5.40)

where ǫ(q) = (m2 + q2)1/2. Then the results are generalized to the case when m1

and m2 are comparable to each other. Note that the above conditions fully define
the motion; in particular there is no need to involve Lagrange equations, Hamilton
equations, Hamilton-Jacobi equations etc.

Consider first the case when m1 ≪ m2. The three classical tests of GR
— precession of Mercury’s perihelion, gravitational red shift of light and deflection
of light by the Sun — can be discussed in this approximation. If ξ = sin2χ then, as
discussed in the preceding sections, ξ can be written as a series in powers of (rg/r)
where rg is the gravitational radius of particle 2: ξ = (rg/r) + a(rg/r)

2 + ....
The consideration of the gravitational red shift of light does not require

Eq. (5.40) and equations of motion. In that case it siffices to note that, according to
Eq. (5.36), if particle 1 is the photon then in the approximation when ξ = rg/r its
energy in standard units is

E = qc(1− rg
2r

) = qc(1− Gm2

c2r
) (5.41)

Consider the case when the photon travels in the radial direction from the Earth
surface to the height h. Let RE be the Earth radius, q1 be the photon momentum on
the Earth surface when r = RE and q2 be the photon momentum when the photon
is on the height h, i.e. when r = RE + h. The corresponding photon kinetic energies
are E1 = q1c and E2 = q2c, respectively. Since E is the conserved quantity, it easily
follows from Eq. (5.41) that if h ≪ RE then ∆E1 = E2 − E1 ≈ −E1gh/c

2 where g
is the free fall acceleration. Therefore one can formally define the potential energy
of the photon near the Earth surface by U(h) = E1gh/c

2 and we have a full analogy
with classical mechanics. From the formal point of view, the result is in agreement
with GR and the usual statement is that this effect has been measured in the famous
Pound-Rebka experiment. We discuss this question in Sec. 5.8.

Consider now the derivation of equations of motions in the case when
m1 ≪ m2. As follows from Eq. (5.39)

dr = dr(cosϕ, sinϕ) + rdϕ(−sinϕ, cosϕ) (5.42)

Therefore, as follows from Eqs. (5.39) and (5.40), the equations of motion have the
form

dr

dt
=

1

ǫ(q)
(q2 − L2

r2
)1/2,

dϕ

dt
=

L

r2ǫ(q)
(5.43)

where q as a function of r should be found from the condition that E is a constant
of motion. Since E = ǫ(q)cosχ, we have that

q(r)2 =
E2

1− ξ(r)
−m2 (5.44)
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In such problems as deflection of light by the Sun and precession of Mercury’s peri-
helion it suffices to find only the trajectory of particle 1. As follows from Eq. (5.43),
the equation defining the trajectory is

dϕ

dr
=

L

r[r2q(r)2 − L2]1/2
(5.45)

Consider first deflection of light by the Sun. If ρ is the minimal distance
between the photon and the Sun then when r = ρ the radial component of the
momentum is zero and hence, as follows from Eq. (5.41)

q(ρ) =
L

ρ
, E =

L

ρ
(1− rg

2ρ
) (5.46)

Suppose that in Eq. (5.44) a good approximation is when only the terms linear in
rg/r can be taken into account. Then q(r)2 ≈ E2(1 + rg/r) and, as follows from Eqs.
(5.45) and (5.46), in first order in rg/r

dϕ

dr
=
ρ

r
[r2(1 +

rg
r
− rg

ρ
)− ρ2]−1/2 (5.47)

Suppose that in the initial state the y coordinate of the photon was −∞, at the
closest distance to the Sun its coordinates are (x = ρ, y = 0) and in the final state
the y coordinate is +∞. Then, as follows from Eq. (5.47), the total change of the
photon angle is

∆ϕ = 2

∫ ∞

ρ

ρ

r
[r2(1 +

rg
r
− rg

ρ
)− ρ2]−1/2dr (5.48)

The quantities rg/ρ and rg/r are very small and in the main approximation those
quantities can be neglected. Then ∆ϕ = π what corresponds to the non-deflected
motion along a straight line. In the next approximation in rg/ρ

∆ϕ = π +
rg
ρ

(5.49)

This result is discussed in Sec. 5.8.
Consider now the trajectory of particle 1 if its mass m = m1 is arbitrary

but such that m1 ≪ m2 and the terms quadratic in rg/r should be taken into account.
Then E/(1− ξ) ≈ E(1 + ξ + ξ2) and, as follows from Eqs. (5.44) and (5.45)

dϕ

dr
=
L

r
[(E2 −m2)r2 + E2rgr + E2r2g(1 + a)− L2]−1/2 (5.50)

If E < m then it is clear from this expression that the quantity r can be only in a
finite range [r1, r2].

For defining the trajectory one can use the fact that
∫

dx

x(−ax2 + bx− c)1/2
=

i
√

(c)
ln[A(x) + iB(x)]
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where

A(x) =
2

x
(−ax2 + bx− c)1/2, B(x) =

i(bx− 2c)

xc1/2

Since lnz = ln|z| + iarg(z), the result of integration of Eq. (5.50) is

ϕ(r) = const +
L

[L2 −E2r2g(1 + a)]1/2
arcsin[F (r)] (5.51)

where the explicit form of the function F (r) is not important for our goal. It follows
from this expression that the difference of the angles for consecutive perihelions is

∆ϕ =
2πL

[L2 − E2r2g(1 + a)]1/2
(5.52)

If E2r2g(1+ a) ≪ L2 and particle 1 is nonrelativistic this expression can be written as

∆ϕ = 2π +
4πm2m2

2G
2(1 + a)

L2
(5.53)

and the result of GR is recovered if a = 1/2. This result is discussed in Sec. 5.8.
Note that in the three classical tests of GR we need only trajectories,

i.e. the knowledge of the functions r(t) and ϕ(t) is not needed. Then it is clear that
although for the derivation of Eq. (5.45) we used Eq. (5.40), the only property of this
equation needed for defining trajectories is that dr is proportional to q. However, for
defining the functions r(t) and ϕ(t) it is important that dr/dt is the velocity defined
as q/ǫ(q).

For example, as follows from Eqs. (5.43) and (5.44) the relation between
t and r is

t(r) = E

∫

dr

[1− ξ(r)]1/2[(E2 −m2) + E2ξ(r)(1 + ξ(r))− L2/r2]1/2
(5.54)

Taking into account corrections of the order of rg/r we get

t(r) = E

∫

(r + rg/2)dr

[(E2 −m2)r2 + E2rgr + E2(1 + a)r2g − L2]1/2
(5.55)

Let T be the period of rotations; for example it can defined as the time
difference between two consecutive perihelions. This quantity can be calculated by
analogy with the above calculation of angular precession of the perihelion and the
result is

T =
πEm2rg

(m2 −E2)3/2
(5.56)

Suppose that particle 1 is nonrelativistic and define Enr = m− E. Then

T = Tnr(1−
Enr

4m
), Tnr =

πm3

(2mEnr)3/2
(5.57)
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where Tnr is the nonrelativistic expression for the period. It follows from this ex-
pression that the relativistic correction to the period is 2.4 · 10−2s for Mercury and
3.9 · 10−2s for Earth. In GR the period can be calculated by using the expression for
t(r) in this theory (see e.g. Ref. [3]). For Earth this gives an additional correction of
0.6s. However, at present the comparison between theory and experiment with such
an accuracy seems to be impossible.

In standard nonrelativistic theory the acceleration d2r/dt2 is directed to-
ward the center and is proportional to 1/r2. Let us check whether or not this property
is satisfied in the above formalism. As follows from Eq. (5.39)

d2r

dt2
= [

d2r

dt2
− r(

dϕ

dt
)2](cosϕ, sinϕ) + [2

dr

dt

dϕ

dt
+ r

d2ϕ

dt2
](−sinϕ, cosϕ) (5.58)

Therefore d2r/dt2 is directed toward r if [2(dr/dt)(dϕ/dt) + rd2ϕ/dt2] = 0. A direct
calculation using Eqs. (5.43) and (5.44) gives

2
dr

dt

dϕ

dt
+ r

d2ϕ

dt2
= −LE

2(1 + 2ξ)

2ǫ(q)3r

dξ

dt
(5.59)

In the nonrelativistic approximation this quantity does equal zero but in the general
case it does not.

An analogous calculation gives

d2r

dt2
− r(

dϕ

dt
)2 =

(m2 + L2/r2)E2(1 + 2ξ)

2(q2 − L2/r2)1/2ǫ(q)3
dξ

dt
(5.60)

If ξ = rg/r then, as follows from Eq. (5.43), in the nonrelativistic approximation this
quantity equals −Gm2/r

2. Hence in this approximation we indeed have the standard
result d2r/dt2 = −Gm2r/r

3.
We now do not assume thatm1 ≪ m2 but consider only the nonrelativistic

approximation. The relative angular momentum J equals the total angular momen-
tum in the c.m. frame. In this reference frame we have r1×p1+r2×p2 = r×q where
q = p1 is the relative momentum and r = r1 − r2 is the relative position. Therefore,
by analogy with the derivation of Eq. (5.39), one can derive the same relations where
q is the relative momentum and r is the relative position.

As follows from Eqs. (5.8) and (5.33), in the cases of dS antigravity
and standard Newtonian gravity the internal two-body nonrelativistic energy can
be written as

E =
q2

2m12
− 1

2
m12ξ (5.61)

where ξ = (r/R)2 for the dS antigravity and ξ = rg/r with rg = 2G(m1+m2) for the
Newtonian gravity.

By analogy with the above consideration, for deriving equations of notions
one should define time by analogy with Eq. (5.40). In our approach the effects of dS
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antigravity and standard Newtonian gravity are simply kinematical manifestations of
dS symmetry for systems of two free particles. The difference between those cases
is only that the quantity χ in the exponent exp(−iχn) defining the behavior of the
internal two-body wave function depends on r differently in the cases when r is of the
order of cosmological distances and much less than those distances. As follows from
Eq. (5.40), in the nonrelativistic approximation

dr = dr1 − dr2 = (
p1

m1

− p2

m2

)dt =
q

m12

dt

Then, by analogy with the derivation of Eq. (5.58), we get

d2r

dt2
=

r

R2
, m12

d2r

dt2
= −Gm1m2

r3
r (5.62)

for dS antigravity and Newtonian gravity, respectively.
As noted in Secs. 3.6 and 5.1, the first expression in Eq. (5.62) is a

consequence of the Hamilton equations for the Hamiltonian (5.8) and it is obvious that
the second expression is a consequence of the Hamilton equations for the Hamiltonian
(5.33). However, as shown above, those expressions can be derived without involving
the Hamilton equations but using only the relation (5.40) for each free particle.

5.8 Discussion of non-Newtonian gravitational ef-

fects

General Relativity is a pure classical theory and a common belief is that in the
future quantum theory of gravity the results of GR will be recovered in semiclassical
approximation. Moreover, any quantum theory of gravity can be tested only on
macroscopic level. Hence, the problem is not only to construct quantum theory
of gravity but also to understand a correct structure of the position operator on
macroscopic level. However, in the literature the latter problem is not discussed
because it is tacitly assumed that the position operator on macroscopic level is the
same as in standard quantum theory. This is a great extrapolation which should be
substantiated.

As argued in Secs. 5.3 and 5.4, standard position operator is not semi-
classical on macroscopic level and therefore on this level it should be modified. In
our approach gravity is simply a manifestation of dS symmetry on quantum level for
systems of free bodies. Then for calculating observable effects one should know how
the quantity χ in the exponent exp(−iχn) for the internal two-body wave function
depends on the distance between the bodies. As argued in Sec. 5.4, if ξ = sin2χ
then the dependendence ξ = (rg/r) + o(rg/r) is reasonable and reproduces standard
Newtonian gravity. In this section we consider what our approach can say about

142



the gravitational red shift of light, deflection of light by the Sun and precession of
Mercury’s perihelion which are treated as three classical tests of GR.

As seen from Earth the precession of Mercury’s orbit is measured to be
5600” per century while the contribution of GR is 43” per century. Hence the lat-
ter is less than 1% of the total contribution. The main contribution to the total
precession arises as a consequence of the fact that Earth is not an inertial reference
frame and when the precession is recalculated with respect to the International Ce-
lestial Reference System the value of the precession becomes (574.10 ± 0.65)” per
century. Celestial mechanics states the gravitational tugs of the other planets con-
tribute (531.63 ± 0.69)” while all other contributions are small. Hence there is a
discrepancy of 43” per century and the result of GR gives almost exactly the same
value. Although there are different opinions on whether, the contribution of GR fully
explains the data or not, in the overwhelming majority of the literature it is accepted
that this is the case.

Our result (5.53) is compatible with GR if ξ = (rg/r) + (rg/r)
2/2 +

o((rg/r)
2). The result of GR is by a factor of 3/2 greater than the results of sev-

eral alternative theories of gravity which in our approach can be reproduced if ξ =
(rg/r) + o((rg/r)

2). Hence the problem of the future quantum theory of gravity is to
understand the value of the quadratic correction to ξ.

The result for the gravitational red shift of light given by Eq. (5.41) is
in agreement with GR and is treated such that it has been confirmed in the Pound-
Rebka experiment. However, the conventional interpretation of this effect has been
criticized by L.B. Okun in Ref. [92]. In his opinion, ”a presumed analogy between
a photon and a stone” is wrong. The reason is that ”the energy of the photon and
hence its frequency ω = E/h̄ do not depend on the distance from the gravitational
body, because in the static case the gravitational potential does not depend on the
time coordinate t. The reader who is not satisfied with this argument may look at
Maxwell’s equations as given e.g. in section 5.2 of ref. [93]. These equations with
time independent metric have solutions with frequencies equal to those of the emitter”.
In Ref. [92] the result of the Pound-Rebka experiment is explained such that not the
photon looses its kinetic energy but the differences between the atom energy levels on
the height h are greater than on the Earth surface and ”As a result of this increase
the energy of a photon emitted in a transition of an atom downstairs is not enough to
excite a reverse transition upstairs. For the observer upstairs this looks like a redshift
of the photon. Therefore for a competent observer the apparent redshift of the photon
is a result of the blueshift of the clock.”.

As noted in Ref. [92], ”A naive (but obviously wrong!) way to derive the
formula for the redshift is to ascribe to the photon with energy E a mass mγ = E/c2

and to apply to the photon a non-relativistic formula ∆E = −mγ∆φ treating it like a
stone. Then the relative shift of photon energy is ∆E/E = −∆φ/c2, which coincides
with the correct result. But this coincidence cannot justify the absolutely thoughtless
application of a nonrelativistic formula to an ultrarelativistic object.”
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However, in our approach no nonrelativistic formulas for the photon have
been used and the result ∆E1/E1 = −gh/c2 has been obtained in a fully relativistic
approach. As already noted, the only problematic point in deriving this result is
that the function ξ(r) is not exactly known. In the framework of our approach a
stone and a photon are simply particles with different masses; that is why the stone
is nonrelativistic and the photon is ultrarelativistic. Therefore there is no reason to
think that in contrast to the stone, the photon will not loose its kinetic energy. At
the same time, we believe that Ref. [92] gives strong arguments that energy levels on
the Earth surface and on the height H are different.

We believe that the following point in the arguments of Ref. [92] is not
quite consistent. A stone, a photon and other particles can be characterized by their
energies, momenta and other quantities for which there exist well defined operators.
Those quantities might be measured in collisions of those particles with other parti-
cles. At the same time, as noted in Secs. 1.2 and 2.6 the notions of ”frequency of
a photon” or ”frequency of a stone” have no physical meaning. If a particle wave
function (or, as noted in Sec. 1.2, rather a state vector is a better name) contains
exp[i(px−Et)/h̄] then by analogy with the theory of classical waves one might say that
the particle is a wave with the frequency ω = E/h̄ and the wave length λ = 2πh̄/p.
However, the fact that such defined quantities ω and λ are the real frequencies and
wave lengths measured e.g. in spectroscopic experiments needs to be substantiated.
Let ω and λ be frequencies and wave lengths measured in experiments with classi-
cal waves. Those quantities necessarily involve classical space and time. Then the
relation E = h̄ω between the energies of particles in classical waves and frequencies
of those waves is only an assumption that those different quantities are related in
such a way. This relation has been first proposed by Planck for the description of
the blackbody radiation and the experimental data indicate that it is valid with a
high accuracy. As noted in Sec. 2.6, this relation takes place in Poincare invariant
electrodynamics. However, there is no guaranty that this relation is always valid with
the absolute accuracy, as the author of Ref. [92] assumes. In spectroscopic experi-
ments not energies and momenta of emitted photons are measured but wave lengths
of the radiation obtained as a result of transitions between different energy levels.
In particular, there is no experiment confirming that the relation E = h̄ω is always
exact, e.g. on the Earth surface and on the height h. In summary, the Pound-Rebka
experiment cannot be treated as a model-independent confirmation of GR.

Consider now the deflection of light by the Sun. As shown in the preceding
section, in the approximation ξ = rg/r the deflection is described by Eq. (5.49).
In the literature this result is usually represented such that if θ = ∆ϕ − π is the
deflection angle then θ = (1 + γ)rg/ρ where γ depends on the theory. Hence the
result given by Eq. (5.49) corresponds to γ = 0. This result was obtained by Einstein
in 1911. The well-known historical facts are that in 1915 when Einstein created
GR he obtained γ = 1 and in 1919 this result was confirmed in observations of the
full Solar eclipse. Originally the accuracy of measurements was not high but now the

144



quantity γ is measured with a high accuracy in experiments using the Very Long Base
Interferometry (VLBI) technique and the result γ = 1 has been confirmed with the
accuracy better than 1%. The result γ = 1 in GR is a consequence of the fact that the
post-Newtonian correction to the metric tensor in the vicinity of the Sun is not zero
for both, temporal and spatial components of this tensor. A question arises whether
this result can be obtained in the framework of a quantum approach. In the textbook
[94], the deflection is treated as a consequence of one-graviton exchange. The author
defines the vertices responsible for the interaction of a virtual graviton with a scalar
nonrelativistic particle and with a photon and in that case the cross-section of the
process described by the one-graviton exchange corresponds to the result with γ = 1.
The problem is that there is no other way of testing the photon-graviton vertex and
we believe that it is highly unrealistic that when the photon travels in the y direction
from −∞ to +∞, it exchanges only by one virtual graviton with the Sun. Therefore
a problem of how to recover the result with γ = 1 in quantum theory remains open.

In GR it is assumed that in the propagation of light in the interstellar
medium the interaction of light with the medium is not significant and the propagation
can be described in the framework of geometrical optics. In other words, this approach
is similar to what is called Theory A for explaining the redshift (see Chap. 2).
However, the density of the Solar atmosphere near the Solar surface is rather high and
the assumption that the photon passes this atmosphere practically without interaction
with the particles of the atmosphere seems to be problematic.

For example, in Sec. 2.10 we discussed possible mechanisms which do not
allow the photon wave function to spread significantly. In particular, a possible mech-
anism can be such that a photon is first absorbed by an atom and then is reemitted.
Suppose that this mechanism plays an important role and photons encounter many
atoms on their way. In the period of time when the atom absorbs the photon but
does not reemit it yet, the atom acquires an additional acceleration as a result of
its effective gravitational interaction with the Sun. Then the absorbed and reemit-
ted photons will have different accelerations and the reemitted photon is expected
to have a greater acceleration towards the Sun than the absorbed photon. This ef-
fect increases the deflection angle and analogously other mechanisms of interaction
of photons with the interstellar matter are expected to increase the deflection angle
since the matter moves with an acceleration towards the Sun.

Three classical effects of GR are treated as phenomena where the grav-
itational field is rather weak. In recent years considerable efforts have been made
for investigating binary pulsars where the gravitational field is treated as strong. In
contrast to planets, conclusions about masses and radii of pulsars can be made only
from models describing their radiation. It is believed that typically pulsars are neu-
tron stars with masses in the range 1.2-1.6 of the solar one and radii of the order of
10km. In the case of binary pulsars, a typical situation is that the second component
of the binary system is not observable (at present the only known case where the
both components are pulsars is the binary pulsar J0737-3039).
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The most famous case is the binary pulsar PSR B1913+16 discovered by
Hulse and Taylor in 1974. A model with eighteen fitted parameters for this binary
system has been described in Refs. [95, 96] and references therein. In this model the
masses of the pulsar and companion are approximately 1.4 solar masses, the period of
rotation around the common center of mass is 7.75 hours, the values of periastron and
apastron are 1.1 and 4.8 solar radii, respectively, and the orbital velocity of stars is 450
km/s and 110 km/s at periastron and apastron, respectively. Then relativistic effects
are much stronger than in Solar System. For example, the precession of periastron is
4.2 degrees per year.

The most striking effect in the above model is that it predicts that the
energy loss due to gravitational radiation can be extracted from the data. As noted
in Ref. [95], comparison of the measured and theoretical values requires a small
correction for relative acceleration between the solar system and binary pulsar system,
projected onto the line of sight. The correction term depends on several rather poorly
known quantities, including the distance and proper motion of the pulsar and the
radius of the Sun’s galactic orbit. However, with best currently available values the
agreement between the data and the Einstein quadrupole formula for the gravitational
radiation is better than 1%. The rate of decrease of orbital period is 76.5 microseconds
per year (i.e. one second per 14000 years).

As noted by the authors of Ref. [95], ”Even with 30 years of observations,
only a small portion of the North-South extent of the emission beam has been observed.
As a consequence, our model is neither unique nor particularly robust. The North-
South symmetry of the model is assumed, not observed, since the line of sight has
fallen on the same side of the beam axis throughout these observations. Nevertheless,
accumulating data continue to support the principal features noted above.”

The size of the invisible component is not known. The arguments that
this component is a compact object are as follows [97]: ”Because the orbit is so close
(1solarradius)) and because there is no evidence of an eclipse of the pulsar signal
or of mass transfer from the companion, it is generally agreed that the companion
is compact. Evolutionary arguments suggest that it is most likely a dead pulsar,
while B1913+16 is a recycled pulsar. Thus the orbital motion is very clean, free from
tidal or other complicating effects. Furthermore, the data acquisition is clean in the
sense that by exploiting the intrinsic stability of the pulsar clock combined with the
ability to maintain and transfer atomic time accurately using GPS, the observers can
keep track of pulse time-of-arrival with an accuracy of 13µs , despite extended gaps
between observing sessions (including a several-year gap in the middle 1990s for an
upgrade of the Arecibo radio telescope). The pulsar has shown no evidence of glitches
in its pulse period.” However, it is not clear whether or not there exist other reasons
for substantial energy losses. For example, since the bodies have large velocities and
are moving in the interstellar medium, it is not clear whether their interaction with
the medium can be neglected.

Nevertheless, the above results are usually treated as a strong indirect
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confirmation of the existence of gravitational waves. Those results have given a moti-
vation for building powerful facilities where the gravitational waves are expected to be
detected directly. However, after more than ten years of observations no unambiguous
detections of gravitational waves have been reported.

The discussion in this section shows that the problem of explaining non-
Newtonian gravitational effects is very complicated and at present any conclusion
about them can be based only on model dependent approaches. So the statements
that those effects can be treated as strong confirmations of GR are premature. In
any case until the nature of gravity on classical and quantum level is well understood,
different approaches should be investigated.
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Chapter 6

Why is GFQT more pertinent
physical theory than standard one?

6.1 What mathematics is most pertinent for quan-

tum physics?

As noted in Sec. 1.1, several strong arguments indicate that fundamental quantum
theory should be based on discrete mathematics. In this chapter we consider an
approach when this theory is based on a Galois field. Since the absolute majority of
physicists are not familiar with Galois fields, our first goal in this chapter is to convince
the reader that the notion of Galois fields is not only very simple and elegant, but
also is a natural basis for quantum physics. If a reader wishes to learn Galois fields
on a more fundamental level, he or she might start with standard textbooks (see e.g.
Ref. [98]).

In view of the present situation in modern quantum physics, a natural
question arises why, in spite of big efforts of thousands of highly qualified physicists
for many years, the problem of quantum gravity has not been solved yet. We believe
that a possible answer is that they did not use the most pertinent mathematics.

For example, the problem of infinities remains probably the most chal-
lenging one in standard formulation of quantum theory. As noted by Weinberg [2],
’Disappointingly this problem appeared with even greater severity in the early days of
quantum theory, and although greatly ameliorated by subsequent improvements in the
theory, it remains with us to the present day’. The title of Weinberg’s paper [99] is
”Living with infinities”. A desire to have a theory without divergences is probably the
main motivation for developing modern theories extending QFT, e.g. loop quantum
gravity, noncommutative quantum theory, string theory etc. On the other hand, in
theories over Galois fields, infinities cannot exist in principle since any Galois field is
finite.

The key ingredient of standard mathematics is the notions of infinitely
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small and infinitely large. As already noted in Sec. 1.1, in view of the fact that
matter is discrete, the notions of standard division and infinitely small can have
only a limited applicability. Then we have to acknowledge that fundamental physics
cannot be based on continuity, differentiability, geometry, topology etc. As noted
in Sec. 1.1, the reason why modern quantum physics is based on these notions is
probably a consequence of the fact that discrete mathematics still is not a part of
standard physics education.

The notion of infinitely large is based on our belief that in principle we can
operate with any large numbers. In standard mathematics this belief is formalized
in terms of axioms about infinite sets (e.g. Zorn’s lemma or Zermelo’s axiom of
choice) which are accepted without proof. The belief that these axioms are correct
is based on the fact that sciences using standard mathematics (physics, chemistry
etc.) describe nature with a very high accuracy. It is believed that this is much
more important than the fact that, as follows from Gödel’s incompleteness theorems,
standard mathematics is not a self-consistent theory.

Standard mathematics contains statements which seem to be counterintu-
itive. For example, the interval (0, 1) has the same cardinality as (−∞,∞). Another
example is that the function tgx gives a one-to-one relation between the intervals
(−π/2, π/2) and (−∞,∞). Therefore one can say that a part has the same number
of elements as a whole. One might think that this contradicts common sense but in
standard mathematics the above facts are not treated as contradicting.

While Gödel’s works on the incompleteness theorems are written in highly
technical terms of mathematical logics, the fact that standard mathematics has foun-
dational problems is clear from the philosophy of quantum theory. Indeed in this
philosophy there should be no statements accepted without proof (and based only
on belief that they are correct); only those statements should be treated as physical,
which can be experimentally verified, at least in principle. For example, the first
incompleteness theorem says that not all facts about natural numbers can be proved.
However, from the philosophy of quantum theory this seems to be clear because we
cannot verify that a+ b = b+ a for any numbers a and b.

Suppose we wish to verify that 100+200=200+100. In the spirit of quan-
tum theory it is insufficient to just say that 100+200=300 and 200+100=300. We
should describe an experiment where these relations can be verified. In particular,
we should specify whether we have enough resources to represent the numbers 100,
200 and 300. We believe the following observation is very important: although stan-
dard mathematics is a part of our everyday life, people typically do not realize that
standard mathematics is implicitly based on the assumption that one can have any
desirable amount of resources.

Suppose, however that our world is finite. Then the amount of resources
cannot be infinite. In particular, it is impossible in principle to build a computer
operating with any number of bits. In this scenario it is natural to assume that
there exists a fundamental number p such that all calculations can be performed only
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modulo p. Then it is natural to consider a quantum theory over a Galois field with the
characteristic p. Since any Galois field is finite, the fact that arithmetic in this field
is correct can be verified (at least in principle) by using a finite amount of resources.

Let us look at mathematics from the point of view of the famous Kronecker
expression: ”God made the natural numbers, all else is the work of man”. Indeed, the
natural numbers 0, 1, 2... have a clear physical meaning. However only two operations
are always possible in the set of natural numbers: addition and multiplication. In
order to make addition reversible, we introduce negative integers -1, -2 etc. Then,
instead of the set of natural numbers we can work with the ring of integers where three
operations are always possible: addition, subtraction and multiplication. However,
the negative numbers do not have a direct physical meaning (we cannot say, for
example, ”I have minus two apples”). Their only role is to make addition reversible.

The next step is the transition to the field of rational numbers in which
all four operations except division by zero are possible. However, as noted above,
division has only a limited meaning.

In mathematics the notion of linear space is widely used, and such impor-
tant notions as the basis and dimension are meaningful only if the space is considered
over a field or body. Therefore if we start from natural numbers and wish to have a
field, then we have to introduce negative and rational numbers. However, if, instead
of all natural numbers, we consider only p numbers 0, 1, 2, ... p− 1 where p is prime,
then we can easily construct a field without adding any new elements. This construc-
tion, called Galois field, contains nothing that could prevent its understanding even
by pupils of elementary schools.

Let us denote the set of numbers 0, 1, 2,...p − 1 as Fp. Define addition
and multiplication as usual but take the final result modulo p. For simplicity, let
us consider the case p = 5. Then F5 is the set 0, 1, 2, 3, 4. Then 1 + 2 = 3 and
1 + 3 = 4 as usual, but 2 + 3 = 0, 3 + 4 = 2 etc. Analogously, 1 · 2 = 2, 2 · 2 = 4,
but 2 · 3 = 1, 3 · 4 = 2 etc. By definition, the element y ∈ Fp is called opposite
to x ∈ Fp and is denoted as −x if x + y = 0 in Fp. For example, in F5 we have
-2=3, -4=1 etc. Analogously y ∈ Fp is called inverse to x ∈ Fp and is denoted as
1/x if xy = 1 in Fp. For example, in F5 we have 1/2=3, 1/4=4 etc. It is easy to
see that addition is reversible for any natural p > 0 but for making multiplication
reversible we should choose p to be a prime. Otherwise the product of two nonzero
elements may be zero modulo p. If p is chosen to be a prime then indeed Fp becomes
a field without introducing any new objects (like negative numbers or fractions). For
example, in this field each element can obviously be treated as positive and negative
simultaneously!

The above example with division might also be an indication that, in the
spirit of Ref. [100], the ultimate quantum theory will be based even not on a Galois
field but on a finite ring (this observation was pointed out to me by Metod Saniga).

One might say: well, this is beautiful but impractical since in physics and
everyday life 2+3 is always 5 but not 0. Let us suppose, however that fundamental
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physics is described not by ”usual mathematics” but by ”mathematics modulo p”
where p is a very large number. Then, operating with numbers which are much less
than p we will not notice this p, at least if we only add and multiply. We will feel
a difference between ”usual mathematics” and ”mathematics modulo p” only while
operating with numbers comparable to p.

We can easily extend the correspondence between Fp and the ring of in-
tegers Z in such a way that subtraction will also be included. To make it clearer we
note the following. Since the field Fp is cyclic (adding 1 successively, we will obtain
0 eventually), it is convenient to visually depict its elements by the points of a circle
of the radius p/2π on the plane (x, y). In Fig. 6.1 only a part of the circle near the
origin is depicted. Then the distance between neighboring elements of the field is

0 1 2 3 4 5-1-2-3-4-5

p-1
p-2

p-3

p-4

p-5

1
2

3

4

5

Figure 6.1: Relation between Fp and the ring of integers

equal to unity, and the elements 0, 1, 2,... are situated on the circle counterclockwise.
At the same time we depict the elements of Z as usual such that each element z ∈ Z
is depicted by a point with the coordinates (z, 0). We can denote the elements of Fp

not only as 0, 1,... p− 1 but also as 0, ±1, ±2,,...±(p− 1)/2, and such a set is called
the set of minimal residues. Let f be a map from Fp to Z, such that the element
f(a) ∈ Z corresponding to the minimal residue a has the same notation as a but is

considered as the element of Z. Denote C(p) = p1/(lnp)
1/2

and let U0 be the set of
elements a ∈ Fp such that |f(a)| < C(p). Then if a1, a2, ...an ∈ U0 and n1, n2 are such
natural numbers that

n1 < (p− 1)/2C(p), n2 < ln((p− 1)/2)/(lnp)1/2 (6.1)

then
f(a1 ± a2 ± ...an) = f(a1)± f(a2)± ...f(an)

if n ≤ n1 and
f(a1a2...an) = f(a1)f(a2)...f(an)

if n ≤ n2. Thus though f is not a homomorphism of rings Fp and Z, but if p is
sufficiently large, then for a sufficiently large number of elements of U0 the addition,
subtraction and multiplication are performed according to the same rules as for ele-
ments z ∈ Z such that |z| < C(p). Therefore f can be treated as a local isomorphism
of rings Fp and Z.
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The above discussion has a well-known historical analogy. For many years
people believed that our Earth was flat and infinite, and only after a long period
of time they realized that it was finite and had a curvature. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature R. Analogously one might think that the set of numbers describing physics
has a curvature defined by a very large number p but we do not notice it when we deal
only with numbers much less than p. This number should be treated as a fundamental
constant describing laws of physics in our World.

One might argue that introducing a new fundamental constant is not justi-
fied. However, the history of physics tells us that new theories arise when a parameter,
which in the old theory was treated as infinitely small or infinitely large, becomes fi-
nite. For example, from the point of view of nonrelativistic physics, the velocity of
light c is infinitely large but in relativistic physics it is finite. Analogously, from the
point of view of classical theory, the Planck constant h̄ is infinitely small but in quan-
tum theory it is finite. Therefore it is natural to think that in the future quantum
physics the quantity p will be not infinitely large but finite.

Let us note that even for elements from U0 the result of division in the field
Fp differs generally speaking, from the corresponding result in the field of rational
number Q. For example the element 1/2 in Fp is a very large number (p + 1)/2.
For this reason one might think that physics based on Galois fields has nothing to
do with reality. We will see in the subsequent section that this is not so since the
spaces describing quantum systems are projective. It is also clear that in general the
meaning of square root in Fp is not the same as in Q. For example, even if

√
2 in

Fp exists, it is a very large number of the order of at least p1/2. Another obvious
fact is that GFQT cannot involve exponents and trigonometric functions since they
are represented by infinite sums. Therefore a direct correspondence between wave
functions in GFQT and standard theory can exist only for rational functions.

By analogy with the field of complex numbers, we can consider a set Fp2

of p2 elements a + bi where a, b ∈ Fp and i is a formal element such that i2 = −1.
The question arises whether Fp2 is a field, i.e. we can define all the four operations
except division by zero. The definition of addition, subtraction and multiplication in
Fp2 is obvious and, by analogy with the field of complex numbers, one could define
division as 1/(a+ bi) = a/(a2 + b2) − ib/(a2 + b2). This definition can be meaningful
only if a2 + b2 6= 0 in Fp for any a, b ∈ Fp i.e. a2 + b2 is not divisible by p. Therefore
the definition is meaningful only if p cannot be represented as a sum of two squares
and is meaningless otherwise. We will not consider the case p = 2 and therefore p
is necessarily odd. Then we have two possibilities: the value of p (mod 4) is either 1
or 3. The well-known result of number theory (see e.g. the textbooks [98]) is that a
prime number p can be represented as a sum of two squares only in the former case
and cannot in the latter one. Therefore the above construction of the field Fp2 is
correct only if p (mod 4) = 3. By analogy with the above correspondence between Fp

and Z, we can define a set U in Fp2 such that a+ bi ∈ U if a ∈ U0 and b ∈ U0. Then
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if f(a+ bi) = f(a) + f(b)i, f is a local homomorphism between Fp2 and Z + Zi.
In general, it is possible to consider linear spaces over any fields. Therefore

a question arises what Galois field should be used in GFQT. It is known (see e.g. Ref.
[98]) that any Galois field can contain only pn elements where p is prime and n is
natural. Moreover, the numbers p and n define the Galois field up to isomorphism.
It is natural to require that there should exist a correspondence between any new
theory and the old one, i.e. at some conditions the both theories should give close
predictions. In particular, there should exist a large number of quantum states for
which the probabilistic interpretation is valid.

In view of the above discussion, the number p should necessarily be very
large and the problem is to understand whether there exist deep reasons for choosing
a particular value of p, whether this is simply an accident that our world has been
created with some value of p, whether the number p is dynamical, i.e. depends on
the current state of the world etc. For example, as noted above, the number p defines
the existing amount of resources. There are models (see e.g. Ref. [34]) where our
world is only a part of the Universe and the amount of resources in the world is not
constant.

In any case, if we accept that p is a universal parameter defining what
Galois field describes nature (at the present stage of the world or always) then the
problem arises what the value of n is. Since we treat GFQT as a more general theory
than standard one, it is desirable not to postulate that GFQT is based on Fp2 (with
p = 3 (mod 4)) because standard theory is based on complex numbers but vice versa,
explain the fact that standard theory is based on complex numbers since GFQT
is based on Fp2. Therefore we should find a motivation for the choice of Fp2 with
p = 3 (mod 4). Arguments in favor of such a choice are discussed in Refs. [40, 42, 43]
and in Secs. 6.3 and 8.9.

6.2 Correspondence between GFQT and standard

theory

For any new theory there should exist a correspondence principle that at some con-
ditions this theory and standard well tested one should give close predictions. Well-
known examples are that classical nonrelativistic theory can be treated as a special
case of relativistic theory in the formal limit c → ∞ and a special case of quantum
mechanics in the formal limit h̄ → 0. Analogously, Poincare invariant theory is a
special case of dS or AdS invariant theories in the formal limit R → ∞. We treat
standard quantum theory as a special case of GFQT in the formal limit p → ∞.
Therefore a question arises which formulation of standard theory is most suitable for
its generalization to GFQT.

A known historical fact is that quantum mechanics has been originally
proposed by Heisenberg and Schrödinger in two forms which seemed fully incompati-
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ble with each other. While in the Heisenberg operator (matrix) formulation quantum
states are described by infinite columns and operators — by infinite matrices, in the
Schrödinger wave formulations the states are described by functions and operators
— by differential operators. It has been shown later by Born, von Neumann, Dirac
and others that the both formulations are mathematically equivalent. In addition,
the path integral approach has been developed.

In the spirit of the wave or path integral approach one might try to replace
classical space-time by a finite lattice which may even not be a field. In that case
the problem arises what the natural quantum of space-time is and some of physical
quantities should necessarily have the field structure. However, as argued in Sect.
1.2, fundamental physical theory should not be based on space-time.

We treat GFQT as a version of the matrix formulation when complex
numbers are replaced by elements of a Galois field. We will see below that in that
case the columns and matrices are automatically truncated in a certain way, and
therefore the theory becomes finite-dimensional (and even finite since any Galois field
is finite).

In conventional quantum theory the state of a system is described by a
vector x̃ from a separable Hilbert space H . We will use a ”tilde” to denote elements
of Hilbert spaces and complex numbers while elements of linear spaces over a Galois
field and elements of the field will be denoted without a ”tilde”.

Let (ẽ1, ẽ2, ...) be a basis in H . This means that x̃ can be represented as

x̃ = c̃1ẽ1 + c̃2ẽ2 + ... (6.2)

where (c̃1, c̃2, ...) are complex numbers. It is assumed that there exists a complete
set of commuting selfadjoint operators (Ã1, Ã2, ...) in H such that each ẽi is the
eigenvector of all these operators: Ãj ẽi = λ̃jiẽi. Then the elements (ẽ1, ẽ2, ...) are
mutually orthogonal: (ẽi, ẽj) = 0 if i 6= j where (...,...) is the scalar product in H . In
that case the coefficients can be calculated as

c̃i =
(ẽi, x̃)

(ẽi, ẽi)
(6.3)

Their meaning is that |c̃i|2(ẽi, ẽi)/(x̃, x̃) represents the probability to find x̃ in the
state ẽi. In particular, when x̃ and the basis elements are normalized to one, the
probability equals |c̃i|2.

Let us note that the Hilbert space contains a big redundancy of elements,
and we do not need to know all of them. Indeed, with any desired accuracy we can
approximate each x̃ ∈ H by a finite linear combination

x̃ = c̃1ẽ1 + c̃2ẽ2 + ...c̃nẽn (6.4)

where (c̃1, c̃2, ...c̃n) are rational complex numbers. This is a consequence of the known
fact that the set of elements given by Eq. (6.4) is dense in H . In turn, this set is
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redundant too. Indeed, we can use the fact that Hilbert spaces in quantum theory
are projective: ψ and cψ represent the same physical state. Then we can multiply
both parts of Eq. (6.4) by a common denominator of the numbers (c̃1, c̃2, ...c̃n). As
a result, we can always assume that in Eq. (6.4) c̃j = ãj + ib̃j where ãj and b̃j are
integers.

The meaning of the fact that Hilbert spaces in quantum theory are pro-
jective is very clear. The matter is that not the probability itself but the relative
probabilities of different measurement outcomes have a physical meaning. We be-
lieve, the notion of probability is a good illustration of the Kronecker expression
about natural numbers (see Sect. 6.1). Indeed, this notion arises as follows. Sup-
pose that conducting experiment N times we have seen the first event n1 times, the
second event n2 times etc. such that n1 + n2 + ... = N . We define the quantities
wi(N) = ni/N (these quantities depend on N) and wi = limwi(N) when N → ∞.
Then wi is called the probability of the ith event. We see that all the information
about the experiment is given by a set of natural numbers, and in real life all those
numbers are finite. However, in order to define probabilities, people introduce ad-
ditionally the notion of rational numbers and the notion of limit. Another example
is the notion of mean value. Suppose we measure a physical quantity such that in
the first event its value is q1, in the second event - q2 etc. Then the mean value of
this quantity is defined as (q1n1 + q2n2 + ...)/N if N is very large. Therefore, even
if all the qi are integers, the mean value might be not an integer. We again see that
rational numbers arise only as a consequence of our convention on how the results of
experiments should be interpreted.

The Hilbert space is an example of a linear space over the field of complex
numbers. Roughly speaking this means that one can multiply the elements of the
space by the elements of the field and use the properties ã(b̃x̃) = (ãb̃)x̃ and ã(b̃x̃+c̃ỹ) =
ãb̃x̃ + ãc̃ỹ where ã, b̃, c̃ are complex numbers and x̃, ỹ are elements of the space.
The fact that complex numbers form a field is important for such notions as linear
dependence and the dimension of spaces over complex numbers.

By analogy with conventional quantum theory, we require that in GFQT
linear spaces V over Fp2 , used for describing physical states, are supplied by a scalar
product (...,...) such that for any x, y ∈ V and a ∈ Fp2, (x, y) is an element of Fp2

and the following properties are satisfied:

(x, y) = (y, x), (ax, y) = ā(x, y), (x, ay) = a(x, y) (6.5)

We will always consider only finite dimensional spaces V over Fp2 . Let
(e1, e2, ...eN) be a basis in such a space. Consider subsets in V of the form x =
c1e1 + c2e2 + ...cnen where for any i, j

ci ∈ U, (ei, ej) ∈ U (6.6)

On the other hand, as noted above, in conventional quantum theory we can describe
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quantum states by subsets of the form Eq. (6.4). If n is much less than p,

f(ci) = c̃i, f((ei, ej)) = (ẽi, ẽj) (6.7)

then we have the correspondence between the description of physical states in pro-
jective spaces over Fp2 on one hand and projective Hilbert spaces on the other. This
means that if p is very large then for a large number of elements from V , linear com-
binations with the coefficients belonging to U and scalar products look in the same
way as for the elements from a corresponding subset in the Hilbert space.

In the general case a scalar product in V does not define any positive
definite metric and thus there is no probabilistic interpretation for all the elements
from V . In particular, (e, e) = 0 does not necessarily imply that e = 0. However,
the probabilistic interpretation exists for such a subset in V that the conditions (6.7)
are satisfied. Roughly speaking this means that for elements c1e1 + ...cnen such that
(ei, ei), cic̄i ≪ p, f((ei, ei)) > 0 and cic̄i > 0 for all i = 1, ...n, the probabilistic
interpretation is valid. It is also possible to explicitly construct a basis (e1, ...eN )
such that (ej , ek) = 0 for j 6= k and (ej, ej) 6= 0 for all j (see the subsequent section
and Chap. 8). Then x = c1e1 + ...cNeN (cj ∈ Fp2) and the coefficients are uniquely
defined by cj = (ej , x)/(ej, ej).

As usual, if A1 and A2 are linear operators in V such that

(A1x, y) = (x,A2y) ∀x, y ∈ V (6.8)

they are said to be conjugated: A2 = A∗
1. It is easy to see that A∗∗

1 = A1 and thus
A∗

2 = A1. If A = A∗ then the operator A is said to be Hermitian.
If (e, e) 6= 0, Ae = ae, a ∈ Fp2 , and A

∗ = A, then it is obvious that a ∈ Fp.
In the subsequent section (see also Refs. [40, 42]) we will see that there also exist
situations when a Hermitian operator has eigenvectors e such that (e, e) = 0 and the
corresponding eigenvalue is pure imaginary.

Let now (A1, ...Ak) be a set of Hermitian commuting operators in V , and
(e1, ...eN ) be a basis in V with the properties described above, such that Ajei = λjiei.
Further, let (Ã1, ...Ãk) be a set of Hermitian commuting operators in some Hilbert
space H , and (ẽ1, ẽ2, ...) be some basis in H such that Ãjei = λ̃jiẽi. Consider a subset
c1e1 + c2e2 + ...cnen in V such that, in addition to the conditions (6.7), the elements
ei are the eigenvectors of the operators Aj with λji belonging to U and such that
f(λji) = λ̃ji. Then the action of the operators on such elements have the same form
as the action of corresponding operators on the subsets of elements in Hilbert spaces
discussed above.

Summarizing this discussion, we conclude that if p is large then there
exists a correspondence between the description of physical states on the language of
Hilbert spaces and self-adjoint operators in them on one hand, and on the language
of linear spaces over Fp2 and Hermitian operators in them on the other.

The field of complex numbers is algebraically closed (see standard text-
books on modern algebra, e.g. Ref. [98]). This implies that any equation of the nth
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order in this field always has n solutions. This is not, generally speaking, the case for
the field Fp2 . As a consequence, not every linear operator in the finite-dimensional
space over Fp2 has an eigenvector (because the characteristic equation may have no
solution in this field). One can define a field of characteristic p which is algebraically
closed and contains Fp2 . However such a field will necessarily be infinite and we will
not use it. We will see in this chapter and Chap. 8 that uncloseness of the field
Fp2 does not prevent one from constructing physically meaningful representations
describing elementary particles in GFQT.

In physics one usually considers Lie algebras over R and their represen-
tations by Hermitian operators in Hilbert spaces. It is clear that analogs of such
representations in our case are representations of Lie algebras over Fp by Hermitian
operators in spaces over Fp2. Representations in spaces over a field of nonzero char-
acteristics are called modular representations. There exists a wide literature devoted
to such representations; detailed references can be found for example in Ref. [101]
(see also Ref. [40]). In particular, it has been shown by Zassenhaus [102] that all
modular IRs are finite-dimensional and many papers have dealt with the maximum
dimension of such representations. At the same time, it is worth noting that usually
mathematicians consider only representations over an algebraically closed field.

From the previous, it is natural to expect that the correspondence between
ordinary and modular representations of two Lie algebras over R and Fp, respectively,
can be obtained if the structure constants of the Lie algebra over Fp - cjkl, and the
structure constants of the Lie algebra over R - c̃jkl, are such that f(cjkl) = c̃jkl (the
Chevalley basis [103]), and all the cjkl belong to U0. In Refs. [40, 35, 104] modular
analogs of IRs of su(2), sp(2), so(2,3), so(1,4) algebras and the osp(1,4) superalgebra
have been considered. Also modular representations describing strings have been
briefly mentioned. In all these cases the quantities c̃jkl take only the values 0,±1,±2
and the above correspondence does take place.

It is obvious that since all physical quantities in GFQT are discrete, this
theory cannot involve any dimensionful quantities and any operators having the con-
tinuous spectrum. We have seen in the preceding chapters than the so(1,4) invariant
theory is dimensionless and it is possible to choose a basis such that all the operators
have only discrete spectrum. As shown in Chap. 8, the same is true for the so(2,3)
invariant theories. For this reason one might expect that those theories are natural
candidates for their generalization to GFQT. This means that symmetry is defined
by the commutation relations (4.1) which are now considered not in standard Hilbert
spaces but in spaces over Fp2. We will see in this chapter that there exists a corre-
spondence in the above sense between modular IRs of the finite field analog of the
so(1,4) algebra and IRs of the standard so(1,4) algebra and in Chap. 8 the same will
be shown for the so(2,3) algebra. At the same time, there is no natural generalization
of the Poincare invariant theory to GFQT.

Since the main problems of QFT originate from the fact that local fields
interact at the same point, the idea of all modern theories aiming to improve QFT is to
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replace the interaction at a point by an interaction in some small space-time region.
From this point of view, one could say that those theories involve a fundamental
length, explicitly or implicitly. Since GFQT is a fully discrete theory, one might
wonder whether it could be treated as a version of quantum theory with a fundamental
length. Although in GFQT all physical quantities are dimensionless and take values
in a Galois field, on a qualitative level GFQT can be thought to be a theory with
the fundamental length in the following sense. The maximum value of the angular
momentum in GFQT cannot exceed the characteristic of the Galois field p. Therefore
the Poincare momentum cannot exceed p/R. This can be interpreted in such a way
that the fundamental length in GFQT is of the order of R/p.

One might wonder how continuous transformations (e.g. time evolution
or rotations) can be described in the framework of GFQT. A general remark is that if
theory B is a generalization of theory A then the relation between them is not always
straightforward. For example, quantum mechanics is a generalization of classical
mechanics, but in quantum mechanics the experiment outcome cannot be predicted
unambiguously, a particle cannot be always localized etc. As noted in Sec. 1.2, even
in the framework of standard quantum theory, time evolution is well-defined only on
macroscopic level. Suppose that this is the case and the Hamiltonian H1 in standard
theory is a good approximation for the Hamiltonian H in GFQT. Then one might
think that exp(−iH1t) is a good approximation for exp(−iHt). However, such a
straightforward conclusion is problematic for the following reasons. First, there can
be no continuous parameters in GFQT. Second, even if t is somehow discretized, it
is not clear how the transformation exp(−iHt) should be implemented in practice.
On macroscopic level the quantity Ht is very large and therefore the Taylor series
for exp(−iHt) contains a large number of terms which should be known with a high
accuracy. On the other hand, one can notice that for computing exp(−iHt) it is
sufficient to know Ht only modulo 2π but in this case the question about the accuracy
for π arises. We see that a direct correspondence between the standard quantum
theory and GFQT exists only on the level of Lie algebras but not on the level of Lie
groups.

6.3 Modular IRs of dS algebra and spectrum of dS

Hamiltonian

Consider modular analogs of IRs constructed in Sec. 4.1. We noted that the basis
elements of this IR are enkl where at a fixed value of n, k = 0, 1, ...n and l = 0, 1, ...2k.
In standard case, IR is infinite-dimensional since n can be zero or any natural number.
A modular analog of this IR can be only finite-dimensional. The basis of the modular
IR is again enkl where at a fixed value of n the numbers k and l are in the same
range as above. The operators of such IR can be described by the same expressions
as in Eqs. (4.9-4.14) but now those expressions should be understood as relations in
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a space over Fp2. However, the quantity n can now be only in the range 0, 1, ...N
where N can be found from the condition that the algebra of operators described by
Eqs. (4.9) and (4.10) should be closed. It follows from these expressions, that this is
the case if w + (2N + 3)2 = 0 in Fp and N + k + 2 < p. Therefore we have to show
that such N does exist.

In the modular case w cannot be written as w = µ2 with µ ∈ Fp since the
equality a2 + b2 = 0 in Fp is not possible if p = 3 (mod 4). In terminology of number
theory, this means that w is a quadratic nonresidue. Since −1 also is a quadratic
nonresidue if p = 3 (mod 4), w can be written as w = −µ̃2 where µ̃ ∈ Fp and for
µ̃ obviously two solutions are possible. Then N should satisfy one of the conditions
N + 3 = ±µ̃ and one should choose that with the lesser value of N . Let us assume
that both, µ̃ and −µ̃ are represented by 0, 1, ...(p− 1). Then if µ̃ is odd, −µ̃ = p− µ̃
is even and vice versa. We choose the odd number as µ̃. Then the two solutions are
N1 = (µ̃ − 3)/2 and N2 = p− (µ̃ + 3)/2. Since N1 < N2, we choose N = (µ̃ − 3)/2.
In particular, this quantity satisfies the condition N ≤ (p − 5)/2. Since k ≤ N , the
condition N + k+2 < p is satisfied and the existence of N is proved. In any realistic
scenario, w is such that w ≪ p even for macroscopic bodies. Therefore the quantity
N should be at least of the order of p1/2. The dimension of IR is

Dim =
N
∑

n=0

n
∑

k=0

(2k + 1) = (N + 1)(
1

3
N2 +

7

6
N + 1) (6.9)

and therefore Dim is at least of the order of p3/2.
The relative probabilities are defined by ||c(n, k, l)enkl||2. In standard the-

ory the basis states and wave functions can be normalized to one such that the normal-
ization condition is

∑

nkl |c̃(n, k, l)|2 = 1. Since the values c̃(n, k, l) can be arbitrarily
small, wave functions can have an arbitrary carrier belonging to [0,∞). However, in
GFQT the quantities |c(n, k, l)|2 and ||enkl||2 belong to Fp. Roughly speaking, this
means that if they are not zero then they are greater or equal than one. Since for
probabilistic interpretation we should have that

∑

nkl ||c(n, k, l)enkl||2 ≪ p, the prob-
abilistic interpretation may take place only if c(n, k, l) = 0 for n > nmax, nmax ≪ N .
That is why in Chap. 4 we discussed only wave functions having the carrier in the
range [nmin, nmax].

As follows from the spectral theorem for selfadjoint operators in Hilbert
spaces, any selfadjoint operator A is fully decomposable, i.e. it is always possible to
find a basis, such that all the basis elements are eigenvectors (or generalized eigen-
vectors) of A. As noted in Sect. 6.2, in GFQT this is not necessarily the case since
the field Fp2 is not algebraically closed. However, it can be shown [98] that for any
equation of the Nth order, it is possible to extend the field such that the equation
will have N solutions. A question arises what is the minimum extension of Fp2 , which
guarantees that all the operators (E ,N,B,J) are fully decomposable.

The operators (B,J) describe a representation of the so(4) = su(2)×su(2)
subalgebra. It is easy to show (see also Chap. 8) that the representation operators
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of the su(2) algebra are fully decomposable in the field Fp2 . Therefore it is sufficient
to investigate the operators (E ,N). They represent components of the so(4) vector
operator M0ν (ν = 1, 2, 3, 4) and therefore it is sufficient to investigate the dS energy
operator E , which with our choice of the basis has a rather simpler form (see Eqs.
(4.9) and (4.13)). This operator acts nontrivially only over the variable n and its
nonzero matrix elements are given by

En−1,n =
n+ 1 + k

2(n+ 1)
[w + (2n+ 1)2] En+1,n =

n+ 1− k

2(n+ 1)
(6.10)

Therefore, for a fixed value of k it is possible to consider the action of E in the
subspace with the basis elements enkl (n = k, k + 1, ...N).

Let A(λ) be the matrix of the operator E−λ such that A(λ)qr = Eq+k,r+k−
λδqr. We use ∆r

q(λ) to denote the determinant of the matrix obtained from A(λ) by
taking into account only the rows and columns with the numbers q, q + 1, ...r. With
our definition of the matrix A(λ), its first row and column have the number equal
to 0 while the last ones have the number K = N − k. Therefore the characteristic
equation can be written as

∆K
0 (λ) = 0 (6.11)

In general, since the field Fp2 is not algebraically closed, there is no guaranty that
we will succeed in finding even one eigenvalue. However, we will see below that in a
special case of the operator with the matrix elements (6.10), it is possible to find all
K + 1 eigenvalues.

The matrix A(λ) is three-diagonal. It is easy to see that

∆q+1
0 (λ) = −λ∆q

0(λ)−Aq,q+1Aq+1,q∆
q−1
0 (λ) (6.12)

Let λl be a solution of Eq. (6.11). We denote eq ≡ eq+k,kl. Then the element

χ(λl) =
K
∑

q=0

{(−1)q∆q−1
0 (λl)eq/[

q−1
∏

s=0

As,s+1]} (6.13)

is the eigenvector of the operator E with the eigenvalue λl. This can be verified
directly by using Eqs. (4.13) and (6.10-6.13).

To solve Eq. (6.12) we have to find the expressions for ∆q
0(λ) when q =

0, 1, ...K. It is obvious that ∆0
0(λ) = −λ, and as follows from Eqs. (6.10) and (6.12),

∆1
0(λ) = λ2 − w + (2k + 3)2

2(k + 2)
(6.14)

If w = −µ̃2 then it can be shown that ∆q
0(λ) is given by the following expressions. If

160



q is odd then

∆q
0(λ) =

(q+1)/2
∑

l=0

C l
(q+1)/2

l
∏

s=1

[λ2 + (µ̃− 2k − 4s+ 1)2](−1)(q+1)/2−l

(q+1)/2
∏

s=l+1

(2k + 2s+ 1)(µ̃− 2k − 4s+ 1)(µ̃− 2k − 4s− 1)

2(k + (q + 1)/2 + s)
(6.15)

and if q is even then

∆q
0(λ) = (−λ)

q/2
∑

l=0

C l
q/2

l
∏

s=1

[λ2 + (µ̃− 2k − 4s+ 1)2](−1)q/2−l

(q+1)/2
∏

s=l+1

(2k + 2s+ 1)(µ̃− 2k − 4s− 1)(µ̃− 2k − 4s− 3)

2(k + q/2 + s+ 1)
(6.16)

Indeed, for q = 0 Eq. (6.16) is compatible with ∆0
0(λ) = −λ, and for q = 1 Eq. (6.15)

is compatible with Eq. (6.14). Then one can directly verify that Eqs. (6.15) and
(6.16) are compatible with Eq. (6.12).

With our definition of µ̃, the only possibility for K is such that

µ̃ = 2K + 2k + 3 (6.17)

Then, as follows from Eqs. (6.15) and (6.16), when K is odd or even, only the term
with l = [(K + 1)/2] (where [(K + 1)/2] is the integer part of (K + 1)/2) contributes
to ∆K

0 (λ) and, as a consequence

∆K
0 (λ) = (−λ)r(K)

[(K+1)/2]
∏

k=1

[λ2 + (µ̃− 2j − 4k + 1)2] (6.18)

where r(K) = 0 if K is odd and r(K) = 1 if K is even. If p = 3 (mod 4), this equation
has solutions only if Fp is extended, and the minimum extension is Fp2. Then the
solutions are given by

λ = ±i(µ̃ − 2k − 4s+ 1) (s = 1, 2...[(K + 1)/2]) (6.19)

and when K is even there also exists an additional solution λ = 0. When K is odd,
solutions can be represented as

λ = ±2i, ±6i, ...± 2iK (6.20)

while when K is even, the solutions can be represented as

λ = 0, ±4i, ±8i, ...± 2iK (6.21)
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Therefore the spectrum is equidistant and the distance between the neighboring ele-
ments is equal to 4i. As follows from Eqs. (6.17), all the roots are simple and then,
as follows from Eq. (6.13), the operator E is fully decomposable. It can be shown
by a direct calculation [42] that the eigenvectors e corresponding to pure imaginary
eigenvalues are such that (e, e) = 0 in Fp. Such a possibility has been mentioned in
the preceding section.

Our conclusion is that if p = 3 (mod 4) then all the operators (E ,N,B,J)
are fully decomposable if Fp is extended to Fp2 but no further extension is necessary.
This might be an argument explaining why standard theory is based on complex
numbers. On the other hand, our conclusion is obtained by considering states where
n is not necessarily small in comparison with p1/2 and standard physical intuition
does not work in this case. One might think that the solutions (6.20) and (6.21)
for the eigenvalues of the dS Hamiltonian indicate that GFQT is unphysical since
the Hamiltonian cannot have imaginary eigenvalues. However, such a conclusion is
premature since in standard quantum theory the Hamiltonian of a free particle does
not have normalized eigenstates (since the spectrum is pure continuous) and therefore
for any realistic state the width of the energy distribution cannot be zero.

If A is an operator of a physical quantity in standard theory then the
distribution of this quantity in some state can be calculated in two ways. First, one
can find eigenvectors of A, decompose the state over those eigenvectors and then the
coefficients of the decomposition describe the distribution. Another possibility is to
calculate all moments of A, i.e. the mean value, the mean square deviation etc. Note
that the moments do not depend on the choice of basis since they are fully defined
by the action of the operator on the given state. A standard result of the probability
theory (see e.g. Ref. [105]) is that the set of moments uniquely defines the moment
distribution function, which in turn uniquely defines the distribution. However in
practice there is no need to know all the moments since the number of experimental
data is finite and knowing only several first moments is typically quite sufficient.

In GFQT the first method does not necessarily defines the distribution.
In particular, the above results for the dS Hamiltonian show that its eigenvectors
∑

nkl c(n, k, l)enkl are such that c(n, k, l) 6= 0 for all n = k, ...N , where N is at least
of the order of p1/2. Since the c(n, k, l) are elements of Fp2 , their formal modulus
cannot be less than 1 and therefore the formal norm of such eigenvectors cannot
be much less than p (the equality (e, e) = 0 takes place since the scalar product
is calculated in Fp). Therefore eigenvectors of the dS Hamiltonian do not have a
probabilistic interpretation. On the other hand, as already noted, we can consider
states

∑

nkl c(n, k, l)enkl such that c(n, k, l) 6= 0 only if nmin ≤ n ≤ nmax where
nmax ≪ N . Then the probabilistic interpretation for such states might be a good
approximation if at least several first moments give reasonable physical results (see the
discussion of probabilities in Sect. 6.1). In Chaps. 4 and 5 we discussed semiclassical
approximation taking into account only the first two moments: the mean value and
mean square deviation.

162



Chapter 7

Semiclassical states in modular
representations

7.1 Semiclassical states in GFQT

For constructing semiclassical states in GFQT one should use the basis defined by
Eq. (4.8) and the coefficients c(n, k, µ) should be elements of Fp2 . Such states should
satisfy several criteria. First, as noted in the preceding chapter, the probabilistic
interpretation can be valid only if the quantities ρ0(n, k, µ) = (enkµ, enkµ) defined by
Eq. (4.12) are such that f(ρ0(n, k, µ)) ≥ 0 and f(ρ0(n, k, µ)) ≪ p where f is the map
from Fp to Z defined in Sec. 6.1.

By using the fact that spaces in quantum theory are projective one can
replace the basis elements enkµ by Cenkµ where C ∈ Fp2 is any nonzero constant.
Then the matrix elements of the operators in the new basis are the same and the
normalizations are defined by the quantities ρ(n, k, µ) = CC̄ρ0(n, k, µ). As noted in
the preceding chapter, this reflects the fact that only ratios of probabilities have a
physical meaning. Hence for ensuring probabilistic interpretation one could try to
find C such that the quantities f(ρ(n, k, µ)) have the least possible values.

As follows from Eq. (4.12),

ρ0(n, k, µ) = (2k + 1)!Ck−µ
2k Ck

nC
k
n+k+1

n
∏

j=1

[w + (2j + 1)2] (7.1)

As noted in Chap. 6, a probabilistic interpretation can be possible only if c(n, k, µ) 6=
0 for n ∈ [nmin, nmax], k ∈ [kmin, kmax] and µ ∈ [µmin, µmax]. Hence our nearest goal
is to find the constant C such that the quantities ρ(n, k, µ) have the least possible
values when the quantum numbers (nkµ) are in the above range.

We denote ∆n = nmax − nmin, ∆k = kmax − kmin and ∆µ = µmax − µmin.
Since R is very large, we expect that ∆n≫ ∆k,∆µ but since the exact value of R is
not known, we don’t know whether a typical value of k is much greater than ∆n or
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not. One can directly verify that ρ0(n, k, µ) = C1ρ(n, k, µ) where

ρ(n, k, µ) = 4k−kmin
(2k + 1)!!(2k − 1)!!(kmax − µmin)!(kmax + µmax)!

(2kmin + 1)!!(2kmin − 1)!!(k − µ)!(k + µ)!
n+k−nmin−kmin−1

∏

j=0

(nmin + kmin + 2 + j)

nmax−kmin−n+k−1
∏

j=0

(n− k + 1 + j)

n−nmin−1
∏

j=0

(nmin + 1 + j)
nmax−n−1

∏

j=0

(n + 2 + j)
n
∏

j=nmin+1

[w + (2j + 1)2] (7.2)

C1 = 4kmin
(2kmin + 1)!!(2kmin − 1)!!

(kmax − µmin)!(kmax + µmax)!

nmin
∏

j=1

[w + (2j + 1)2]

kmin−∆n−1
∏

j=0

(nmax + 2 + j)(nmax − kmin + 1 + j) (7.3)

if k ≫ ∆n and

ρ(n, k, µ) = 4k−kmin
(2k + 1)!!(2k − 1)!!(kmax − µmin)!(kmax + µmax)!

(2kmin + 1)!!(2kmin − 1)!!(k − µ)!(k + µ)!
k−1
∏

j=0

[(n + 2 + j)(n− k + 1 + j)]
n
∏

j=nmin+1

[w + (2j + 1)2] (7.4)

C1 = 4kmin
(2kmin + 1)!!(2kmin − 1)!!

(kmax − µmin)!(kmax + µmax)!

nmin
∏

j=1

[w + (2j + 1)2] (7.5)

if k is of the same order than ∆n or less.
We now have to prove the existence of the constant C such that CC̄ = C2

where C2 = 1/C1. For this purpose we note the following. It is known [98] that
any Galois field without its zero element is a cyclic multiplicative group. Let r be
a primitive root in Fp, i.e., the element such that any nonzero element of Fp can be
represented as rs (s = 1, 2, ..., p− 1). Hence, if C2 = rs and s is even then C = rs/2

obviously satisfies the above requirement.
Suppose now that s is odd. As noted in Chap. 6, −1 is a quadratic residue

in Fp if p = 1 (mod 4) and a quadratic non-residue in Fp if p = 3 (mod 4). Therefore
in the case p = 3 (mod 4) we have −1 = rq where q is odd. Hence C2 = −C3 where
C3 = rs+q is a quadratic residue in Fp. Now the quantity C satisfying the above
requirement exists if C = αr(s+q)2 and α satisfies the equation

αᾱ = −1 (7.6)
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For proving that the solution of this equation exists we again use the
property that any Galois field without its zero element is a cyclic multiplicative group
but now this property is applied in the case of Fp2 with p = 3 (mod 4). Let now r
be a primitive root in Fp2. It is known [98] that the only nontrivial automorphism
of Fp2 is α → ᾱ = αp. Therefore if α = rs then αᾱ = r(p+1)s. On the other hand,

since r(p
2−1) = 1, r(p

2−1)/2 = −1. Therefore a solution of Eq. (7.6) exists at least with
s = (p− 1)/2.

The next step is to investigate conditions for the coefficients c(n, k, µ)
such that the state

∑

nkµ c(n, k, µ)e(n, k, µ) is semiclassical. As noted in Sect. 4.2,
in standard theory the quantities c(n, k, µ) contain the factor exp[i(−nϕ+ kα−µβ)]
and in the region of maximum the quantities |c(n, k, µ)|2 are of the same order. To
generalize these conditions to the case of GFQT we define a function F from the set
of complex numbers to Fp2. If a is a real number then we define l = Round(a) as
an integer closest to a. This definition is ambiguous when a = l ± 0.5 but in the
region of maximum the numbers in question are very large and the rounding errors
±1 are not important. Analogously, if z = a+ bi is a complex number then we define
Round(z) = Round(a) +Round(b)i. Finally, we define F (z) ∈ Fp2 as f(Round(z)).

As follows from Eqs. (7.2) and (7.4), the quantity ρ(n, k, µ) has the max-
imum at n = nmax, k = kmax, µ = µmin. Consider the state

∑

nkµ c(n, k, µ)e(n, k, µ)
such that

c(n, k, µ) = a(n, k, µ)F{[ρ(nmax, kmax, µmin

ρ(n, k, µ)
]1/2exp[i(−nϕ + kα− µβ)]} (7.7)

where a(n, k, µ) is a slowly changing function in the region of maximum.
For the validity of semiclassical approximation the condition

ρ(nmax, kmax, µmin)
∑

nkµ

|a(n, k, µ)|2 ≪ p (7.8)

should be satisfied. As follows from Eqs. (7.2) and (7.4), for a nonrelativistic particle
it will be satisfied if

(4kmax)
∆k[(kmax − µmin)(kmax + µmax)]

(∆k+∆µ)n2(∆n+∆k)
max w∆nA∆n∆k∆µ ≪ p (7.9)

or

(4kmax)
∆k[(kmax − µmin)(kmax + µmax)]

(∆k+∆µ)w∆nA∆n∆k∆µ ≪ p (7.10)

respectively, where A is the maximum value of |a(n, k, µ)|2. If A is not anomalously
large then in the both cases those conditions can be approximately written as

∆nlnw ≪ lnp (7.11)

Therefore not only the number p should be very large, but even lnp should be very
large.
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7.2 Many-body systems in GFQT and gravita-

tional constant

In quantum theory, state vectors of a system of N bodies belong to the
Hilbert space which is the tensor product of single-body Hilbert spaces. This means
that state vectors of the N -body systems are all possible linear combinations of func-
tions

ψ(n1, k1, l1, ...nN , kN , lN) = ψ1(n1, k1, l1) · · ·ψN (nN , kN , lN) (7.12)

By definition, the bodies do not interact if all representation operators of the sym-
metry algebra for the N -body systems are sums of the corresponding single-body
operators. For example, the energy operator E for the N -body system is a sum
E1+E2+ ...+EN where the operator Ei (i = 1, 2, ...N) acts nontrivially over its ”own”
variables (ni, ki, li) while over other variables it acts as the identity operator.

If we have a system of noninteracting bodies in standard quantum theory,
each ψi(ni, ki, li) in Eq. (7.12) is fully independent of states of other bodies. How-
ever, in GFQT the situation is different. Here, as shown in the preceding section, a
necessary condition for a wave function to have a probabilistic interpretation is given
by Eq. (7.11). Since we assume that p is very large, this is not a serious restriction.
However, if a system consists of N components, a necessary condition that the wave
function of the system has a probabilistic interpretation is

N
∑

i=1

δilnwi ≪ lnp (7.13)

where δi = ∆ni and wi = 4R2m2
i where mi is the mass of the subsystem i. This

condition shows that in GFQT the greater the number of components is, the stronger
is the restriction on the width of the dS momentum distribution for each component.
This is a crucial difference between standard theory and GFQT. A naive explanation
is that if p is finite, the same set of numbers which was used for describing one body
is now shared between N bodies. In other words, if in standard theory each body
in the free N -body system does not feel the presence of other bodies, in GFQT this
is not the case. This might be treated as an effective interaction in the free N -body
system.

In Chaps. 3 and 5 we discussed a system of two free bodies such their
relative motion can be described in the framework of semiclassical approximation.
We have shown that the mean value of the mass operator for this system differs
from the expression given by standard Poincare theory. The difference describes an
effective interaction which we treat as the dS antigravity at very large distances and
gravity when the distances are much less than cosmological ones. In the latter case
the result depends on the total dS momentum distribution for each body (see Eq.
(5.31)). Since the interaction is proportional to the masses of the bodies, this effect
is important only in situations when at least one body is macroscopic. Indeed, if
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neither of the bodies is macroscopic, their masses are small and their relative motion
is not described in the framework of semiclassical approximation. In particular, in
this approach, gravity between two elementary particles has no physical meaning.

The existing quantum theory does not make it possible to reliably calculate
the width of the total dS momentum distribution for a macroscopic body and at best
only a qualitative estimation of this quantity can be given. The above discussion
shows that the greater is the mass of the macroscopic body, the stronger is the
restriction on the dS momentum distribution for each subsystem of this body. Suppose
that a body with the mass M can be treated as a composite system consisting of
similar subsystems with the mass m. Then the number of subsystems is N = M/m
and, as follows from Eq. (7.13), the width δ of their dS momentum distributions
should satisfy the condition Nδlnw ≪ lnp where w = 4R2m2. Since the greater
the value of δ is, the more accurate is the semiclassical approximation, a reasonable
scenario is that each subsystem tends to have the maximum possible δ but the above
restriction allows to have only such value of δ that it is of the order of magnitude not
exceeding lnp/(Nlnw).

The next question is how to estimate the width of the total dS momentum
distribution for a macroscopic body. For solving this problem one has to change
variables from individual dS momenta of subsystems to total and relative dS momenta.
Now the total dS momentum and relative dS momenta will have their own momentum
distributions which are subject to a restriction similar to that given by Eq. (7.13).
If we assume that all the variables share this restriction equally then the width of
the total momentum distribution also will be a quantity not exceeding lnp/(Nlnw).
Suppose that m = N1m0 where m0 is the nucleon mass. The value of N1 should be
such that our subsystem still can be described by semiclassical approximation. Then
the estimation of δ is

δ = N1m0lnp/[2Mln(2RN1m0)] (7.14)

Suppose that N1 can be taken to be the same for all macroscopic bodies. For example,
it is reasonable to expect that when N1 is of the order of 103, the subsystems still
can be described by semiclassical approximation but probably this is the case even
for smaller values of N1.

In summary, although calculation of the width of the total dS momentum
distribution for a macroscopic body is a very difficult problem, GFQT gives a reason-
able qualitative explanation why this quantity is inversely proportional to the mass of
the body. With the estimation (7.14), the result given by Eq. (5.31) can be written
in the form (5.33) where

G =
2constRln(2RN1m0)

N1m0lnp
(7.15)

In Chaps. 1 and 6 we argued that in theories based on dS invariance and/or
Galois fields, neither the gravitational nor cosmological constant can be fundamental.
In particular, in units h̄/2 = c = 1, the dimension of G is length2 and its numerical
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value is l2P where lP is the Planck length (lP ≈ 10−35m). Equation (7.15) is an
additional indication that this is the case since G depends on R (or the cosmological
constant) and there is no reason to think that it does not change with time. Since
GdS = GΛ is dimensionless in units h̄/2 = c = 1, this quantity should be treated as
the gravitational constant in dS theory. Let µ = 2Rm0 be the dS nucleon mass and
Λ = 3/R2 be the cosmological constant. Then Eq. (7.15) can be written as

GdS =
12const ln(N1µ)

N1µlnp
(7.16)

As noted in Sect. 1.4, standard cosmological constant problem arises when one tries
to explain the value of Λ from quantum theory of gravity assuming that this theory is
QFT, G is fundamental and dS symmetry is a manifestation of dark energy (or other
fields) on flat Minkowski background. Such a theory contains strong divergences and
the result depends on the value of the cutoff momentum. With a reasonable assump-
tion about this value, the quantity Λ is of the order of 1/G and this is reasonable
since G is the only parameter in this theory. Then Λ is by more than 120 orders of
magnitude greater than its experimental value. However, in our approach we have
an additional fundamental parameter p. Equation (7.16) shows that GΛ is not of the
order of unity but is very small since not only p but even lnp is very large. For a
rough estimation, we assume that the values of const and N1 in this expression are of
the order of unity. Then if, for example, R is of the order of 1026m, we have that µ is
of the order of 1042 and lnp is of the order of 1080. Therefore p is a huge number of the
order of exp(1080). In the preceding chapter we argued that standard theory can be
treated as a special case of GFQT in the formal limit p → ∞. The above discussion
shows that restrictions on the width of the total dS momentum arise because p is
not infinitely large. It is seen from Eq. (7.16) that gravity disappears in the above
formal limit. Therefore in our approach gravity is a consequence of the fact that dS
symmetry is considered over a Galois field rather than the field of complex numbers.
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Chapter 8

Basic properties of AdS quantum
theories

As noted in Sec. 3.1, if one considers Poincare, AdS and dS symmetries in standard
theory then only the latter symmetry does not contradict the possibility that gravity
can be described in the framework of a free theory. In addition, as shown in Secs. 3.6
and 5.1, the fact that Λ > 0 can be treated simply as an indication that among the
three symmetries the dS one is the most pertinent for describing nature.

In standard theory the difference between IRs of the so(2,3) and so(1,4)
algebras is that an IR of the so(2,3) algebra where the operators Mµ4 (µ = 0, 1, 2, 3)
are Hermitian can be treated as IRs of the so(1,4) algebra where these operators are
anti-Hermitian and vice versa. As noted in Chap. 6, in GFQT a probabilistic inter-
pretation is only approximate and hence Hermiticy can be only a good approximation
in some situations. Therefore one cannot exclude a possibility that elementary parti-
cles can be described by modular analogs of IRs of the so(2,3) algebra while modular
representations describing symmetry of macroscopic bodies are modular analogs of
standard representations of the so(1,4) algebra.

In this chapter standard and modular IRs of the so(2,3) algebra are dis-
cussed in parallel in order to demonstrate common features and differences between
standard and modular cases.

8.1 Modular IRs of the sp(2) and su(2) algebra

The key role in constructing modular IRs of the so(2,3) algebra is played by modular
IRs of the sp(2) subalgebra. They are described by a set of operators (a′, a”, h)
satisfying the commutation relations

[h, a′] = −2a′, [h, a”] = 2a”, [a′, a”] = h (8.1)

The Casimir operator of the second order for the algebra (8.1) has the form

K = h2 − 2h− 4a”a′ = h2 + 2h− 4a′a” (8.2)
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We first consider representations with the vector e0 such that

a′e0 = 0, he0 = q0e0 (8.3)

where q0 ∈ Fp. We will denote q0 by the numbers 0, 1, ...p− 1. In general we consider
the representation in a linear space over Fpk where k is a natural number (see Sec.
6.1). Denote en = (a”)ne0. Then it follows from Eqs. (8.2) and (8.3), that

hen = (q0 + 2n)en, Ken = q0(q0 − 2)en (8.4)

a′a”en = (n+ 1)(q0 + n)en (8.5)

One can consider analogous representations in standard theory. Then q0
is a positive real number, n = 0, 1, 2, ... and the elements en form a basis of the IR.
In this case e0 is a vector with a minimum eigenvalue of the operator h (minimum
weight) and there are no vectors with the maximum weight. The operator h is positive
definite and bounded below by the quantity q0. For these reasons the above modular
IRs can be treated as modular analogs of such standard IRs that h is positive definite.

Analogously, one can construct modular IRs starting from the element e′0
such that

a”e′0 = 0, he′0 = −q0e′0 (8.6)

and the elements e′n can be defined as e′n = (a′)ne′0. Such modular IRs are analogs of
standard IRs where h is negative definite. However, in the modular case Eqs. (8.3)
and (8.6) define the same IRs. This is clear from the following consideration.

The set (e0, e1, ...eN ) will be a basis of IR if a”ei 6= 0 for i < N and
a”eN = 0. These conditions must be compatible with a′a”eN = 0. The case q0 = 0 is
of no interest since, as follows from Eqs. (8.3-8.6), all the representation operators are
null operators, the representation is one-dimensional and e0 is the only basis vector
in the representation space. If q0 = 1, ...p − 1, it follows from Eq. (8.5) that N is
defined by the condition q0 + N = 0. Hence N = p − q0 and the dimension of IR
equals

Dim(q0) = p− q0 + 1 (8.7)

This result is formally valid for all the values of q0 if we treat q0 as one of the numbers
1, ...p−1, p. It is easy to see that eN satisfies Eq. (8.6) and therefore it can be identified
with e′0.

Let us forget for a moment that the eigenvalues of the operator h belong
to Fp and will treat them as integers. Then, as follows from Eq. (8.4), the eigenvalues
are

q0, q0 + 2, ..., 2p− 2− q0, 2p− q0.

Therefore, if f(q0) > 0 and f(q0) ≪ p, the maximum value of q0 is 2p− q0, i.e. it is
of the order of 2p.

In standard theory, IRs are discussed in Hilbert spaces, i.e. the space of
the IR is supplied by a positive definite scalar product. It can be defined such that
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(e0, e0) = 1, the operator h is self-adjoint and the operators a′ and a” are adjoint to
each other: (a′)∗ = a”. Then, as follows from Eq. (8.5),

(en, en) = n!(q0)n (8.8)

where we use the Pocchammer symbol (q0)n = q0(q0 +1) · · · (q0 + n− 1). Usually the
basis vectors are normalized to one but this is only a matter of convention but not a
matter of principle since not the probability itself but only ratios of probabilities have
a physical meaning (see the discussion in Chap. 6). In GFQT one can formally define
the scalar product by the same formulas but in that case this scalar product cannot
be positive definite since in Galois fields the notions of positive and negative numbers
can be only approximate. Therefore, as noted in Chap. 6 in GFQT the probabilistic
interpretation cannot be universal. However, if the quantities q0 and n are such that
the r.h.s. of Eq. (8.8) is much less than p then the probabilistic interpretation is
(approximately) valid if the IR is discussed in a space over Fp2 (see Chap. 6 for a
detailed discussion). Therefore if p is very large, then for a large number of elements
there is a correspondence between standard theory and GFQT

Representations of the su(2) algebra are defined by a set of operators
(L+, L−, L3) satisfying the commutations relations

[L3, L+] = 2L+, [L3, L−] = 2L−, [L+, L−] = 2L3 (8.9)

In the case of representations over the field of complex numbers, these relations can
be formally obtained from Eq. (8.1) by the replacements h → L3, a

′ → iL− and
a” → iL+. The difference between the representations of the sp(2) and su(2) algebras
in Hilbert spaces is that in the latter case the Hermiticity conditions are L∗

3 = L3 and
L∗
+ = L−. The Casimir operator for the algebra (8.9) is

K = L2
3 − 2L3 + 4L+L− = L2

3 + 2L3 + 4L−L+ (8.10)

For constructing IRs, we assume that the representation space contains a
vector e0 such that

L3e0 = se0 L+e0 = 0 (8.11)

where s ≥ 0 for standard IRs and s ∈ Fp for modular IRs. In the letter case we will
denote s by the numbers 0, 1, ...p− 1. If ek = (L−)

ke0 (k = 0, 1, 2, ...) then it is easy
to see that

L3ek = (s− 2k)ek, Kek = s(s+ 2)ek, L+L−ek = (k + 1)(s− k)ek (8.12)

The IR will be finite dimensional if there exists k = kmax such that L+L−ek = 0 for
this value of k. As follows from the above expression, for modular IRs such a value
of k always exists, kmax = s and the dimension of the IR is Dim(s) = s + 1. For
standard IRs the same conclusion is valid if s iz zero or a natural number. In standard
quantum theory, the representation operators of the su(2) algebra are associated
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with the components of the angular momentum operator L = (Lx, Ly, Lz) such that
L3 = Lz and L± = (Lx ± iLy)/2. The commutation relations for the components
of L are usually written in units where h̄ = 1. Then s can be only an integer or a
half-integer and Dim(s) = 2s+ 1.

8.2 Modular IRs of the so(2,3) Algebra

Standard IRs of the so(2,3) algebra relevant for describing elementary particles have
been considered by several authors. The description in this section is a combination
of two elegant ones given in Ref. [80] for standard IRs and Ref. [84] for modular
IRs. As already noted, in standard theory, the commutation relations between the
representation operators are given by Eq. (4.1) where η44 = ±1 for the AdS and dS
cases, respectively. As follows from the contraction procedure described in Sec. 1.3,
the operator M04 can be treated as the AdS analog of the energy operator.

If a modular IR is considered in a linear space over Fp2 with p = 3 (mod 4)
then Eq. (4.1) is also valid. However, in the general case we consider modular IRs in
linear spaces over Fpk where k is arbitrary. In this case it is convenient to work with
another set of ten operators. Let (a′j , aj”, hj) (j = 1, 2) be two independent sets of
operators satisfying the commutation relations for the sp(2) algebra

[hj , a
′
j] = −2a′j, [hj , aj”] = 2aj”, [a′j, aj”] = hj (8.13)

The sets are independent in the sense that for different j they mutually commute
with each other. We denote additional four operators as b′, b”, L+, L−. The operators
L3 = h1 − h2, L+, L− satisfy the commutation relations (8.9) of the su(2) algebra
while the other commutation relations are as follows

[a′1, b
′] = [a′2, b

′] = [a1”, b”] = [a2”, b”] = [a′1, L−] = [a1”, L+] =

[a′2, L+] = [a2”, L−] = 0, [hj , b
′] = −b′, [hj , b”] = b”

[h1, L±] = ±L±, [h2, L±] = ∓L±, [b′, b”] = h1 + h2

[b′, L−] = 2a′1, [b′, L+] = 2a′2, [b”, L−] = −2a2”, [b”, L+] = −2a1”

[a′1, b”] = [b′, a2”] = L−, [a′2, b”] = [b′, a1”] = L+

[a′1, L+] = [a′2, L−] = b′, [a2”, L+] = [a1”, L−] = −b” (8.14)

At first glance these relations might seem rather chaotic but in fact they are very
natural in the Weyl basis of the so(2,3) algebra.

In spaces over Fp2 with p = 3 (mod 4) the relation between the above sets
of ten operators is

M10 = i(a1”− a′1 − a2” + a′2), M14 = a2” + a′2 − a1”− a′1
M20 = a1” + a2” + a′1 + a′2, M24 = i(a1” + a2”− a′1 − a′2)

M12 = L3, M23 = L+ + L−, M31 = −i(L+ − L−)

M04 = h1 + h2, M34 = b′ + b”, M30 = −i(b” − b′) (8.15)

172



and therefore the sets are equivalent. However, the relations (8.9,8.13,8.14) are more
general since they can be used when the representation space is a space over Fpk with
an arbitrary k. It is also obvious that such a definition of the operators Mab is not
unique. For example, any cyclic permutation of the indices (1, 2, 3) gives a new set
of operators satisfying the same commutation relations.

In standard theory, the Casimir operator of the second order for the rep-
resentation of the so(2,3) algebra is given by

I2 =
1

2

∑

ab

MabM
ab (8.16)

As follows from Eqs. (8.9,8.13-8.15), I2 can be written as

I2 = 2(h21 + h22 − 2h1 − 4h2 − 2b”b′ + 2L−L+ − 4a1”a
′
1 − 4a2”a

′
2) (8.17)

We use the basis in which the operators (hj, Kj) (j = 1, 2) are diagonal.
Here Kj is the Casimir operator (8.2) for the algebra (a′j , aj”, hj). For constructing
IRs we need operators relating different representations of the sp(2)×sp(2) algebra.
By analogy with Refs. [80, 84], one of the possible choices is as follows

A++ = b”(h1 − 1)(h2 − 1)− a1”L−(h2 − 1)− a2”L+(h1 − 1) + a1”a2”b
′

A+− = L+(h1 − 1)− a1”b
′, A−+ = L−(h2 − 1)− a2”b

′, A−− = b′ (8.18)

We consider the action of these operators only on the space of minimal sp(2)×sp(2)
vectors, i.e. such vectors x that a′jx = 0 for j = 1, 2, and x is the eigenvector of
the operators hj . If x is a minimal vector such that hjx = αjx then A++x is the
minimal eigenvector of the operators hj with the eigenvalues αj +1, A+−x - with the
eigenvalues (α1 + 1, α2 − 1), A−+x - with the eigenvalues (α1 − 1, α2 + 1), and A−−x
- with the eigenvalues αj − 1.

By analogy with Refs. [80, 84], we require the existence of the vector e0
satisfying the conditions

a′je0 = b′e0 = L+e0 = 0, hje0 = qje0 (j = 1, 2) (8.19)

where qj ∈ Fp. As follows from Eq. (8.17), in the IR characterized by the quantities
(q1, q2), all the nonzero elements of the representation space are the eigenvectors of
the operator I2 with the eigenvalue

I2 = 2(q21 + q22 − 2q1 − 4q2) (8.20)

Since L3 = h1 − h2 then, as follows from the results of Sec. 8.1, if q1 and
q2 are characterized by the numbers 0, 1, ...p − 1, q1 ≥ q2 and q1 − q2 = s then the
elements (L+)

ke0 (k = 0, 1, ...s) form a basis of the IR of the su(2) algebra with the
spin s such that the dimension of the IR is s + 1. Therefore in the theory over a
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Galois field the case when q1 < q2 should be treated such that s = p + q1 − q2. IRs
with q1 < q2 have no analogs in standard theory and we will call them special IRs.

As follows from Eqs. (8.13) and (8.14), the operators (a′1, a
′
2, b

′) reduce
the AdS energy (h1 + h2) by two units. Therefore e0 is an analog the state with the
minimum energy which can be called the rest state. For this reason we use mAdS

to denote q1 + q2. In standard classification [80], the massive case is characterized
by the condition q2 > 1 and the massless one—by the condition q2 = 1. Hence
in standard theory the quantity mAdS in the massive case is always greater than 2.
There also exist two exceptional IRs discovered by Dirac [106] (Dirac singletons).
They are characterized by the conditions (mAdS = 1, s = 0) and (mAdS = 2, s = 1) or
in terms of (q1, q2), by the conditions (q1 = 1/2, q2 = 1/2) and (q1 = 3/2, q2 = 1/2),
respectively.

In the theory over a Galois field 1/2 should be treated as (p + 1)/2 and
3/2 — as (p + 3)/2. Hence the Dirac singletons are characterized by the conditions
(q1 = (p + 1)/2, q2 = (p + 1)/2) and (q1 = (p + 3)/2, q2 = (p + 1)/2), respectively.
In general, in this theory it is possible that the quantities (q1, q2) are given by the
numbers 2, 3, ...p− 1 but since q1 + q2 is taken modulo p, it is possible that mAdS can
take one of the values (0,1,2). These cases also have no analogs in standard theory
and we will call them special singleton IRs but will not treat the Dirac singletons as
special. In this section we will consider the massive case while the singleton, massless
and special cases will be considered in the next section.

As follows from the above remarks, the elements

enk = (A++)n(A−+)ke0 (8.21)

represent the minimal sp(2)×sp(2) vectors with the eigenvalues of the operators h1
and h2 equal to Q1(n, k) = q1 + n− k and Q2(n, k) = q2 + n+ k, respectively.

Consider the element A−−A++enk. In view of the properties of the A
operators mentioned above, this element is proportional to enk and therefore one
can write A−−A++enk = a(n, k)enk. One can directly verify that the actions of the
operators A++ and A−+ on the space of minimal sp(2)×sp(2) vectors are commutative
and therefore a(n, k) does not depend on k. A direct calculation gives

(A−−A++ −A++A−−)e(n, k) = {(Q2 − 1)[Q1 − 1)(Q1 +Q2)− (Q1 −Q2)] +

(Q1 +Q2 − 2)(
1

2
Q2

1 +
1

2
Q2

2 −Q1 − 2Q2 −
1

4
I2)}e(n, k) (8.22)

where Q1 ≡ Q1(n, k) and Q2 ≡ Q2(n, k). As follows from this expression,

a(n)− a(n− 1) = q1(q2 − 1)(mAdS − 2) + 2n(q21 + q22 +

3q1q2 − 5q1 − 4q2 + 4) + 6n2(mAdS − 2) + 4n3 (8.23)

Since b′e0 = 0 by construction, we have that a(−1) = 0 and a direct calculation shows
that, as a consequence of Eq. (8.23)

a(n) = (n + 1)(mAdS + n− 2)(q1 + n)(q2 + n− 1) (8.24)
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Analogously, one can write A+−A−+enk = b(k)enk and the result of a direct
calculation is

b(k) = −1

4
(Q1 − 2)(Q2 − 1)(2Q2

1 + 2Q2
2 − 8Q1 − 4Q2 − I2) + a(n− 1) (8.25)

Then, as a consequence of Eqs. (8.20) and (8.24)

b(k) = (k + 1)(s− k)(q1 − k − 2)(q2 + k − 1) (8.26)

As follows from these expressions, in the massive case k can assume only
the values 0, 1, ...s and in standard theory n = 0, 1, ...∞. However, in the modular
case n = 0, 1, ...nmax where nmax is the first number for which the r.h.s. of Eq. (8.24)
becomes zero in Fp. Therefore nmax = p+ 2−mAdS .

The full basis of the representation space can be chosen in the form

e(n1n2nk) = (a1”)
n1(a2”)

n2enk (8.27)

In standard theory n1 and n2 can be any natural numbers. However, as follows from
the results of the preceding section, Eq. (8.13) and the properties of the A operators,

n1 = 0, 1, ...N1(n, k), n2 = 0, 1, ...N2(n, k)

N1(n, k) = p− q1 − n+ k, N2(n, k) = p− q2 − n− k (8.28)

As a consequence, the representation is finite dimensional in agreement with the
Zassenhaus theorem [102] (moreover, it is finite since any Galois field is finite).

Let us assume additionally that the representation space is supplied by a
scalar product (see Chap. 6). The element e0 can always be chosen such that (e0, e0) =
1. Suppose that the representation operators satisfy the Hermiticity conditions L∗

+ =
L−, a

′∗
j = aj”, b

′∗ = b” and h∗j = hj . Then, as follows from Eq. (8.15), in a special case
when the representation space is a space over Fp2 with p = 3 (mod 4), the operators
Mab are Hermitian as it should be. By using Eqs. (8.13-8.26), one can show by
a direct calculation that the elements e(n1n2nk) are mutually orthogonal while the
quantity

Norm(n1n2nk) = (e(n1n2nk), e(n1n2nk)) (8.29)

can be represented as

Norm(n1n2nk) = F (n1n2nk)G(nk) (8.30)

where

F (n1n2nk) = n1!(Q1(n, k) + n1 − 1)!n2!(Q2(n, k) + n2 − 1)!

G(nk) = {(q2 + k − 2)!n!(mAdS + n− 3)!(q1 + n− 1)!(q2 + n− 2)!k!s!}
{(q1 − k − 2)![(q2 − 2)!]3(q1 − 1)!(mAdS − 3)!(s− k)!

[Q1(n, k)− 1][Q2(n, k)− 1]}−1 (8.31)
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In standard Poincare and AdS theories there also exist IRs with negative
energies. They can be constructed by analogy with positive energy IRs. Instead of
Eq. (8.19) one can require the existence of the vector e′0 such that

aj”e
′
0 = b”e′0 = L−e

′
0 = 0, hje

′
0 = −qje′0, (e′0, e

′
0) 6= 0 (j = 1, 2) (8.32)

where the quantities q1, q2 are the same as for positive energy IRs. It is obvious
that positive and negative energy IRs are fully independent since the spectrum of
the operator M04 for such IRs is positive and negative, respectively. However, the
modular analog of a positive energy IR characterized by q1, q2 in Eq. (8.19), and the
modular analog of a negative energy IR characterized by the same values of q1, q2 in
Eq. (8.32) represent the same modular IR. This is the crucial difference between
standard quantum theory and GFQT, and a proof is given below.

Let e0 be a vector satisfying Eq. (8.19). Denote N1 = p−q1 and N2 = p−
q2. Our goal is to prove that the vector x = (a1”)

N1(a2”)
N2e0 satisfies the conditions

(8.32), i.e. x can be identified with e′0.
As follows from the definition of N1, N2, the vector x is the eigenvector

of the operators h1 and h2 with the eigenvalues −q1 and −q2, respectively, and, in
addition, it satisfies the conditions a1”x = a2”x = 0. Let us prove that b”x = 0.
Since b” commutes with the aj”, we can write b”x in the form

b”x = (a1”)
N1(a2”)

N2b”e0 (8.33)

As follows from Eqs. (8.14) and (8.19), a′2b”e0 = L+e0 = 0 and b”e0 is the eigenvector
of the operator h2 with the eigenvalue q2 + 1. Therefore, b”e0 is the minimal vector
of the sp(2) IR which has the dimension p − q2 = N2. Hence (a2”)

N2b”e0 = 0 and
b”x = 0.

The next stage of the proof is to show that L−x = 0. As follows from Eq.
(8.14) and the definition of x,

L−x = (a1”)
N1(a2”)

N2L−e0 −N1(a1”)
N1−1(a2”)

N2b”e0 (8.34)

We have already shown that (a2”)
N2b”e0 = 0, and therefore it is sufficient to prove

that the first term in the r.h.s. of Eq. (8.34) is equal to zero. As follows from Eqs.
(8.14) and (8.19), a′2L−e0 = b′e0 = 0, and L−e0 is the eigenvector of the operator h2
with the eigenvalue q2 + 1. Therefore (a2”)

N2L−e0 = 0 and the proof is completed.
Let us assume for a moment that the eigenvalues of the operators h1 and

h2 should be treated not as elements of Fp but as integers. Then, as follows from the
consideration in the preceding section, if f(qj) ≪ p (j=1,2) then one modular IR of
the so(2,3) algebra corresponds to a standard positive energy IR in the region where
the energy is positive and much less than p. At the same time, it corresponds to an
IR with the negative energy in the region where the AdS energy is close to 4p but
less than 4p.
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8.3 Massless particles, Dirac singletons and spe-

cial IRs

Those cases can be considered by analogy with the massive one. The case of Dirac
singletons is especially simple. As follows from Eqs. (8.24) and (8.26), if (mAdS =
1, s = 0) then the only possible value of k is k = 0 and the only possible values of n
are n = 0, 1 while if (mAdS = 2, s = 1) then the only possible values of k are k = 0, 1
and the only possible value of n is n = 0. This result does not depend on the value of
p and therefore it is valid in both, standard theory and GFQT. The only difference
between standard and modular cases is that in the former n1, n2 = 0, 1, ...∞ while in
the latter the quantities n1, n2 are in the range defined by Eq. (8.28). In the literature,
the IR with (mAdS = 2, s = 1) is called Di and the IR with (mAdS = 1, s = 0) is called
Rac.

The singleton IRs are indeed exceptional since the value of n in them
does not exceed 1 and therefore the impression is that singletons are two-dimensional
objects, not three-dimensional ones as usual particles. However, the singleton IRs
have been obtained in the so(2,3) theory without reducing the algebra. Dirac has
titled his paper [106] ”A Remarkable Representation of the 3 + 2 de Sitter Group”.
Below we argue that in GFQT the singleton IRs are even more remarkable than in
standard theory.

First of all, as noted above, in standard theory there exist independent
positive and negative IRs and the latter are associated with antiparticles. In particu-
lar, in standard theory there exist four singleton IRs - two IRs with positive energies
and the corresponding IRs with negative energies, which can be called antisingletons.
However, at the end of the preceding section we have proved that in GFQT one IR
contains positive and negative energy states simultaneously. This proof can be ap-
plied to the singleton IRs without any changes. As a consequence, in the modular
case there exist only two singleton IRs.

If (mAdS = 1, s = 0) then q1 = q2 = 1/2 and, as noted in the preceding sec-
tion, in GFQT these relations should be treated as q1 = q2 = (p+1)/2. Analogously,
if (mAdS = 2, s = 1) then (q1 = 3/2, q2 = 1/2) and in GFQT (q1 = (p + 3)/2, q2 =
(p + 1)/2). Therefore the values of q1 and q2 for the singleton IRs are extremely
large since they are of the order of p/2. As a consequence, the singleton IRs do not
contain states where all the quantum numbers are much less than p. Since some of
the quantum numbers are necessarily of the order of p, this is a natural explanation
of the fact that singletons have not been observed. In addition, as follows from the
discussion in Chap. 6 and Secs. 8.1 and 8.2, the fact that some quantum numbers
are of the order of p implies that the singletons cannot be described in terms of the
probabilistic interpretation.

Note also that if we consider the singleton IRs as modular analogs of
negative energy IRs then the singleton IRs should be characterized either by q1 = q2 =
−1/2 or by q1 = −3/2, q2 = −1/2. However, since in Galois fields −1/2 = (p− 1)/2
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and −3/2 = (p − 3)/2, those values are very close to ones characterizing modular
analogs of positive energy IRs. As a consequence, there is no approximation when
singleton states can be characterized as particles or antiparticles.

The Rac IR contains only minimal sp(2) × sp(2) vectors with h1 = h2 =
(p+1)/2 and h1 = h2 = (p+3)/2 while the Di IR contains only minimal sp(2)×sp(2)
vectors with h1 = (p + 3)/2, h2 = (p + 1)/2 and h1 = (p + 1)/2, h2 = (p + 3)/2.
Hence it easily follows from Eq. (8.7) that the dimensions of these IRs are equal to

Dim(Rac) =
1

2
(p2 + 1) Dim(Di) =

1

2
(p2 − 1) (8.35)

Consider now the massless case. Note first that when q2 = 1, it follows
from Eqs. (8.24) and (8.26) that a(0) = 0 and b(0) = 0. Therefore A++e0 =
A−+e0 = 0 and if the definition e(n, k) = (A++)n(A−+)ke0 is used for (n = 0, 1, ...)
and (k = 0, 1, ...) then all the e(n, k) will be the null elements.

We first consider the case when s 6= 0 and s 6= p−1. In that case we define
e(1, 0) not as A++e0 but as e(1, 0) = [b”(h1−1)−a1”L−]e0. A direct calculation using
Eq. (8.14) shows that when q2 = 1, this definition is legitimate since e(1, 0) is the
minimal sp(2) × sp(2) vector with the eigenvalues of the operators h1 and h2 equal
to 2 + s and 2, respectively. With such a definition of e(1, 0), a direct calculation
using Eqs. (8.9) and (8.14) gives A−−e(1, 0) = b′e(1, 0) = s(s + 1)e0 and therefore
e(1, 0) 6= 0. We now define e(n, 0) at n ≥ 1 as e(n, 0) = (A++)n−1e(1, 0). Then Eq.
(8.22) remains valid when n ≥ 1. Since A++b′e(1, 0) = s(s+1)A++e0 = 0, Eq. (8.23)
remains valid at n = 1, 2, ... and a(0) = 0. Hence we get

a(n) = n(n + 1)(n+ s+ 1)(n+ s) (n ≥ 1) (8.36)

As a consequence, the maximal value of n in the modular case is nmax = p − 1 − s.
This result has been obtained in Ref. [41].

For analogous reasons, we now cannot define e(0, k) as (A−+)ke0. However,
if we define e(0, k) = (L−)

ke0 then, as follows from the discussion at the end of Sec.
8.1, the elements e(0, k) (k = 0, 1, ...s) form a basis of the IR of the su(2) algebra with
the spin s. Therefore the new definition of e(0, k) is legitimate since e(0, k) is the
minimal sp(2) × sp(2) vector with the eigenvalues of the operators h1 and h2 equal
to 1 + s− k and 1 + k, respectively.

A direct calculation using Eqs. (8.9) and (8.14) gives that with the new
definition of e(0, k), A−−A++e(0, k) = b′A++e(0, k) = 0 and therefore A++e(0, k) = 0.
When 1 ≤ k ≤ s−1, there is no way to obtain nonzero minimal sp(2)× sp(2) vectors
with the eigenvalues of the operators h1 and h2 equal to 1 + s− k+ n and 1 + k+ n,
respectively, when n > 0. However, when k = s, such vectors can be obtained by
analogy with the case k = 0. We define e(1, s) = [b”(h2 − 1) − a2”L+]e(0, s). Then
a direct calculation gives b′e(1, s) = s(s + 1)e(0, s) and therefore e(1, s) 6= 0. We
now define e(n, s) = (A++)n−1e(1, s) for n ≥ 1. Then by analogy with the above
discussion one can verify that if A−−A++e(n, s) = a(n)e(n, s) then a(n) for n ≥ 1 is
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again given by Eq. (8.36) and therefore in the modular case the maximal value of n
is the same.

If s = 0 then the only possible value of k is k = 0 and for the vectors e(n, 0)
we have the same results as above. In particular, Eq. (8.36) is valid with s = 0. When
s = p− 1, we can define e(n, 0) and e(n, s) as above but since s+ 1 = 0 (mod p), we
get that e(1, 0) = e(1, s) = 0. This is in agreement with the above discussion since
nmax = 0 when s = p− 1.

According to Standard Model (based on Poincare invariance), only mass-
less Weyl particles can be fundamental elementary particles in Poincare invariant the-
ory. Therefore a problem arises whether the above results can be treated as analogs
of Weyl particles in standard and modular versions of AdS invariant theory. In view
of the relation P µ = M4µ/2R (see Sec. 1.3), the AdS mass mAdS and the Poincare
mass m are related as m = mAdS/2R. Since mAdS = 2q2 + s, the corresponding
Poincare mass will be zero when R → ∞ not only when q2 = 1 but when q2 is any
finite number. So a question arises why only the case q2 = 1 is treated as massless. In
Poincare invariant theory, Weyl particles are characterized not only by the condition
that their mass is zero but also by the condition that they have a definite helicity. In
standard case the minimum value of the AdS energy for massless IRs with positive
energy is Emin = 2+ s when n = 0. In contrast to the situation in Poincare invariant
theory, where massless particles cannot be in the rest state, the massless particles in
the AdS theory do have rest states and, as shown above, the value of the z projection
of the spin in such states can be −s,−s + 2, ...s as usual. However, we have shown
that for any value of energy greater than Emin, when n 6= 0, the spin state is charac-
terized only by helicity, which can take the values either s when k = 0 or −s when
k = s, i.e. we have the same result as in Poincare invariant theory. Note that in
contrast to IRs of the Poincare and dS algebras, standard IRs describing particles in
AdS invariant theory belong to the discrete series of IRs and the energy spectrum in
them is discrete: E = Emin, Emin + 2, ...∞. Therefore, strictly speaking, rest states
do not have measure zero as in Poincare and dS invariant theories. Nevertheless, the
probability that the energy is exactly Emin is extremely small and therefore the above
results show that the case q2 = 1 indeed describes AdS analogs of Weyl particles.

Consider now dimensions of massless IRs. If s = 0 then, as follows from
the above results, there exist only minimal sp(2)×sp(2) vectors with h1 = h2 = 1+n,
n = 0, 1, ...p− 1. Therefore, as follows from Eq. (8.7), the dimension of the massless
IR with s = 0 equals

Dim(s = 0) =

p−1
∑

n=0

(p− n)2 =
1

6
p(p+ 1)(2p+ 1) (8.37)

If s = 1, there exist only minimal sp(2)× sp(2) vectors with (h1 = 2+ n, h2 = 1+ n)
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and (h1 = 1 + n, h2 = 2 + n) where n = 0, 1, ...p− 2. Therefore

Dim(s = 1) = 2

p−2
∑

n=0

(p− n)(p− n− 1) =
2

3
p(p− 1)(p+ 1) (8.38)

If s ≥ 2, there exist only minimal sp(2)×sp(2) vectors with (h1 = 1+s+n, h2 = 1+n),
(h1 = 1 + n, h2 = 1 + s + n) where n = 0, 1, ...p − s and the minimal sp(2) × sp(2)
vectors with (h1 = 1 + s− k, h2 = 1 + k) where k = 1, ...s− 1. Therefore, as follows
from Eq. (8.7)

Dim(s ≥ 2) = 2

p−s
∑

n=0

(p− n)(p− n− s) +

s−1
∑

k=1

(p− k)(p− s+ k) =

p

3
(2p2 − 3s2 + 1) +

1

2
s(s− 1)(s+ 1) (8.39)

As noted in Sec. 8.2, the cases of special IRs are such either q1 and q2
are represented by the numbers 0, 1, ..p − 1 and q1 < q2 or in the case of special
singletons, q1, q2 = 2, ...p− 1 but (q1 + q2) (mod p) is one of the numbers (0,1,2). For
example, (q1 = (p+1)/2, q2 = (p−1)/2) is a special singleton with (mAdS = 0, s = 1),
(q1 = (p + 3)/2, q2 = (p − 1)/2) is a special singleton with (mAdS = 1, s = 2) etc.
These cases can be investigated by analogy with massive IRs in Sec. 8.2. For reasons
given in Sec. 8.10 and Chap. 9, among singleton IRs we will consider in detail only
the Dirac singletons. Then we will see that the only special IRs taking part in the
decomposition of the tensor product of the Dirac singletons are those with q1 = 0.
Then s = p− q2. If q2 = 2, 3, ...p− 1 then, as follows from Eq. (8.24), the quantum
number n can take only the value n = 0. If q2 = 1 then the special IR can also be
treated as the massless IR with s = p− 1. As noted above, in this case the quantity
n also can take only the value n = 0. Let Dim(q1, q2) be the dimension of the IR
characterized by q1 and q2. Then, as follows from Eq. (8.7)

Dim(0, q2) =

p−q2
∑

k=0

(1+p−q2−k)(1+k) = (1+p−q2)2+
1

2
(p−q2)2(1+p−q2) (8.40)

8.4 Matrix elements of representation operators

In what follows, we will discuss the massive case but the same results are valid in the
singleton and massless cases. The matrix elements of the operator A are defined as

Ae(n1n2nk) =
∑

n′

1n
′

2n
′k′

A(n′
1n

′
2n

′k′;n1n2nk)e(n
′
1n

′
2n

′k′) (8.41)

180



where the sum is taken over all possible values of (n′
1n

′
2n

′k′). One can explicitly
calculate matrix elements for all the representation operators and the results are:

h1e(n1n2nk) = [Q1(n, k) + 2n1]e(n1n2nk)

h2e(n1n2nk) = [Q2(n, k) + 2n2]e(n1n2nk) (8.42)

a′1e(n1n2nk) = n1[Q1(n, k) + n1 − 1]e(n1 − 1, n2nk)

a1”e(n1n2nk) = e(n1 + 1, n2nk)

a′2e(n1n2nk) = n2[Q2(n, k) + n2 − 1]e(n1, n2 − 1, nk)

a2”e(n1n2nk) = e(n1, n2 + 1, nk) (8.43)

b”e(n1n2nk) = {[Q1(n, k)− 1][Q2(n, k)− 1]}−1

[k(s+ 1− k)(q1 − k − 1)(q2 + k − 2)e(n1, n2 + 1, n, k − 1) +

n(mAdS + n− 3)(q1 + n− 1)(q2 + n− 2)e(n1 + 1, n2 + 1, n− 1, k) +

e(n1, n2, n+ 1, k) + e(n1 + 1, n2, n, k + 1)] (8.44)

b′e(n1n2nk) = {[Q1(n, k)− 1][Q2(n, k)− 1]}−1[n(mAdS + n− 3)

(q1 + n− 1)(q2 + n− 2)(q1 + n− k + n1 − 1)(q2 + n+ k + n2 − 1)

e(n1n2, n− 1, k) + n2(q1 + n− k + n1 − 1)e(n1, n2 − 1, n, k + 1) +

n1(q2 + n + k + n2 − 1)k(s+ 1− k)(q1 − k − 1)(q2 + k − 2)

e(n1 − 1, n2, n, k − 1) + n1n2e(n1 − 1, n2 − 1, n+ 1, k)] (8.45)

L+e(n1n2nk) = {[Q1(n, k)− 1][Q2(n, k)− 1]}−1{(q2 + n+ k + n2 − 1)

[k(s+ 1− k)(q1 − k − 1)(q2 + k − 2)e(n1n2n, k − 1) +

n(mAdS + n− 3)(q1 + n− 1)(q2 + n− 2)e(n1 + 1, n2, n− 1, k)] +

n2[e(n1, n2 − 1, n+ 1, k) + e(n1 + 1, n2 − 1, n, k + 1)]} (8.46)

L−e(n1n2nk) = {[Q1(n, k)− 1][Q2(n, k)− 1]}−1{n1[k(s+ 1− k)

(q1 − k − 1)(q2 + k − 2)e(n1 − 1, n2n, k − 1) + e(n1 − 1, n2, n+ 1, k)]

+(q1 + n− k + n1 − 1)[e(n1n2n, k + 1) + n(mAdS + n− 3)

(q1 + n− 1)(q2 + n− 2)e(n1, n2 + 1, n− 1, k)]} (8.47)

We will always use a convention that e(n1n2nk) is a null vector if some of the numbers
(n1n2nk) are not in the range described above.

The important difference between standard and modular IRs is that in the
latter the trace of each representation operator is equal to zero while in the former
this is obviously not the case (for example, the energy operator is positive definite for
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IRs defined by Eq. (8.19) and negative definite for IRs defined by Eq. (8.32)). For
the operators (a′j , aj”, L±, b

′, b”) the validity of this statement is clear immediately:
since they necessarily change one of the quantum numbers (n1n2nk), they do not
contain nonzero diagonal elements at all. The proof for the diagonal operators h1
and h2 follows. For each IR of the sp(2) algebra with the ”minimal weight” q0 and
the dimension N + 1, the eigenvalues of the operator h are (q0, q0 + 2, ...q0 + 2N).
The sum of these eigenvalues equals zero in Fp since q0 +N = 0 in Fp (see Sec. 8.1).
Therefore we conclude that for any representation operator A

∑

n1n2nk

A(n1n2nk, n1n2nk) = 0 (8.48)

This property is very important for investigating a new symmetry between particles
and antiparticles in the GFQT which is discussed in the subsequent section.

8.5 Quantization and AB symmetry

Let us first consider how the Fock space can be defined in standard theory. As shown
in Sec. 8.2, in the AdS case (in contrast to the situation in the dS one) IRs with
positive and negative energies are fully independent. Let (n1, n2, n, k) be the set
of all quantum numbers characterizing basis vectors of the IR and a(n1n2nk) be the
operator of particle annihilation in the state described by the vector e(n1n2nk). Then
the adjoint operator a(n1n2nk)

∗ has the meaning of particle creation in that state.
Since we do not normalize the states e(n1n2nk) to one, we require that the operators
a(n1n2nk) and a(n1n2nk)

∗ should satisfy either the anticommutation relations

{a(n1n2nk), a(n
′
1n

′
2n

′k′)∗} = Norm(n1n2nk)δn1n′

1
δn2n′

2
δnn′δkk′ (8.49)

or the commutation relations

[a(n1n2nk), a(n
′
1n

′
2n

′k′)∗] = Norm(n1n2nk)δn1n′

1
δn2n′

2
δnn′δkk′ (8.50)

A problem arises that in the case of negative energy IRs the operators
a(n1n2nk) and a(n1n2nk)

∗ have the meaning of the annihilation and creation opera-
tors, respectively, for the states with negative energies and hence a question arises of
whether such operators are physical. An analogous problem for the dS case has been
discussed in Sec. 3.5. One might think that since in the AdS case IRs with positive
and negative energies are fully independent, we can simply declare IRs with negative
energies unphysical and consider only IRs with positive energies. However, in QFT
one cannot get rid of negative energy IRs since here positive and negative energy IRs
are combined together into a field satisfying a local covariant equation. For example,
the Dirac field combines together positive and negative energy IRs into the Dirac field
satisfying the Dirac equation.
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For combining two IRs with positive and negative energies together, one
can introduce a new quantum number ǫ which will distinguish IRs with positive and
negative energies; for example ǫ = ±1 for the positive and negative energy IRs,
respectively. Then we have a set of operators a(n1n2nk, ǫ) and a(n1n2nk, ǫ)

∗ such
that by analogy with Eq. (8.49)

{a(n1n2nk, ǫ), a(n
′
1n

′
2n

′k′, ǫ′)∗} = Norm(n1n2nk)δn1n′

1
δn2n′

2
δnn′δkk′δǫǫ′ (8.51)

and analogously in the case of commutators. The vacuum state Φ̃vac can be defined
by the condition

a(n1n2nk, ǫ)Φ̃vac = 0 ∀(n1, n2, n, k, ǫ) (8.52)

As follows from Eqs. (8.15) and (8.42), the secondly quantized energy operator has
the form

M04 =
∑

n1n2nk,ǫ

ǫ[mAdS + 2(n+ n1 + n2)]a(n1n2nk, ǫ)
∗a(n1n2nk, ǫ) (8.53)

and hence we have to solve the problem of the physical interpretation of the operators
a(n1n2nk,−1) and a(n1n2nk,−1)∗. The two well-known ways of solving this problem
follow.

In the spirit of Dirac’s hole theory, one can define the new physical vacuum

Φvac =
∏

n1n2nk

a(n1n2nk,−1)∗Φ̃vac (8.54)

Then in the case of anticommutators each operator a(n1n2nk,−1) creates a hole with
a negative energy and the corresponding operator a(n1n2nk,−1)∗ annihilates this
hole. Hence the operators a(n1n2nk,−1)∗ can now be treated as the annihilation
operators of states with positive energies and the operators a(n1n2nk,−1) — as the
creation operators of states with positive energies. A problem with such a treatment
is that Φvac is the eigenstate of the operator M04 with the eigenvalue

Evac = −
∑

n1n2nk

[mAdS + 2(n+ n1 + n2)] (8.55)

This is an infinite negative value and in quantum gravity a vacuum with an infinite
energy is treated as unacceptable.

Another approach is that we consider only quantum numbers describing
IRs with positive energies and, in addition to the operators a(n1n2nk) = a(n1n2nk, 1)
and a(n1n2nk)

∗ = a(n1n2nk, 1)
∗, introduce new operators b(n1n2nk) and b(n1n2nk)

∗

instead of the operators a(n1n2nk,−1) and a(n1n2nk,−1)∗ such that b(n1n2nk) is pro-
portional to a(n1n2nk,−1)∗ and b(n1n2nk)

∗ is proportional to a(n1n2nk,−1). Then
the b-operators are treated as the annihilation operators of antiparticles with posi-
tive energies and the b∗ operators — as the creation operators of antiparticles with
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positive energies. By analogy with Eqs. (8.49) and (8.50), they should satisfy the
relations

{b(n1n2nk), b(n
′
1n

′
2n

′k′)∗} = Norm(n1n2nk)δn1n′

1
δn2n′

2
δnn′δkk′ (8.56)

[b(n1n2nk), b(n
′
1n

′
2n

′k′)∗] = Norm(n1n2nk)δn1n′

1
δn2n′

2
δnn′δkk′ (8.57)

for anticommutation or commutation relations, respectively. In this case it is assumed
that in the case of anticommutation relations all the operators (a, a∗) anticommute
with all the operators (b, b∗) while in the case of commutation relations they commute
with each other. It is also assumed that the vacuum vector Φ0 should satisfy the
conditions

a(n1n2nk)Φ0 = b(n1n2nk)Φ0 = 0 ∀ n1, n2, n, k (8.58)

In QFT the second possibility is treated as more physical than that analogous to
Dirac’s hole theory.

The Fock space in standard theory can now be defined as a linear combi-
nation of all elements obtained by the action of the operators (a∗, b∗) on the vacuum
vector, and the problem of second quantization of representation operators can be
formulated as follows. Let (A1, A2....An) be representation operators describing IR
of the AdS algebra. One should replace them by operators acting in the Fock space
such that the commutation relations between their images in the Fock space are the
same as for original operators (in other words, we should have a homomorphism of Lie
algebras of operators acting in the space of IR and in the Fock space). We can also
require that our map should be compatible with the Hermitian conjugation in both
spaces. It is easy to verify that a possible solution satisfying all the requirements is
as follows. Taking into account the fact that the matrix elements satisfy the proper
commutation relations, the operators Ai in the quantized form

Ai =
∑

Ai(n
′
1n

′
2n

′k′, n1n2nk)[a(n
′
1n

′
2n

′k′)∗a(n1n2nk) +

b(n′
1n

′
2n

′k′)∗b(n1n2nk)]/Norm(n1n2nk) (8.59)

satisfy the commutation relations (8.9,8.13,8.14). Here the sum is taken over all
the possible quantum numbers (n′

1, n
′
2, n

′, k′, n1, n2, n, k). We will not use special
notations for operators in the Fock space since in each case it will be clear whether
the operator in question acts in the space of IR or in the Fock space.

A well-known problem in standard theory is that the quantization proce-
dure does not define the order of the annihilation and creation operators uniquely.
For example, another possible solution is

Ai = ∓
∑

Ai(n
′
1n

′
2n

′k′, n1n2nk)[a(n1n2nk)a(n
′
1n

′
2n

′k′)∗ +

b(n1n2nk)b(n
′
1n

′
2n

′k′)∗]/Norm(n1n2nk) (8.60)
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for anticommutation and commutation relations, respectively. The solutions (8.59)
and (8.60) are different since the energy operators M04 in these expressions differ by
an infinite constant. In standard theory the solution (8.59) is selected by imposing an
additional requirement that all operators should be written in the normal form where
annihilation operators precede creation ones. Then the vacuum has zero energy and
Eq. (8.60) should be rejected. Such a requirement does not follow from the theory.
Ideally there should be a procedure which correctly defines the order of operators
from first principles.

In standard theory there also exist neutral particles. In that case there is
no need to have two independent sets of operators (a, a∗) and (b, b∗), and Eq. (8.59)
should be written without the (b, b∗) operators. The problem of neutral particles in
GFQT is discussed in Sec. 8.9.

We now proceed to quantization in the modular case. The results of Sec.
8.2 show that one modular IR corresponds to two standard IRs with the positive and
negative energies, respectively. This indicates to a possibility that one modular IR
describes a particle and its antiparticle simultaneously. However, we don’t know yet
what should be treated as a particle and its antiparticle in the modular case. We have
a description of an object such that (n1n2nk) is the full set of its quantum numbers
which take the values described in the preceding section.

We now assume that a(n1n2nk) in GFQT is the operator describing anni-
hilation of the object with the quantum numbers (n1n2nk) regardless of whether the
numbers are physical or nonphysical. Analogously a(n1n2nk)

∗ describes creation of
the object with the quantum numbers (n1n2nk). If these operators anticommute then
they satisfy Eq. (8.49) while if they commute then they satisfy Eq. (8.50). Then, by
analogy with standard case, the operators

Ai =
∑

Ai(n
′
1n

′
2n

′k′, n1n2nk)a(n
′
1n

′
2n

′k′)∗a(n1n2nk)/Norm(n1n2nk) (8.61)

satisfy the commutation relations (8.9,8.13,8.14). In this expression the sum is taken
over all possible values of the quantum numbers in the modular case.

In the modular case the solution can be taken not only as in Eq. (8.61)
but also as

Ai = ∓
∑

Ai(n
′
1n

′
2n

′k′, n1n2nk)a(n1n2nk)a(n
′
1n

′
2n

′k′)∗/Norm(n1n2nk) (8.62)

for the cases of anticommutators and commutators, respectively. However, as follows
from Eqs. (8.48-8.50), the solutions (8.61) and (8.62) are the same. Therefore in the
modular case there is no need to impose an artificial requirement that all operators
should be written in the normal form.

The problem with the treatment of the (a, a∗) operators follows. When
the values of (n1n2n) are much less than p, the modular IR corresponds to standard
positive energy IR and therefore the (a, a∗) operator can be treated as those describing
the particle annihilation and creation, respectively. However, when the AdS energy
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is negative, the operators a(n1n2nk) and a(n1n2nk)
∗ become unphysical since they

describe annihilation and creation, respectively, in the unphysical region of negative
energies.

Let us recall that at any fixed values of n and k, the quantities n1 and n2

can take only the values described in Eq. (8.28) and the eigenvalues of the operators
h1 and h2 are given by Q1(n, k) + 2n1 and Q2(n, k) + 2n2, respectively. As follows
from Eq. (8.7) and the results of Sec. 8.2, the first IR of the sp(2) algebra has
the dimension N1(n, k) + 1 and the second IR has the dimension N2(n, k) + 1. If
n1 = N1(n, k) then it follows from Eq. (8.28) that the first eigenvalue is equal to
−Q1(n, k) in Fp, and if n2 = N2(n, k) then the second eigenvalue is equal to −Q2(n, k)
in Fp. We use ñ1 to denote N1(n, k) − n1 and ñ2 to denote N2(n, k) − n2. Then it
follows from Eq. (8.28) that e(ñ1ñ2nk) is the eigenvector of the operator h1 with
the eigenvalue −(Q1(n, k) + 2n1) and the eigenvector of the operator h2 with the
eigenvalue −(Q2(n, k) + 2n2).

As noted above, standard theory involves the idea that creation of the
antiparticle with positive energy can be treated as annihilation of the corresponding
particle with negative energy and annihilation of the antiparticle with positive energy
can be treated as creation of the corresponding particle with negative energy. In
GFQT we also can define the operators b(n1n2nk) and b(n1n2nk)

∗ in such a way that
they will replace the (a, a∗) operators if the quantum numbers are unphysical. In
addition, if the values of (n1n2n) are much less than p, the operators b(n1n2nk) and
b(n1n2nk)

∗ should be interpreted as physical operators describing annihilation and
creation of antiparticles, respectively.

In GFQT the (b, b∗) operators cannot be independent of the (a, a∗) oper-
ators since the latter are defined for all possible quantum numbers. Therefore the
(b, b∗) operators should be expressed in terms of the (a, a∗) ones. We can implement
the above idea if the operator b(n1n2nk) is defined in such a way that it is proportional
to a(ñ1, ñ2, n, k)

∗ and hence b(n1n2nk)
∗ is proportional to a(ñ1, ñ2, n, k).

Since Eq. (8.31) should now be considered in Fp, it follows from the well-
known Wilson theorem (p− 1)! = −1 in Fp (see e.g. [98]) that

F (n1n2nk)F (ñ1ñ2nk) = (−1)s (8.63)

We now define the b-operators as

a(n1n2nk)
∗ = η(n1n2nk)b(ñ1ñ2nk)/F (ñ1ñ2nk) (8.64)

where η(n1n2nk) is some function. As a consequence,

a(n1n2nk) = η̄(n1n2nk)b(ñ1ñ2nk)
∗/F (ñ1ñ2nk)

b(n1n2nk)
∗ = a(ñ1ñ2nk)F (n1n2nk)/η̄(ñ1ñ2nk)

b(n1n2nk) = a(ñ1ñ2nk)
∗F (n1n2nk)/η(ñ1ñ2nk) (8.65)

Equations (8.64) and (8.65) define a relation between the sets (a, a∗) and
(b, b∗). Although our motivation was to replace the (a, a∗) operators by the (b, b∗)
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ones only for the nonphysical values of the quantum numbers, we can consider this
definition for all the values of (n1n2nk). The transformation described by Eqs. (8.64)
and (8.65) can also be treated as a special case of the Bogolubov transformation
discussed in a wide literature on many-body theory (see e.g., Chap. 10 in Reference
[88] and references therein).

We have not discussed yet what exact definition of the physical and non-
physical quantum numbers should be. This problem will be discussed in Sec. 8.6.
However, one might accept

Physical-nonphysical states assumption: Each set of quantum numbers
(n1n2nk) is either physical or unphysical. If it is physical then the set (ñ1ñ2nk)
is unphysical and vice versa.

With this assumption we can conclude from Eqs. (8.64) and (8.65) that
if some operator a is physical then the corresponding operator b∗ is unphysical and
vice versa while if some operator a∗ is physical then the corresponding operator b is
unphysical and vice versa.

We have no ground to think that the set of the (a, a∗) operators is more
fundamental than the set of the (b, b∗) operators and vice versa. Therefore the ques-
tion arises whether the (b, b∗) operators satisfy the relations (8.50) or (8.56) in the
case of anticommutation or commutation relations, respectively and whether the op-
erators Ai (see Eq. (8.61)) have the same form in terms of the (a, a∗) and (b, b∗)
operators. In other words, if the (a, a∗) operators in Eq. (8.61) are expressed in
terms of the (b, b∗) ones then the problem arises whether

Ai =
∑

Ai(n
′
1n

′
2n

′k′, n1n2nk)b(n
′
1n

′
2n

′k′)∗b(n1n2nk)/Norm(n1n2nk) (8.66)

is valid. It is natural to accept the following
Definition of the AB symmetry: If the (b, b∗) operators satisfy Eq. (8.56)

in the case of anticommutators or Eq. (8.57) in the case of commutators and all the
representation operators (8.61) in terms of the (b, b∗) operators have the form (8.66)
then it is said that the AB symmetry is satisfied.

To prove the AB symmetry we will first investigate whether Eqs. (8.56)
and (8.57) follow from Eqs. (8.49) and (8.50), respectively. As follows from Eqs.
(8.63-8.65), Eq. (8.56) follows from Eq. (8.49) if

η(n1n2nk)η̄(n1, n2, nk) = (−1)s (8.67)

while Eq. (8.57) follows from Eq. (8.50) if

η(n1n2nk)η̄(n1, n2, nk) = (−1)s+1 (8.68)

We now represent η(n1n2nk) in the form

η(n1n2nk) = αf(n1n2nk) (8.69)
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where f(n1n2nk) should satisfy the condition

f(n1n2nk)f̄(n1, n2, nk) = 1 (8.70)

Then α should be such that
αᾱ = ±(−1)s (8.71)

where the plus sign refers to anticommutators and the minus sign to commutators,
respectively. If the normal spin-statistics connection is valid, i.e. we have anticom-
mutators for odd values of s and commutators for even ones then the r.h.s. of Eq.
(8.71) equals -1 while in the opposite case it equals 1. In Sec. 8.9, Eq. (8.71) is
discussed in detail and for now we assume that solutions of this relation exist.

A direct calculation using the explicit expressions (8.42-8.47) for the ma-
trix elements shows that if η(n1n2nk) is given by Eq. (8.69) and

f(n1n2nk) = (−1)n1+n2+n (8.72)

then the AB symmetry is valid regardless of whether the normal spin-statistics con-
nection is valid or not.

8.6 Physical and nonphysical states

The operator a(n1n2nk) can be the physical annihilation operator only if it annihilates
the vacuum vector Φ0. Then if the operators a(n1n2nk) and a(n1n2nk)

∗ satisfy the
relations (8.49) or (8.50), the vector a(n1n2nk)

∗Φ0 has the meaning of the one-particle
state. The same can be said about the operators b(n1n2nk) and b(n1n2nk)

∗. For these
reasons in standard theory it is required that the vacuum vector should satisfy the
conditions (8.58). Then the elements

Φ+(n1n2nk) = a(n1n2nk)
∗Φ0, Φ−(n1n2nk) = b(n1n2nk)

∗Φ0 (8.73)

have the meaning of one-particle states for particles and antiparticles, respectively.
However, if one requires the condition (8.58) in GFQT, then it is obvious

from Eqs. (8.64) and (8.65) that the elements defined by Eq. (8.73) are null vectors.
Note that in standard approach the AdS energy is always greater than mAdS while
in GFQT the AdS energy is not positive definite. We can therefore try to modify
Eq. (8.58) as follows. Suppose that Physical-nonphysical states assumption (see Sec.
8.5) can be substantiated. Then we can break the set of elements (n1n2nk) into two
nonintersecting parts with the same number of elements, S+ and S−, such that if
(n1n2nk) ∈ S+ then (ñ1ñ2nk) ∈ S− and vice versa. Then, instead of the condition
(8.58) we require

a(n1n2nk)Φ0 = b(n1n2nk)Φ0 = 0 ∀ (n1, n2, n, k) ∈ S+ (8.74)
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In that case the elements defined by Eq. (8.73) will indeed have the meaning of
one-particle states for (n1n2nk) ∈ S+.

It is clear that if we wish to work with the full set of elements (n1n2nk)
then, as follows from Eqs. (8.64) and (8.65), the operators (b, b∗) are redundant and
we can work only with the operators (a, a∗). However, if one works with the both
sets, (a, a∗) and (b, b∗) then such operators can be independent of each other only for
a half of the elements (n1n2nk).

Regardless of how the sets S+ and S− are defined, the Physical-nonphysical
states assumption cannot be consistent if there exist quantum numbers (n1n2nk) such
that n1 = ñ1 and n2 = ñ2. Indeed, in that case the sets (n1n2nk) and (ñ1ñ2nk) are
the same what contradicts the assumption that each set (n1n2nk) belongs either to
S+ or S−.

Since the replacements n1 → ñ1 and n2 → ñ2 change the signs of the
eigenvalues of the h1 and h2 operators (see Sec. 8.5), the condition that that n1 =
ñ1 and n2 = ñ2 should be valid simultaneously implies that the eigenvalues of the
operators h1 and h2 should be equal to zero simultaneously. Recall that (see Sec.
8.1) if one considers IR of the sp(2) algebra and treats the eigenvalues of the diagonal
operator h not as elements of Fp but as integers, then they take the values of q0, q0 +
2, ...2p − q0 − 2, 2p− q0. Therefore the eigenvalue is equal to zero in Fp only if it is
equal to p when considered as an integer. Since mAdS = q1 + q2 and the AdS energy
is E = h1 + h2, the above situation can take place only if the energy considered as
an integer is equal to 2p. It now follows from Eq. (8.15) that the energy can be
equal to 2p only if mAdS is even. Since s = q1 − q2, we conclude that mAdS can be
even if and only if s is even. In that case we will necessarily have quantum numbers
(n1n2nk) such that the sets (n1n2nk) and (ñ1ñ2nk) are the same and therefore the
Physical-nonphysical states assumption is not valid. On the other hand, if s is odd
(i.e. half-integer in the usual units) then there are no quantum numbers (n1n2nk)
such that the sets (n1n2nk) and (ñ1ñ2nk) are the same.

Our conclusion is as follows: If the separation of states should be valid for
any quantum numbers then the spin s should be necessarily odd. In other words, if the
notion of particles and antiparticles is absolute then elementary particles can have
only a half-integer spin in the usual units.

In view of the above observations it seems natural to implement the
Physical-nonphysical states assumption as follows. If the quantum numbers (n1n2nk)
are such that mAdS + 2(n1 + n2 + n) < 2p then the corresponding state is physical
and belongs to S+, otherwise the state is unphysical and belongs to S−. However, one
cannot guarantee that there are no other reasonable implementations.

8.7 AdS symmetry breaking

In view of the above discussion, our next goal is the following. We should take the
operators in the form (8.61) and replace the (a, a∗) operators by the (b, b∗) ones only

189



if (n1n2nk) ∈ S−. Then a question arises whether we will obtain the standard result
(8.59) where a sum is taken only over values of (n1n2nk) ∈ S+. The fact that we
have proved the AB symmetry does not guarantee that this is the case since the AB
symmetry implies that the replacement has been made for all the quantum numbers,
not only half of them. However, the derivation of the AB symmetry shows that for
the contribution of such quantum numbers that (n1n2nk) ∈ S+ and (n′

1n
′
2n

′k′) ∈ S+

we will indeed have the result (8.59) up to some constants. This derivation also
guarantees that if we consider the action of the operators on states described by
physical quantum numbers and the result of the action also is a state described by
physical quantum numbers then on such states the correct commutation relations
are satisfied. A problem arises whether they will be satisfied for transitions between
physical and nonphysical quantum numbers.

Let A(a
′

1) be the secondly quantized operator corresponding to a
′

1 and
A(a”1) be the secondly quantized operator corresponding to a”1. Consider the action
of these operators on the state Φ = a(n1n2nk)

∗Φ0 such that (n1n2nk) ∈ S+ but
(n1 + 1, n2nk) ∈ S−. As follows from Eqs. (8.13) and (8.42), we should have

[A(a
′

1), A(a
”
1)]Φ = [Q1(n, k) + 2n1]Φ (8.75)

As follows from Eqs. (8.43) and (8.64), A(a”1)Φ = a(n1 + 1, n2nk)
∗Φ0. Since (n1 +

1, n2nk) ∈ S−, we should replace a(n1 + 1, n2nk)
∗ by an operator proportional to

b(ñ1−1, ñ2nk) and then, as follows from Eq. (8.58), A(a”1)Φ = 0. Now, by using Eqs.
(8.43) and (8.64), we get

[A(a
′

1), A(a
”
1)]Φ = n1[Q1(n, k) + n1 − 1]Φ (8.76)

Equations (8.75) and (8.76) are incompatible with each other and we conclude that our
procedure breaks the AdS symmetry for transitions between physical and nonphysical
states.

We conclude that if, by analogy with standard theory, one wishes to in-
terpret modular IRs of the dS algebra in terms of particles and antiparticles then the
commutation relations of the dS algebra will be broken. This does not mean that
such a possibility contradicts the existing knowledge since they will be broken only
at extremely high dS energies of the order of p. At the same time, a possible point
of view is that since we started from the symmetry algebra and treat the conditions
(4.1) as a must, we should not sacrifice symmetry because we don’t know other ways
of interpreting IRs. So we have the following dilemma: Either the notions of particles
and antiparticles are always valid and the commutation relations (4.1) are broken at
very large AdS energies of the order of p or the commutation relations (4.1) are not
broken and the notion of a particle and its antiparticle is only approximate. In the
latter case such additive quantum numbers as the electric charge and the baryon and
lepton quantum numbers can be only approximately conserved.
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8.8 Dirac vacuum energy problem

The Dirac vacuum energy problem is discussed in practically every textbook on QFT.
In its simplified form it can be described as follows. Suppose that the energy spectrum
is discrete and n is the quantum number enumerating the states. Let E(n) be the
energy in the state n. Consider the electron-positron field. As a result of quantization
one gets for the energy operator

E =
∑

n

E(n)[a(n)∗a(n)− b(n)b(n)∗] (8.77)

where a(n) is the operator of electron annihilation in the state n, a(n)∗ is the operator
of electron creation in the state n, b(n) is the operator of positron annihilation in the
state n and b(n)∗ is the operator of positron creation in the state n. It follows
from this expression that only anticommutation relations are possible since otherwise
the energy of positrons will be negative. However, if anticommutation relations are
assumed, it follows from Eq. (8.77) that

E = {
∑

n

E(n)[a(n)∗a(n) + b(n)∗b(n)]}+ E0 (8.78)

where E0 is some infinite negative constant. Its presence was a motivation for de-
veloping Dirac’s hole theory. In the modern approach it is usually required that the
vacuum energy should be zero. This can be obtained by assuming that all operators
should be written in the normal form. However, this requirement is not quite consis-
tent since the result of quantization is Eq. (8.77) where the positron operators are
not written in that form (see also the discussion in Sec. 8.5).

Consider now the AdS energy operatorM04 = h1+h2 in GFQT. As follows
from Eqs. (8.42) and (8.62)

M04 =
∑

[mAdS + 2(n1 + n2 + n)]a(n1n2nk)
∗a(n1n2nk)/Norm(n1n2nk) (8.79)

where the sum is taken over all possible quantum numbers (n1n2nk). As noted in the
preceding section, the two most well-known ways of solving the problem of negative
energies are either in the spirit of Dirac’s hole theory or by using the notion of
antiparticles.

Consider first the second possibility. Then as follows from Eqs. (8.63-8.65)
and (8.69-8.71)

M04 = {
∑

S+
[m+ 2(n1 + n2 + n)][a(n1n2nk)

∗a(n1n2nk) +

b(n1n2nk)
∗b(n1n2nk)]/Norm(n1n2nk)}+ Evac (8.80)

where the vacuum energy is given by

Evac = ∓
∑

S+

[mAdS + 2(n1 + n2 + n)] (8.81)
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in the cases when the (b, b∗) operators anticommute and commute, respectively. For
definiteness, we consider the case when the operators anticommute and therefore the
sum in the r.h.s. of Eq. (8.81) is taken with the minus sign.

In the approach similar to Dirac’s hole theory one can define a new vacuum
in GFQT by analogy with Eq. (8.54):

Φvac =
∏

S−

a(n1n2nk,−1)∗Φ0 (8.82)

where the product is taken over all the quantum numbers belonging to S−. Then, as
follows from the definition of the sets S+ and S−, this vacuum will be the eigenstate
of the operator M04 with the the same eigenvalue Evac as that given by Eq. (8.81)
with the minus side in the r.h.s.

As noted in the dilemma at the end of the preceding section, in the ap-
proach involving the b operators the commutation relations (4.1) are necessarily bro-
ken at very large values of the AdS energy while in the approach similar to Dirac’s
hole theory there is no need to introduce the b operators. In modern QFT the ap-
proach with the b operators is treated as preferable since the condition Evac = 0 can
be satisfied by imposing the (artificial) requirement that all the operators should be
written in the normal form while the in the approach similar to Dirac’s hole theory
Evac is necessarily an infinite negative constant. However, in GFQT the operators a
and b are not independent and hence one cannot simply postulate that Evac = 0.

Consider first the sum in Eq. (8.81) when the values of n and k are fixed.
It is convenient to distinguish the cases s > 2k and s < 2k. If s > 2k then, as follows
from Eq. (8.28), the maximum value of n1 is such that mAdS + 2(n + n1) is always
less than 2p. For this reason all the values of n1 contribute to the sum, which can be
written as

S1(n, k) = −
∑p−q1−n+k

n1=0 [(mAdS + 2n+ 2n1) +

(mAdS + 2n+ 2n1 + 2) + ... + (2p− 1)] (8.83)

A simple calculation shows that the result can be represented as

S1(n, k) =

p−1
∑

n1=1

n2
1 −

n+(mAdS−3)/2
∑

n1=1

n2
1 −

(s−1)/2−k
∑

n1=1

n2
1 (8.84)

where the last sum should be taken into account only if (s− 1)/2− k ≥ 1.
The first sum in this expression equals (p − 1)p(2p − 1)/6 and, since we

assume that p 6= 2 and p 6= 3, this quantity is zero in Fp. As a result, S1(n, k) is
represented as a sum of two terms such that the first one depends only on n and
the second — only on k. Note also that the second term is absent if s = 1, i.e. for
particles with the spin 1/2 in the usual units.
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Analogously, if s < 2k the result is

S2(n, k) = −
n+(mAdS−3)/2

∑

n2=1

n2
2 −

k−(s+1)/2
∑

n2=1

n2
2 (8.85)

where the second term should be taken into account only if k − (s+ 1)/2 ≥ 1.
We now should calculate the sum

S(n) =

(s−1)/2
∑

k=0

S1(n, k) +
s

∑

k=(s+1)/2

S2(n, k) (8.86)

and the result is

S(n) = −(s + 1)(n+ mAdS−1
2

)[2(n+ mAdS−1
2

)2 −
3(n+ mAdS−1

2
) + 1]/6− (s− 1)(s+ 1)2(s+ 3)/96 (8.87)

Since the value of n is in the range [0, nmax], the final result is

Evac =
nmax
∑

n=0

S(n) = (mAdS − 3)(s− 1)(s+ 1)2(s+ 3)/96 (8.88)

since in the massive case nmax = p+ 2−mAdS.
Our final conclusion in this section is that if s is odd and the separation of

states into physical and nonphysical ones is accomplished as in Sec. 8.6 then Evac = 0
only if s = 1 (i.e. s = 1/2 in the usual units). This result shows that since the rules
of arithmetic in Galois fields are different from that for real numbers, it is possible
that quantities which are infinite in standard theory (e.g. the vacuum energy) will
be zero in GFQT.

8.9 Neutral particles and spin-statistics theorem

In this section we will discuss the relation between the (a, a∗) and (b, b∗) operators
only for all quantum numbers (i.e. in the spirit of the AB-symmetry) and therefore
the results are valid regardless of whether the separation of states into S+ and S− can
be justified or not (see the discussion in Sec. 8.7). In other words, we treat the set of
the (b, b∗) operators not necessarily as the one related to antiparticles but simply as a
set obtained from the (a, a∗) operators by the transformation defined by Eqs. (8.64)
and (8.65).

The nonexistence of neutral elementary particles in GFQT is one of the
most striking differences between GFQT and standard theory. One could give the
following definition of neutral particle:

• i) it is a particle coinciding with its antiparticle
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• ii) it is a particle which does not coincide with its antiparticle but they have
the same properties

In standard theory only i) is meaningful since neutral particles are described by real
(not complex) fields and this condition is required by Hermiticity. One might think
that the definition ii) is only academic since if a particle and its antiparticle have
the same properties then they are indistinguishable and can be treated as the same.
However, the cases i) and ii) are essentially different from the operator point of view.
In the case i) only the (a, a∗) operators are sufficient for describing the operators
(8.59) in standard theory. This is the reflection of the fact that the real field has
the number of degrees of freedom twice as less as the complex field. On the other
hand, in the case ii) both (a, a∗) and (b, b∗) operators are required, i.e. in standard
theory such a situation is described by a complex field. Nevertheless, the case ii)
seems to be rather odd: it implies that there exists a quantum number distinguishing
a particle from its antiparticle but this number is not manifested experimentally. We
now consider whether the conditions i) or ii) can be implemented in GFQT.

Since each operator a is proportional to some operator b∗ and vice versa
(see Eqs. (8.64) and (8.65)), it is clear that if the particles described by the operators
(a, a∗) have a nonzero charge then the particles described by the operators (b, b∗)
have the opposite charge and the number of operators cannot be reduced. However,
if all possible charges are zero, one could try to implement i) by requiring that each
b(n1n2nk) should be proportional to a(n1n2nk) and then a(n1n2nk) will be propor-
tional to a(ñ1, ñ2, nk)

∗. In this case the operators (b, b∗) will not be needed at all.
Suppose, for example, that the operators (a, a∗) satisfy the commutation

relations (8.50). In that case the operators a(n1n2nk) and a(n′
1n

′
2n

′k′) should com-
mute if the sets (n1n2nk) and (n′

1n
′
2n

′k′) are not the same. In particular, one should
have [a(n1n2nk), a(ñ1ñ2nk)] = 0 if either n1 6= ñ1 or n2 6= ñ2. On the other hand, if
a(ñ1ñ2nk) is proportional to a(n1n2nk)

∗, it follows from Eq. (8.50) that the commu-
tator cannot be zero. Analogously one can consider the case of anticommutators.

The fact that the number of operators cannot be reduced is also clear from
the observation that the (a, a∗) or (b, b∗) operators describe an irreducible representa-
tion in which the number of states (by definition) cannot be reduced. Our conclusion
is that in GFQT the definition of neutral particle according to i) is fully unacceptable.

Consider now whether it is possible to implement the definition ii) in
GFQT. Recall that we started from the operators (a, a∗) and defined the operators
(b, b∗) by means of Eq. (8.64). Then the latter satisfy the same commutation or
anticommutation relations as the former and the AB symmetry is valid. Does it
mean that the particles described by the operators (b, b∗) are the same as the ones
described by the operators (a, a∗)? If one starts from the operators (b, b∗) then, by
analogy with Eq. (8.64), the operators (a, a∗) can be defined as

b(n1n2nk)
∗ = η′(n1n2nk)a(ñ1ñ2nk)/F (ñ1ñ2nk) (8.89)
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where η′(n1n2nk) is some function. By analogy with the consideration in Sec. 8.5
one can show that

η′(n1n2nk) = β(−1)n1+n2+n, ββ̄ = ∓1 (8.90)

where the minus sign refers to the normal spin-statistics connection and the plus to
the broken one.

As follows from Eqs. (8.64), (8.67-8.70), (8.89), (8.90) and the definition
of the quantities ñ1 and ñ2 in Sec. 8.5, the relation between the quantities α and β
is αβ̄ = 1. Therefore, as follows from Eq. (8.90), there exist only two possibilities,
β = ∓α, depending on whether the normal spin-statistics connection is valid or not.
We conclude that the broken spin-statistics connection implies that αᾱ = ββ̄ = 1
and β = α while the normal spin-statistics connection implies that αᾱ = ββ̄ = −1
and β = −α. Since in the first case there exist solutions such that α = β (e.g.
α = β = 1), the particle and its antiparticle can be treated as neutral in the sense
of the definition ii). Since such a situation is clearly unphysical, one might treat the
Pauli spin-statistics theorem [11] as a requirement excluding neutral particles in the
sense ii).

We now consider another possible treatment of the spin-statistics theorem,
which seems to be much more interesting. In the case of the normal spin-statistics
connection α satisfies Eq. (7.6). Such a relation is obviously impossible in standard
theory.

As noted in Chap. 6, −1 is a quadratic residue in Fp if p = 1 (mod 4)
and a quadratic non-residue in Fp if p = 3 (mod 4). For example, −1 is a quadratic
residue in F5 since 22 = −1 (mod 5) but in F7 there is no element a such that
a2 = −1 (mod 7). We conclude that if p = 1 (mod 4) then Eq. (7.6) has solutions in
Fp and in that case the theory can be constructed without any extension of Fp.

Consider now the case p = 3 (mod 4). Then Eq. (7.6) has no solutions in
Fp and it is necessary to consider this equation in an extension of Fp (i.e., there is
no ”real” version of GFQT). The minimum extension is obviously Fp2 and therefore
the problem arises whether Eq. (7.6) has solutions in Fp2. As shown in Sec. 7.1, this
equation does have solutions.

Our conclusion is that if p = 3 (mod 4) then the spin-statistics theorem
implies that the field Fp should necessarily be extended and the minimum possible
extension is Fp2. Therefore the spin-statistics theorem can be treated as a requirement
that GFQT should be based on Fp2 and standard theory should be based on complex
numbers.

Let us now discuss a different approach to the AB symmetry. A desire to
have operators which can be interpreted as those relating separately to particles and
antiparticles is natural in view of our experience in standard approach. However, one
might think that in the spirit of GFQT there is no need to have separate operators for
particles and antiparticles since they are different states of the same object. We can
therefore reformulate the AB symmetry in terms of only (a, a∗) operators as follows.
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Instead of Eqs. (8.64) and (8.65), we consider a transformation defined as

a(n1n2nk)
∗ → η(n1n2nk)a(ñ1ñ2nk)/F (ñ1ñ2nk)

a(n1n2nk) → η̄(n1n2nk)a(ñ1ñ2nk)
∗/F (ñ1ñ2nk) (8.91)

Then the AB symmetry can be formulated as a requirement that physical results
should be invariant under this transformation.

Let us now apply the AB transformation twice. Then we get

a(n1n2nk)
∗ → ∓a(n1n2nk)

∗, a(n1n2nk) → ∓a(n1n2nk) (8.92)

for the normal and broken spin-statistic connections, respectively. Therefore, as a
consequence of the spin-statistics theorem, any particle (with the integer or half-
integer spin) has the AB2 parity equal to −1. Therefore in GFQT any interaction
can involve only an even number of creation and annihilation operators. In particular,
this is additional demonstration of the fact that in GFQT the existence of neutral
elementary particles is incompatible with the spin-statistics theorem.

8.10 Modular IRs of the osp(1,4) superalgebra

If one accepts supersymmetry then the results on modular IRs of the so(2,3) algebra
can be generalized by considering modular IRs of the osp(1,4) superalgebra. Rep-
resentations of the osp(1,4) superalgebra have several interesting distinctions from
representations of the Poincare superalgebra. For this reason we first briefly mention
some known facts about the latter representations (see e.g Ref. [107] for details).

Representations of the Poincare superalgebra are described by 14 oper-
ators. Ten of them are the representation operators of the Poincare algebra—four
momentum operators and six representation operators of the Lorentz algebra, which
satisfy the commutation relations (1.3). In addition, there are four fermionic op-
erators. The anticommutators of the fermionic operators are linear combinations
of the momentum operators, and the commutators of the fermionic operators with
the Lorentz algebra operators are linear combinations of the fermionic operators. In
addition, the fermionic operators commute with the momentum operators.

From the formal point of view, representations of the osp(1,4) superalge-
bra are also described by 14 operators — ten representation operators of the so(2,3)
algebra and four fermionic operators. There are three types of relations: the operators
of the so(2,3) algebra commute with each other as usual (see Sec. 8.2), anticommu-
tators of the fermionic operators are linear combinations of the so(2,3) operators and
commutators of the latter with the fermionic operators are their linear combinations.
However, in fact representations of the osp(1,4) superalgebra can be described exclu-
sively in terms of the fermionic operators. The matter is as follows. In the general
case the anticommutators of four operators form ten independent linear combinations.
Therefore, ten bosonic operators can be expressed in terms of fermionic ones. This is
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not the case for the Poincare superalgebra since the Poincare algebra operators are
obtained from the so(2,3) one by contraction. One can say that the representations
of the osp(1,4) superalgebra is an implementation of the idea that supersymmetry
is the extraction of the square root from the usual symmetry (by analogy with the
treatment of the Dirac equation as a square root from the Klein-Gordon one).

We use (d′1, d
′
2, d1”, d2”) to denote the fermionic operators of the osp(1,4)

superalgebra. They should satisfy the following relations. If (A,B,C) are any
fermionic operators, [...,...] is used to denote a commutator and {..., ...} to denote an
anticommutator then

[A, {B,C}] = F (A,B)C + F (A,C)B (8.93)

where the form F (A,B) is skew symmetric, F (d′j, dj”) = 1 (j = 1, 2) and the other
independent values of F (A,B) are equal to zero. The fact that the representation
of the osp(1,4) superalgebra is fully defined by Eq. (8.93) and the properties of the
form F (., .), shows that osp(1,4) is a special case of the superalgebra.

We can now define the so(2,3) operators as follows:

b′ = {d′1, d′2}, b” = {d1”, d2”}, L+ = {d′2, d1”}, L− = {d′1, d2”}
a′j = (d′j)

2, aj” = (dj”)
2, hj = {d′j, dj”} (j = 1, 2) (8.94)

Then by using Eq. (8.93) and the properties of the form F (., .), one can show
by direct calculations that so defined operators satisfy the commutation relations
(8.9,8.13,8.14). This result can be treated as a fact that the operators of the so(2,3)
algebra are not fundamental, only the fermionic operators are.

By analogy with the construction of IRs of the osp(1,4) superalgebra in
standard theory [108], we require the existence of the generating vector e0 satisfying
the conditions :

d′je0 = d′2d1”e0 = 0, d′jdj”e0 = qje0 (j = 1, 2) (8.95)

These conditions are written exclusively in terms of the d operators. As follows from
Eq. (8.94), they can be rewritten as (compare with Eq. (8.19))

d′je0 = L+e0 = 0, hje0 = qje0 (j = 1, 2) (8.96)

The full representation space can be obtained by successively acting by the fermionic
operators on e0 and taking all possible linear combinations of such vectors.

We use E to denote an arbitrary linear combination of the vectors
(e0, d1”e0, d2”e0, d2”d1”e0). Our next goal is to prove a statement analogous to that
in Ref. [108]:

Statement 1: Any vector from the representation space can be represented
as a linear combination of the elements O1O2...OnE where n = 0, 1, ... and Oi is an
operator of the so(2,3) algebra.
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The first step is to prove a simple
Lemma: If D is any fermionic operator then DE is a linear combination

of elements E and OE where O is an operator of the so(2,3) algebra.
The proof is by a straightforward check using Eqs. (8.93-8.96). For exam-

ple,
d1”(d2”d1”e0) = {d1”, d2”}d1”e0 − d2”a1”e0 = b”d1”e0 − a1”d2”e0

To prove Statement 1 we define the height of a linear combination of the
elements O1O2...OnE as the maximum sum of powers of the fermionic operator in
this element. For example, since each operator of the so(2,3) algebra is composed
of two fermionic operator, the height of the element O1O2...OnE equals 2n + 2 if E
contains d2”d1”e0, equals 2n + 1 if E does not contain d2”d1”e0 but contains either
d1”e0 or d2”e0 and equals 2n if E contains only e0.

We can now prove Statement 1 by induction. The elements with the
heights 0, 1 and 2 obviously have the required form since, as follows from Eq. (8.94),
d1”d2”e0 = b”e0−d2”d1”e0. Let us assume that Statement 1 is correct for all elements
with the heights ≤ N . Every element with the height N + 1 can be represented as
Dx where x is an element with the height N . If x = O1O2...OnE then by using
Eq. (8.93) we can represent Dx as Dx = O1O2...OnDE + y where the height of the
element y is N − 1. As follows from the induction assumption, y has the required
form, and, as follows from Lemma, DE is a linear combination of the elements E and
OE. Therefore Statement 1 is proved.

As follows from Eqs. (8.93) and (8.94),

[d′j, hj ] = d′j, [dj”, hj] = −dj”, [d′j, hl] = [dj”, hl] = 0 (j, l = 1, 2 j 6= l) (8.97)

It follows from these expressions that if x is such that hjx = αjx (j = 1, 2) then d1”x
is the eigenvector of the operators hj with the eigenvalues (α1 + 1, α2), d2”x - with
the eigenvalues (α1, α2 + 1), d′1x - with the eigenvalues (α1 − 1, α2), and d

′
2x - with

the eigenvalues α1, α2 − 1.
By analogy with the case of IRs of the so(2,3) algebra (see Sec. 8.2), we

assume that q1 and q2 are represented by the numbers 0, 1, ...p− 1. We first consider
the case when q2 ≥ 1 and q1 ≥ q2. We again use mAdS to denote q1 + q2 and s to
denote q1 − q2. We first assume that mAdS 6= 2 and s 6= p − 1. Then Statement
1 obviously remains valid if we now assume that E contains linear combinations of
(e0, e1, e2, e3) where

e1 = d1”e0, e2 = [d2”−
1

s+ 1
L−d1”]e0

e3 = (d2”d1”e0 −
q1 − 1

mAdS − 2
b” +

1

mAdS − 2
a1”L−)e0 (8.98)

As follows from Eqs. (8.93-8.97), e0 satisfies Eq. (8.19) and e1 satisfies
the same condition with q1 replaced by q1 + 1. We see that the representation of the
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osp(1,4) superalgebra defined by Eq. (8.96) necessarily contains at least two IRs of
the so(2,3) algebra characterized by the values of the mass and spin (mAdS, s) and
(mAdS + 1, s+ 1) and the generating vectors e0 and e1, respectively.

As follows from Eqs. (8.93-8.97), the vectors e2 and e3 satisfy the condi-
tions

h1e2 = q1e2, h2e2 = (q2 + 1)e2, h1e3 = (q1 + 1)e3, h2e3 = (q2 + 1)e3

a′1ej = a′2ej = b′ej = L+ej = 0 (j = 2, 3) (8.99)

and therefore (see Eq. (8.19)) they will be generating vectors of IRs of the so(2,3)
algebra if they are not equal to zero.

If s = 0 then, as follows from Eqs. (8.93,8.94,8.98), e2 = 0. In the general
case, as follows from these expressions,

d′1e2 =
1− q2
s+ 1

L−e0, d′2e2 =
s(q2 − 1)

s+ 1
e0 (8.100)

Therefore e2 is also a null vector if e0 belongs to the massless IR (with q2 = 1)
while e2 6= 0 if s 6= 0 and q2 6= 1. As follows from direct calculation using Eqs.
(8.93,8.94,8.98)

d′1e3 =
mAdS − 1

mAdS − 2
[L−d1”− (2q2 + s− 1)d2”]e0, d′2e3 = (q2 −

q1 − 1

mAdS − 2
)e0 (8.101)

If q2 = 1 then d′1e3 is proportional to e2 (see Eq. (8.98)) and hence d′1e3 = 0. In this
case q1 − 1 = mAdS − 2 and hence d′2e3 = 0. Therefore we conclude that e3 = 0. It is
also clear from Eq. (8.101) that e3 = 0 if mAdS = 1. In all other cases e3 6= 0.

Consider now the case mAdS = 2. If s = 0 then q1 = q2 = 1. The condition
e2 = 0 is still valid for the same reasons as above but if e3 is defined as [d2”, d1”]e0/2
then e3 is the minimal sp(2)×sp(2) vector with h1 = h2 = 2 and, as a result of direct
calculations using Eqs. (8.93,8.94,8.98)

d′1e3 =
1

2
(1− 2q1)d2”e0, d′2e3 =

1

2
(2q2 − 1)e0 (8.102)

Hence in this case e3 6= 0 and the IR of the osp(1,4) superalgebra corresponding to
(q1, q2) = (1, 1) contains IRs of the so(2,3) algebra corresponding to (1, 1), (2, 1) and
(2, 2). Therefore this IR of the osp(1,4) superalgebra should be treated as massive
rather than massless.

At this point the condition that q1 and q2 are taken modulo p has not been
explicitly used and, as already mentioned, our considerations are similar to those in
Ref. [108]. Therefore when q1 ≥ q2, modular IRs of the osp(1,4) superalgebra can be
characterized in the same way as conventional IRs [108, 109]:

• If q2 > 1 and s 6= 0 (massive IRs), the osp(1,4) supermultiplets contain four
IRs of the so(2,3) algebra characterized by the values of the mass and spin
(m, s), (m+ 1, s+ 1), (m+ 1, s− 1), (m+ 2, s).
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• If q2 ≥ 1 and s = 0 (collapsed massive IRs), the osp(1,4) supermultiplets contain
three IRs of the so(2,3) algebra characterized by the values of the mass and spin
(m, s), (m+ 1, s+ 1), (m+ 2, s).

• If q2 = 1 and s = 1, 2, ...p − 2 (massless IRs) the osp(1,4) supermultiplets
contains two IRs of the so(2,3) algebra characterized by the values of the mass
and spin (2 + s, s), (3 + s, s+ 1).

• Dirac supermultiplet containing two Dirac singletons (see Sec. 8.3).

The first three cases have well-known analogs of IRs of the super-Poincare
algebra (see e.g., Ref. [107]) while there is no super-Poincare analog of the Dirac
supermultiplet.

Since the space of IR of the superalgebra osp(1,4) is a direct sum of spaces
of IRs of the so(2,3) algebra, for modular IRs of the osp(1,4) superalgebra one can
prove results analogous to those discussed in the preceding sections. In particular,
one modular IR of the osp(1,4) algebra is a modular analog of both standard IRs
of the osp(1,4) superalgebra with positive and negative energies. This implies that
one modular IR of the osp(1,4) superalgebra contains both, a superparticle and its
anti-superparticle.

At the same time, as noted in Sec. 8.2, there are special cases which have
no analogs in standard theory. The above results can be applied to those cases without
any changes. For example, the special singleton characterized by (mAdS = 0, s), s 6= 0
generates a special supersingleton containing IRs of the so(2,3) algebra with (mAdS =
0, s), (mAdS = 1, s+1), (mAdS = 1, s−1) and (mAdS = 2, s). In particular, when s = 1
then two of those IRs are the Di and Rac singletons. All other special singletons also
generate supersingletons containing more than two IRs of the so(2,3) algebra. Hence
the Dirac supersingleton can be treated as a more fundamental object than other
special supersingletons. For this reason, among supersingletons we will consider only
the case of the Dirac supersingleton. Then we will see below that the decomposition
of the tensor product of the Dirac supersingletons can contain only special IRs of
the osp(1,4) superalgebra with q1 = 0. In this case we have that d′1d

”
1e0 = q1e0 = 0,

d′2d
”
1e0 = L+e0 = 0 and hence d”1e0 = 0. Since L+d

”
2e0 = d”1e0 = 0 and d′2d

”
2e0 = q2e0,

the vector d”2e0 is not zero and if e0 is the generating vector for the IR of the so(2,3)
algebra with (q1 = 0, q2) then d

”
2e0 is the generating vector for the IR of the so(2,3)

algebra with (0, q2 + 1). The IR of the osp(1,4) superalgebra does not contain other
IRs of the so(2,3) algebra since d”2d

”
1e0 = 0 and d”1d

”
2e0 = (d”1d

”
2 + d”2d

”
1)e0 = b”e0.

By analogy with Sec. 8.3, we use SDim(s) to denote the dimension of the
IR of the osp(1,4) superalgebra in the massless case with the spin s and SDim(q1, q2)
to denote the dimension of the IR of the osp(1,4) superalgebra characterized by the
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quantities q1 and q2. Then as follows from the above discussion

SDim(0, q2) = Dim(0, q2) +Dim(0, q2 + 1) (q2 = 1, 2, ...p− 1)

SDim(s) = Dim(s) +Dim(s+ 1) (s = 1, 2, ...p− 2)

SDim(1, 1) = Dim(1, 1) +Dim(2, 1) +Dim(2, 2) (8.103)

and Dim(p− 1) = Dim(0, 1).
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Chapter 9

Dirac singletons as the only true
elementary particles

9.1 Why Dirac singletons are indeed remarkable

As already noted, Dirac singletons have been discovered by Dirac in his paper [106]
titled ”A remarkable representation of the 3 + 2 de Sitter group”. In this section we
argue that in GFQT the Dirac singletons are even more remarkable than in standard
theory. As noted in Sec. 8.2, in the theory over a Galois field there also exist
special singleton-like IRs which have no analogs in standard theory. As argued in
Sec. 8.10, from the point of view of supersymmetry they are less fundamental than
Dirac singletons. For this reason we will not consider such IRs and the term singleton
will always mean the Dirac singleton.

Although theory of elementary particles exists for a rather long period of
time, it has been noted in Sec. 3.2 that there is no commonly accepted definition of
elementary particle in this theory. In the preceding chapters we adopted the definition
that a particle is elementary if it is described by an IR of the symmetry algebra (in
standard theory this IR is implemented by Hermitian operators while in GFQT it is
a representation over a Galois field).

As shown in Sec. 8.2, each IR of the so(2,3) algebra is characterized by
the quantities (q1, q2). Consider a system of two particles such that the IR describing

particle 1 is defined by the numbers (q
(1)
1 , q

(1)
2 ) and the IR describing particle 2 is

defined by the numbers (q
(2)
1 , q

(2)
2 ). The representation describing such a system is

the tensor product of the corresponding IRs defined as follows. Let {e(1)i } and {e(2)j }
be the sets of basis vectors for the IRs describing particle 1 and 2, respectively. Then
the basis of the tensor product is formed by the elements eij = e

(1)
i × e

(2)
j . Let {O(1)

k }
and {O(2)

l } (k, l = 1, 2, ...10) be the sets of independent representation operators in
the corresponding IRs. Then the set of independent representation operators in the
tensor product is {Ok = O

(1)
k + O

(2)
k }. Here it is assumed that the operator with the
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superscript (j) acts on the elements e
(j)
k in the same way as in the IR j while on the

elements e
(j′)
l where j′ 6= j it acts as the identity operator. For example,

h1
∑

ij

cij(e
(1)
i × e

(2)
j ) =

∑

ij

cij [(h
(1)
1 e

(1)
i )× e

(2)
j + e

(1)
i × (h

(2)
1 e

(2)
j )]

Then the operators {Ok} satisfy the same commutation relations as in Eqs. (8.9),
(8.13) and (8.14).

It is immediately clear from this definition that the tensor product of
IRs characterized by (q

(1)
1 , q

(1)
2 ) and (q

(2)
1 , q

(2)
2 ), respectively, contains at least the IR

characterized by (q1 = q
(1)
1 + q

(2)
1 , q2 = q

(1)
2 + q

(2)
2 ). Indeed, if e

(j)
0 (j = 1, 2) is the

generating vector for IR j then the vector e0 = e
(1)
0 × e

(2)
0 will satisfy Eq. (8.19). In

turn, states of an elementary particle characterized by (q1, q2) can be constructed as

composite states of two elementary particles characterized by (q
(1)
1 , q

(1)
2 ) and (q

(2)
1 , q

(2)
2 ),

respectively, if (q1 = q
(1)
1 + q

(2)
1 , q2 = q

(1)
2 + q

(2)
2 ).

This poses a question whether the notions of elementary and composite
particles are absolute. For example, as noted in Sec. 8.2, massless particles are
characterized such that q2 = 1 and in GFQT the quantity q2 characterizing a massive
particle is such that (q2 = 2, 3, ...p−1). Hence a massive particle characterized by q2 =
n can be constructed as a composite state of n massless particles. In Standard Model
(based on Poincare invariance) only massless particles are treated as elementary.
However, as shown in a seminal paper by Flato and Fronsdal [110] (see also Ref. [111]),
in standard AdS theory each massless IR can be constructed as a tensor product of
two singleton IRs and the authors of Ref. [110] believe that this a truly remarkable
property. On the other hand, since the Rac IR is characterized by q1 = q2 = 1/2, it can
be constructed as a composite state of two massive IRs characterized by q1 = q2 = 1/4
where in standard theory 1/4 is understood as a rational number and in GFQT - as
an element of Fp. Analogously the Di IR can be constructed as a composite state of
two IRs characterized by (q1 = 3/4, q2 = 1/4).

In general, it is obvious that in standard theory an IR characterized by
(q1, q2) can be constructed from tensor products of two IRs characterized by (q

(1)
1 , q

(1)
2 )

and (q
(2)
1 , q

(2)
2 ) only if q1 ≥ (q

(1)
1 + q

(2)
1 ) and q2 ≥ (q

(1)
2 + q

(2)
2 ). Since no interaction

is assumed, a problem arises whether a particle constructed from a tensor product
of other two particles will be stable. In standard theory a particle with the mass m
can be a stable composite state of two particles with the masses m1 and m2 only if
m < (m1 +m2) and the quantity (m1 +m2 −m)c2 is called the binding energy. The
greater the binding energy is the more stable is the composite state with respect to
external interactions.

In view of the above discussion, a particle can be called elementary if it is
not a composite state of other particles in the given theory. If a theory is formulated in
terms of a Fock space, this implies that only those particles are treated as elementary
whose operators (a, a∗) are used in the description of the Fock space.
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The authors of Ref. [110] and other works treat singletons as true ele-
mentary particles because their weight diagrams has only a single trajectory (that’s
why the corresponding IRs are called singletons) and in AdS QFT singleton fields
live on the boundary at infinity of the AdS bulk (boundary which has one dimension
less than the bulk). However, in that case one should should answer the following
questions:

• a) Why singletons have not been observed yet.

• b) Why such massless particles as photons and others are stable and their decays
into singletons have not been observed.

There exists a wide literature (see e.g. Ref. [112, 113] and references therein) where
this problem is investigated from the point of view of standard AdS QFT. However,
as noted in Sec. 1.2, the physical meaning of field operators is not clear and products
of local quantized fields at the same points are not well defined.

In addition, the following question arises. Each massless boson (e.g. the
photon) can be constructed as a tensor product of either two Dis or two Racs. Which
of those possibilities (if any) is physically preferable? A natural answer is as follows.
If the theory is supersymmetric then the AdS algebra should be extended to the
superalgebra osp(1,4) which has only one positive energy IR combining Di and Rac
into the Dirac supermultiplet. For the first time, this possibility has been discussed
probably in Refs. [109, 108]. Therefore in standard theory there exists only one Dirac
superparticle and its antiparticle.

As shown in the preceding chapter, in GFQT one IRs describes a particle
and its antiparticle simultaneously and hence in GFQT there exists only one IR
describing the supersingleton. In addition, as shown in Sec. 8.3, while dimensions
of massless IRs are of the order of p3 (see Eqs. (8.37-8.39)), the dimensions of the
singleton IRs are of the order of p2 (see Eq. (8.35)) and, as follows from Eq. (8.35),
the dimension of the supersingleton IR is p2. These facts can be treated as arguments
that in GFQT the supersingleton can be the only elementary particle. In addition,
in Chap. 10 we argue that, in contrast to standard theory, in GFQT one can give
natural explanations of a) and b).

The chapter is organized as follows. In Sec. 9.3 we discuss in detail how
usual particles and singletons should be discussed in the Poincare and semiclassical
limits of standard theory. In Sec. 9.4 it is shown that, in contrast to standard theory,
the tensor products of singleton IRs in GFQT contain not only massless IRs but
also special IRs, which have no analogs in standard theory. Beginning from Sec.
9.5 we proceed to the supersymmetric case, and the main result of the chapter is
described in Sec. 9.6. Here we explicitly find a complete list of IRs taking part in
the decomposition of the tensor product of two supersingletons. In standard theory
the well-known results are recovered while in GFQT this list also contains special
supersymmetric IRs which have no analogs in standard theory.
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9.2 Tensor product of modular IRs of the sp(2)

algebra

Consider two modular IRs of the sp(2) algebra in spaces Hj (j = 1, 2). Each IR
is defined by a set of operators (h(j), a(j)

′

, a(j)”) satisfying the commutation relations

(8.1) and by a vector e
(j)
0 such that (see Eq. (8.3))

a(j)
′

e
(j)
0 = 0, h(j)e0 = q

(j)
0 e

(j)
0 (9.1)

As follows from the results of the preceding section, the vectors e
(j)
n = (a(j)”)ne

(j)
0

where k = 0, 1, ...N (j) and N (j) = p− q
(j)
0 form a basis in Hj.

The tensor product of such IRs can be defined by analogy with the def-
inition of the tensor product of IRs of the so(2,3) algebra in the preceding section.

The basis of the representation space is formed by the elements ekl = e
(1)
k × e

(2)
l and

the independent representation operators are (h, a′, a”) such that h = h(1) + h(2),
a′ = a(1)

′

+ a(2)
′

and a” = a(1)” + a(2)”. Then the operators (h, a′, a”) satisfy the same
commutation relations as in Eq. (8.1) and hence they implement a representation of
the sp(2) algebra in the space H1 ×H2. Our goal is to find a decomposition of this
representation into irreducible components.

It is obvious that the cases when q
(1)
0 = 0 or q

(2)
0 = 0 are trivial and

therefore we will assume that q
(1)
0 6= 0 and q

(2)
0 6= 0. If q

(1)
0 and q

(2)
0 are represented by

the numbers (1, 2, ...p− 1) then we suppose that q
(1)
0 ≥ q

(2)
0 and consider the vector

e(k) =
k

∑

i=0

c(i, k)(e
(1)
i × e

(2)
k−i) (9.2)

As follows from Eq. (8.4) and the definition of h,

he(k) = (q
(1)
0 + q

(2)
0 + 2k)e(k) (9.3)

Therefore if a′e(k) = 0 then the vector e(k) generates a modular IR with the dimension

Dim(q
(1)
0 , q

(2)
0 , k) = p+ 1− (q

(1)
0 − q

(2)
0 − 2k) where q

(1)
0 − q

(2)
0 − 2k is taken modulo p.

As follows from Eqs. (8.5) and (9.2),

a′e(k) =

k
∑

i=0

c(i, k)[i(q
(1)
0 +i−1)(e

(1)
i−1×e

(2)
k−i)+(k−i)(q(2)0 +k−i−1)(e

(1)
i ×e(2)k−i−1)] (9.4)

This condition will be satisfied if

c(i, k) =
(k + 1− i)(q

(2)
0 + k − i)c(i− 1, k)

i(q
(1)
0 + i− 1)

(i = 1, ...k) (9.5)
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It is clear from this expression that in standard case the possible values of k are
0, 1, ...∞ while in modular case k = 0, 1, ...kmax where kmax = p− q

(1)
0 .

It is obvious that at different values of k, the IRs generated by e(k) are

linearly independent and therefore the tensor product of the IRs generated by e
(1)
0 and

e
(2)
0 contains all the IRs generated by e(k). A question arises whether the latter IRs
give a full decomposition of the tensor product. This is the case when the dimension of
the tensor product equals the sum of dimensions of the IRs generated by e(k). Below
we will be interested in the tensor product of singleton IRs and, as shown in Sec. 8.3,
in that case q

(1)
0 + q

(2)
0 > p. Therefore q

(1)
0 + q

(2)
0 +2k ∈ [q

(1)
0 + q

(2)
0 , 2p− q

(1)
0 + q

(2)
0 ] and

for all values of k, q
(1)
0 + q

(2)
0 + 2k is in the range (p, 2p]. Then, as follows from Eq.

(8.7), the fact that the IRs generated by e(k) give a full decomposition of the tensor
product follows from the relation

p−q
(1)
0

∑

k=0

(2p+ 1− q
(1)
0 − q

(2)
0 − 2k) = (p+ 1− q

(1)
0 )(p+ 1− q

(2)
0 ) (9.6)

9.3 Semiclassical approximation in Poincare limit

The Flato-Fronsdal result [110] poses a fundamental question whether only singletons
can be true elementary particles. In the present work we consider singletons from the
point of view of a quantum theory over a Galois field (GFQT) but the approach is
applicable in standard theory (over the complex numbers) as well. As already noted in
Sec. 8.3, the properties of singletons in standard theory and GFQT are considerably
different. In this chapter and Chap. 10 we argue that in GFQT the singleton physics
is even more interesting than in standard theory. However, since there exists a wide
literature on singleton properties in standard theory, in the present section we discuss
what conclusions can be made about semiclassical approximation and Poincare limit
for singletons in this theory.

The first step is to obtain expressions for matrix elements of representation
operators. Since spin is a pure quantum phenomenon, one might expect that in
semiclassical approximation it suffices to consider the spinless case. Then, as shown
in Sec. 8.2, the quantum number k can take only the value k = 0, the basis vectors
of the IR can be chosen as e(n1n2n) = (a1”)

n1(a2”)
n2en (compare with Eq. (8.27))

where (see Eq. (8.5)) en = (A++)ne0. In the spinless case, q1 = q2 = m/2 and hence
Eqs. (8.42-8.48) can be rewritten in the form:

h1e(n1n2n) = [Q + 2n1]e(n1n2n) h2e(n1n2n) = [Q+ 2n2]e(n1n2n) (9.7)

a′1e(n1n2n) = n1[Q+ n1 − 1]e(n1 − 1, n2n) a1”e(n1n2n) = e(n1 + 1, n2n)

a′2e(n1n2n) = n2[Q+ n2 − 1]e(n1, n2 − 1, n) a2”e(n1n2n) = e(n1, n2 + 1, n) (9.8)
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b”e(n1n2n) =
Q−2
Q−1

n(mAdS + n− 3)e(n1 + 1, n2 + 1, n− 1) +
1

(Q−1)2
e(n1, n2, n+ 1) (9.9)

b′e(n1n2n) =
Q−2
Q−1

n(mAdS + n− 3)(Q + n1 − 1)(Q+ n2 − 1)e(n1, n2, n− 1) +
n1n2

(Q−1)2
e(n1 − 1, n2 − 1, n+ 1) (9.10)

L+e(n1n2n) =
Q−2
Q−1

n(mAdS + n− 3)(Q+ n2 − 1)e(n1 + 1, n2, n− 1) +
n2

(Q−1)2
e(n1, n2 − 1, n+ 1) (9.11)

L−e(n1n2n) =
Q−2
Q−1

n(mAdS + n− 3)(Q+ n1 − 1)e(n1, n2 + 1, n− 1) +
n1

(Q−1)2
e(n1 − 1, n2, n+ 1) (9.12)

where Q = Q(n) = mAdS/2 + n.
The basis elements e(n1n2n) are not normalized to one and in our special

case the results given by Eqs. (8.29-8.31) can be represented as

||e(n1n2n)|| = F (n1n2n) = {n!(mAdS − 2)n[(
mAdS

2
)n]

3(mAdS

2
− 1)n

n1!n2!(
mAdS

2
+ n)n1(

mAdS

2
+ n)n2}1/2 (9.13)

By using this expression, Eqs. (9.7-9.12) can be rewritten in terms of the matrix
elements of representation operators with respect to the normalized basis ẽ(n1n2n) =
e(n1n2n)/F (n1n2n)

1/2.
Each element of the representation space can be written as

x =
∑

n1n2n

c(n1n2n)ẽ(n1n2n)

where c(n1n2n) can be called the wave function in the (n1n2n) representation. It is
normalized as

∑

n1n2n

|c(n1n2n)|2 = 1

In standard theory the quantum numbers n1 and n2 are in the range [0,∞). For
massive and massless particles the quantum number n also is in this range while, as
shown in Sec. 8.2, the only possible values of n for the spinless Rac singleton are
n = 0, 1. By using Eqs. (9.7-9.13), one can obtain the action of the representation
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operator on the wave function c(n1n2n):

h1c(n1n2n) = [mAdS/2 + n + 2n1]c(n1n2n)

h2c(n1n2n) = [mAdS/2 + n + 2n2]c(n1n2n)

a′1c(n1n2n) = [(n1 + 1)(mAdS/2 + n+ n1)]
1/2c(n1 + 1, n2n)

a1”c(n1n2n) = [n1(mAdS/2 + n+ n1 − 1)]1/2c(n1 − 1, n2n)

a′2c(n1n2n) = [(n2 + 1)(mAdS/2 + n + n2)]
1/2c(n1, n2 + 1, n)

a2”c(n1n2n) = [n2(mAdS/2 + n + n2 − 1)]1/2c(n1, n2 − 1, n)

b”c(n1n2n) = [n(mAdS+n−3)(mAdS/2+n+n1−1)(mAdS/2+n+n2−1)
(mAdS/2+n−1)(mAdS/2+n−2)

]1/2c(n1, n2, n− 1) +

[ n1n2(n+1)(mAdS+n−2)
(mAdS/2+n)(mAdS/2+n−1)

]1/2c(n1 − 1, n2 − 1, n+ 1)

b′c(n1n2n) = [ (n+1)(mAdS+n−2)(mAdS/2+n+n1)(mAdS/2+n+n2)
(mAdS/2+n)(mAdS/2+n−1)

]1/2c(n1, n2, n+ 1) +

[ (n1+1)(n2+1)n(mAdS+n−3)
(mAdS/2+n−1)(mAdS/2+n−2)

]1/2c(n1 + 1, n2 + 1, n− 1)

L+c(n1n2n) = [ (n+1)(mAdS+n−2)n1(mAdS/2+n+n2)
(mAdS/2+n)(mAdS/2+n−1)

]1/2c(n1 − 1, n2, n+ 1) +

[ (n2+1)n(mAdS+n−3)(mAdS/2+n+n1−1)
(mAdS/2+n−1)(mAdS/2+n−2)

]1/2c(n1, n2 + 1, n− 1)

L−c(n1n2n) = [n(mAdS+n−3)(n1+1)(mAdS/2+n+n2−1)
(mAdS/2+n−1)(mAdS/2+n−2)

]1/2c(n1 + 1, n2, n− 1) +

[n2(n+1)(mAdS+n−2)(mAdS/2+n+n1)
(mAdS/2+n)(mAdS/2+n−1)

]1/2c(n1, n2 − 1, n+ 1) (9.14)

Consider first the case of massive and massless particles. As noted in Sec.
1.3, the contraction to the Poincare invariant case can be performed as follows. If R is
a parameter with the dimension length and the operators Pµ (µ = 0, 1, 2, 3) are defined
as Pµ = Mµ4/2R then in the formal limit when R → ∞, Mµ4 → ∞ but the ratio
Mµ4/R remains finite, one gets the commutation relations of the Poincare algebra
from the commutation relations of the so(2,3) algebra. Therefore in situations where
Poincare limit is valid with a high accuracy, the operatorsMµ4 are much greater than
the other operators. The quantum numbers (mAdS, n1, n2, n) should be very large
since in the formal limit R → ∞, mAdS/2R should become the standard Poincare
mass and the quantities (n1/2R, n2/2R, n/2R) should become continuous momentum
variables.

A typical form of the semiclassical wave function is

c(n1, n2, n) = a(n1, n2, n)exp[i(n1ϕ1 + n2ϕ2 + nϕ)]

where the amplitude a(n1, n2, n) has a sharp maximum at semiclassical values of
(n1, n2, n). Since the numbers (n1, n2, n) are very large, when some of them change by
one, the major change of c(n1, n2, n) comes from the rapidly oscillating exponent. As
a consequence, in semiclassical approximation each representation operator becomes
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the operator of multiplication by a function and, as follows from Eqs. (8.15,9.14)

M04 = mAdS + 2(n1 + n2 + n) M12 = 2(n1 − n2)

M10 = 2[n1(mAdS/2 + n + n1)]
1/2sinϕ1 − 2[n2(mAdS/2 + n + n2)]

1/2sinϕ2

M20 = 2[n1(mAdS/2 + n+ n1)]
1/2cosϕ1 + 2[n2(mAdS/2 + n + n2)]

1/2cosϕ2

M14 = −2[n1(mAdS/2 + n + n1)]
1/2cosϕ1 + 2[n2(mAdS/2 + n + n2)]

1/2cosϕ2

M24 = 2[n1(mAdS/2 + n+ n1)]
1/2sinϕ1 + 2[n2(mAdS/2 + n + n2)]

1/2sinϕ2

M23 = 2 [n(mAdS+n)]1/2

mAdS/2+n
{[n1(mAdS/2 + n+ n2)]

1/2cos(ϕ− ϕ1) +

[n2(mAdS/2 + n + n1)]
1/2cos(ϕ− ϕ2)}

M31 = 2 [n(mAdS+n)]1/2

mAdS/2+n
{[n1(mAdS/2 + n+ n2)]

1/2sin(ϕ− ϕ1)−
[n2(mAdS/2 + n+ n1)]

1/2sin(ϕ− ϕ2)}
M34 = 2 [n(mAdS+n)]1/2

mAdS/2+n
{[(mAdS/2 + n+ n1)(mAdS/2 + n+ n2)]

1/2cosϕ+

(n1n2)
1/2cos(ϕ− ϕ1 − ϕ2)}

M30 = −2 [n(mAdS+n)]1/2

mAdS/2+n
{[(mAdS/2 + n+ n1)(mAdS/2 + n + n2)]

1/2sinϕ−
(n1n2)

1/2sin(ϕ− ϕ1 − ϕ2)} (9.15)

We now consider what restrictions follow from the fact that in Poincare
limit the operators Mµ4 (µ = 0, 1, 2, 3) should be much greater than the other oper-
ators. The first conclusion is that, as follows from the first expression in Eq. (9.15),
the quantum numbers n1 and n2 should be such that |n1−n2| ≪ n1, n2. Therefore in
the main approximation in 1/R we have that n1 ≈ n2. Then it follows from the last
expression that sinϕ should be of the order of 1/R and hence ϕ ahould be close either
to zero or to π. Then it follows from the last four expressions in Eq. (9.15) that the
operators Mµ4 will be indeed much greater than the other operators if ϕ2 ≈ π − ϕ1

and in the main approximation in 1/R

M04 = mAdS + 2(2n1 + n), M14 = −4[n1(mAdS/2 + n+ n1)]
1/2cosϕ1

M14 = 4[n1(mAdS/2 + n + n1)]
1/2sinϕ1, M34 = ±2[n(mAdS + n)]1/2 (9.16)

where M34 is positive if ϕ is close to zero and negative if ϕ is close to π. In this
approximation we have that M2

04 −
∑3

i=1M
2
i4 = m2

AdS which ensures that in Poincare
limit we have the correct relation between the energy and momentum.

Consider now the case of the spinless Rac singleton. Then mAdS = 1 and
the quantity n can take only the values 0 and 1. Since the expressions in Eq. (9.14)
are exact, we can use them in the given case as well. However, since the quantum
number n cannot be large, we now cannot consider the n dependence of the wave
function in semiclassical approximation. At the same time, if the numbers (n1, n2)
are very large, the dependence of the wave function on (n1, n2) still can be considered
in this approximation assuming that the wave function contains the rapidly oscillating
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exponent exp[i(n1ϕ1+n2ϕ2)]. Hence Eq. (9.15) remains valid but for calculating the
operators Ma3 (a = 0, 1, 2, 4) one can use the fact that, as follows from Eq. (9.14)

b”c(n1, n2, n) = 2(n1n2)
1/2{c(n1, n2, 0)δn1 + exp[−i(ϕ1 + ϕ2)]c(n1, n2, 1)δn0}

b′c(n1, n2, n) = 2(n1n2)
1/2{c(n1, n2, 1)δn0 + exp[i(ϕ1 + ϕ2)]c(n1, n2, 0)δn1}

L+c(n1, n2, n) = 2(n1n2)
1/2{exp(−iϕ1)c(n1, n2, 1)δn0 + exp(iϕ2)c(n1, n2, 0)δn1}

L−c(n1, n2, n) = 2(n1n2)
1/2{exp(iϕ1)c(n1, n2, 0)δn1 +

exp(−iϕ2)c(n1, n2, 1)δn0} (9.17)

where δ is the Kronecker symbol. Then the mean values of these operators can be
written as

< b” >= A{exp(iϕ) + exp[−i(ϕ + ϕ1 + ϕ2)]}, < b′ >=< b” >∗

< L+ >= A{exp[−i(ϕ + ϕ1)] + exp[i(ϕ + ϕ2)]}, < L− >=< L+ >
∗ (9.18)

where
∑

n1,n2

2(n1n2)
1/2c(n1, n2, 1)

∗c(n1, n2, 0) = Aexp(iϕ)

and we use ∗ to denote the complex conjugation. By analogy with the above discus-
sion, we conclude that the Poincare limit exists only if ϕ2 ≈ π − ϕ1 and ϕ is close
either to zero or π. Then

M04 ≈ 4n1, M14 ≈ −4n1cos(ϕ1), M24 ≈ 4n1sin(ϕ1) (9.19)

and the mean value of the operator M34 is much less than M14 and M24.
Consider now the case of the Di singleton. It is characterized by q1 = 3/2,

q2 = 1/2. Then, as shown in the preceding sections, s = 1, the quantum number n
can take only the value n = 0 and the quantum number k can take only the values
k = 0, 1. We denote e0 = e(n = 0, k = 0) and e1 = e(n = 0, k = 1). Then, as
shown in the preceding section, e1 = L−e0 and the basis of the IR in standard theory
consists of elements e0(n1, n2) = (a1”)

n1(a2”)
n2e0 and e1(n1, n2) = (a1”)

n1(a2”)
n2e1

(n1, n2 = 0, 1, ...∞).
As explained in Sec. 8.3, e(n = 1, k = 0) should be defined as [b”(h1 −

1)− a1”L−]e0 and e(n = 1, k = 1) should be defined as [b”(h2 − 1)− a2”L+]e1. Since
in the case of the Di singleton e(n = 1, k = 0) = e(n = 1, k = 1) = 0, it follows from
Eq. (8.12) that

L+e0 = L−e1 = 0, L−e0 = e1 L+e1 = e0, b”e0 = a1”e1, b”e1 = a2”e0 (9.20)

Now it follows from Eq. (8.14) that

b”e0(n1, n2) = e1(n1 + 1, n2), b”e1(n1, n2) = e0(n1, n2 + 1)

b′e0(n1, n2) = (n1 + 1)n2e1(n1, n2 − 1), b′e1(n1, n2) = n1(n2 + 1)e0(n1 − 1, n2)

L+e0(n1, n2) = n2e1(n1 + 1, n2 − 1), L+e1(n1, n2) = (n2 + 1)e0(n1, n2)

L−e0(n1, n2) = (n1 + 1)e1(n1, n2), L−e1(n1, n2) = n1e0(n1 − 1, n2 + 1) (9.21)
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As follows from Eqs. (8.8) and (8.12)

||e0(n1, n2)|| = (n1+1)!n2!(n2+1)1/2, ||e1(n1, n2)|| = n1!(n2+1)!(n1+1)1/2 (9.22)

Hence one can define the normalized basis elements ẽj(n1, n2) (j = 0, 1) and any
element in the representation space can be written as x =

∑1
j=0 cj(n1, n2)ẽj(n1, n2).

By analogy with the above discussion, one can show that a necessary condition for
the Poincare limit in semiclassical approximation is that the quantities (n1, n2) are
very large, n1 ≈ n2, the functions cj(n1, n2) contain a rapidly oscillating exponents
exp[i(n1ϕ1 + n2ϕ2)] and ϕ2 ≈ π − ϕ1. In this approximation one can obtain the
results given by Eq. (9.15) while calculating the operators Ma3 (a = 0, 1, 2, 4) can be
performed as follows.

One can represent the wave function as (c0(n1, n2), c1(n1, n2)) and then,
as follows from Eqs. (9.21) and (9.22)

b”(c0(n1, n2), c1(n1, n2)) ≈ n1(exp(−iϕ1)c1(n1, n2), exp(−iϕ2)c0(n1, n2))

b′(c0(n1, n2), c1(n1, n2)) ≈ n1(exp(iϕ2)c1(n1, n2), exp(iϕ1)c0(n1, n2))

L+(c0(n1, n2), c1(n1, n2)) ≈ n1(exp[−i(ϕ1 − ϕ2)]c1(n1, n2), c0(n1, n2))

L−(c0(n1, n2), c1(n1, n2)) ≈ n1(c1(n1, n2), exp[i(ϕ1 − ϕ2)]c0(n1, n2)) (9.23)

Now it follows from Eqs. (8.15) and (9.23) that the mean values of the operatorsMa3

are given by

< M34 >≈ 2A[cos(ϕ− ϕ1) + cos(ϕ+ ϕ2)]

< M30 >≈ 2A[sin(ϕ− ϕ1)− sin(ϕ + ϕ2)]

< M23 >≈ 2A[cos(ϕ− ϕ1 + ϕ2) + cosϕ]

< M31 >≈ 2A[sin(ϕ− ϕ1 + ϕ2)− sinϕ] (9.24)

where
∑

n1n2

n1c1(n1, n2)
∗c0(n1, n2) = Aexp(iϕ)

If ϕ2 ≈ π−ϕ1 then it is easy to see that the Poincare limit for < M23 > and < M31 >
exists if ϕ ≈ ϕ1 or ϕ ≈ ϕ1 + π. In that case the Poincare limit for < M34 > and
< M30 > exists as well and < M34 > disappears in the main approximation.

We have shown that if the operators Mab are defined by Eq. (8.15) then
in Poincare limit the z component of the momentum is negligible for both, the Di
and Rac singletons. This result could be expected from Eq. (9.16) since for them
neither mAdS nor n can be large numbers. As noted in the remark after Eq. (8.15),
the definition (8.15) is not unique and, in particular, any definition obtained from
Eq. (8.15) by cyclic permutation of the indices (1, 2, 3) is valid as well. Therefore we
conclude that in standard theory, the Di and Rac singletons have the property that
in the Poincare limit they are characterized by two independent components of the
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momentum, not three as usual particles. This is a consequence of the fact that for
singletons only the quantum numbers n1 and n2 can be very large.

The properties of singletons in Poincare limit have been discussed by sev-
eral authors, and their conclusions are not in agreement with each other (a detailed
list of references can be found e.g. in Refs. [112, 113]). In particular, there are state-
ments that the Poincare limit for singletons does not exist or that in this limit all the
components of the four-momentum become zero. The above consideration shows that
Poincare limit for singletons can be investigated in full analogy with Poincare limit
for usual particles. In particular, the statement that the singleton energy in Poincare
limit becomes zero is not in agreement with the fact that each massless particle (for
which the energy in Poincare limit is not zero) can be represented as a composite
state of two singletons. The fact that the standard singleton momentum can have
only two independent components does not contradict the fact that the momentum
of a massless particle has three independent components since, as noted above, the
independent momentum components of two singletons can be in different planes.

9.4 Tensor products of singleton IRs

We now return to the presentation when the properties of singletons in standard
and modular approaches are discussed in parallel. The tensor products of singleton
IRs have been defined in Sec. 9.1. If e(j)(n

(j)
1 , n

(j)
2 , n(j), k(j)) (j = 1, 2) are the basis

elements of the IR for singleton j then the basis elements in the representation space
of the tensor product can be chosen as

e(n
(1)
1 , n

(1)
2 , n(1), k(1), n

(2)
1 , n

(2)
2 , n(2), k(2)) = e(1)(n

(1)
1 , n

(1)
2 , n(1), k(1))×

e(2)(n
(2)
1 , n

(2)
2 , n(2), k(2)) (9.25)

In the case of the tensor product of singleton IRs of different types, we assume that
singleton 1 is Di and singleton 2 is Rac.

Consider a vector

e(q) =

q
∑

i=0

c(i, q)e(1)(i, 0, 0, 0)× e(2)(q − i, 0, 0, 0) (9.26)

where the coefficients c(i, q) are given by Eq. (9.5) such that the q
(j)
0 should be

replaced by q
(j)
1 (j = 1, 2). Since h

(j)
2 e(j)(i, 0, 0, 0) = ((p+1)/2)e(j)(i, 0, 0, 0) (j = 1, 2)

then the vector e(q) is the eigenvector of the operator h2 = h
(1)
2 + h

(2)
2 with the

eigenvalue q2 = 1 and satisfies the condition a′2e(q) = 0 where a′2 = a
(1)′

2 + a
(2)′

2 .
As follows from the results of Sec. 9.2, e(q) is the eigenvector of the operator h1 =

h
(1)
1 +h

(2)
1 with the eigenvalue q1 = q

(1)
1 +q

(2)
1 +2q and satisfies the condition a′1e(q) = 0

where a′1 = a
(1)′

1 + a
(2)′

1 . It is obvious that the value of q1 equals 3 + 2q for the tensor
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product Di ×Di, 2 + 2q for the tensor product Di× Rac and 1 + 2q for the tensor
product Rac× Rac.

As follows from Eqs. (8.14) and (8.27), in the case of IRs

b′e(n1n2nk) = [(a1”)
n1(a2”)

n2b′ + n1(a1”)
n1−1(a2”)

n2L+ +

n2(a1”)
n1(a2”)

n2−1L− + n1n2(a1”)
n1−1(a2”)

n2−1b”]e(0, 0, n, k)

L+e(n1n2nk) = [(a1”)
n1(a2”)

n2L+ + n2(a1”)
n1(a2”)

n2−1b”]e(0, 0, n, k)(9.27)

Therefore, e(q) satisfies the conditions b′e(q) = L+e(q) = 0 where b′ = b(1)
′

+ b(2)
′

and

L+ = L
(1)
+ +L

(2)
+ . Hence, e(q) is an analog of the vector e0 in Eq. (8.19) and generates

an IR corresponding to the quantum numbers (q1, q2 = 1).
We conclude that the tensor product of singleton IRs contains massless

IRs corresponding to q1 = q
(1)
1 + q

(2)
1 +2q. As follows from the results of Sect. 9.2 (see

the remark after Eq. (9.5)), q can take the values 0, 1, ..., p−q(1)1 . Therefore Rac×Rac
contains massless IRs with s = 0, 2, 4, ..., (p−1), Di×Rac contains massless IRs with
s = 1, 3, 5, ...(p− 2) and Di × Di contains massless IRs with s = 2, 4, ...(p − 1). In
addition, as noted in Ref. [110], Di×Di contains a spinless massive IR corresponding
to q1 = q2 = 2. This question will be discussed in Sec. 9.6

Our next goal is to investigate whether or not all those IRs give a complete
decomposition of the corresponding tensor products. For example, as follows from Eq.
(8.35), for the product Rac×Rac this would be the case if the sum

∑(p−1)/2
k=0 Dim(2k)

equals (p2 + 1)2/4 = p4/4 +O(p2). However, as follows from Eqs. (8.37) and (8.39),
this sum can be easily estimated as 11p4/48 + O(p3) and hence, in contrast to the
Flato-Fronsdal result in standard theory, in the modular case the decomposition of
Rac × Rac contains not only massles IRs. Analogously, the sum of dimensions of
massless IRs entering into the decompositions of Di × Rac and Di × Di also can
be easily estimated as 11p4/48 + O(p3) what is less than p4/4 + O(p2). The reason
is that in the modular case the decompositions of the tensor products of singletons
contain not only massles IRs but also special IRs. We will not investigate the modular
analog of the Flato-Fronsdal theorem [110] but concentrate our efforts on finding a
full solution of the problem in the supersymmetric case.

9.5 Supersingleton IR

In this section we consider the supersingleton IR exclusively in terms of the fermionic
operators without decomposing the IR into the Di and Rac IRs. As a preparatory step,
we first consider IRs of a simple superalgebra generated by two fermionic operators
(d′, d”) and one bosonic operator h such that

h = {d′, d”}, [h, d′] = −d′, [h, d”] = d” (9.28)

Here the first expression shows that, by analogy with the osp(1,4) superalgebra, the
relations (9.28) can be formulated only in terms of the fermionic operators.

213



Consider an IR of the algebra (9.28) generated by a vector e0 such that

d′e0 = 0, d′d”e0 = q0e0 (9.29)

and define en = (d”)ne0. Then d′en = a(n)en−1 where, as follows from Eq. (9.29),
a(0) = 0, a(1) = q0 and a(n) = q0+n− 1− a(n− 1). It is easy to prove by induction
that

a(n) =
1

2
{(q0 −

1

2
)[1− (−1)n] + n} (9.30)

The maximum possible value of n can be found from the condition that a(nmax) 6=
0, a(nmax +1) = 0. In the special case of the supersingleton, we will be interested in
the case when q0 = (p+1)2. Then, as follows from Eq. (9.30), a(n) = n/2. Therefore
nmax = p − 1 and the dimension of the IR is p. In the general case, if q0 6= 0 then
a(n) = 0 if n = 2p+ 1− 2q0 and the dimension of the IR is D(q0) = 2p+ 1− 2q0.

Consider now the supersingleton IR. Let x = (d”1d
”
2 − d”2d

”
1)e0. Then,

as follows from Eq. (8.93), d′1x = (2q1 − 1)d”2e0 and d′2x = (1 − 2q2)d
”
1e0. Since

q1 = q2 = (p + 1)/2 we have that d′1x = d′2x = 0 and therefore x = 0. Hence the
actions of the operators d”1 and d”2 on e0 commute with each other. If n is even then
d”1(d

”
2)

ne0 = (d”2)
nd”1e0 as a consequence of Eq. (8.93) and if n is odd then d”1(d

”
2)

ne0 =
(d”2)

n−1d”1d
”
2e0 = (d”2)

nd”1e0 in view of the fact that x = 0. Analogously one can prove
that d”2(d

”
1)

ne0 = (d”1)
nd”2e0. We now can prove that d”1(d

”
2)

n(d”1)
ke0 = (d”2)

n(d”1)
k+1e0.

Indeed, if n is even, this is obvious while if n is odd then

d”1(d
”
2)

n(d”1)
ke0 = (d”2)

n−1d”1d
”
2(d

”
1)

ke0 = (d”2)
n−1(d”1)

k+1d”2e0 = (d”2)
n(d”1)

k+1e0

and analogously d”2(d
”
1)

n(d”2)
ke0 = (d”1)

n(d”2)
k+1e0. Therefore the supersingleton IR

is distinguished among other IRs of the osp(1,4) superalgebra by the fact that the
operators d”1 and d”2 commute in the representation space of this IR. Hence the basis
of the representation space can be chosen in the form e(nk) = (d”1)

n(d”2)
ke0. As a

consequence of the above consideration, n, k = 0, 1, ...p− 1 and the dimension of the
IR is p2 in agreement with Eq. (8.35).

The above results can be immediately generalized to the case of higher
dimensions. Consider a superalgebra defined by the set of operators (d′j, dj”) where
j = 1, 2, ...J and, by analogy with Eq. (8.93), any triplet of the operators (A,B,C)
satisfies the commutation-anticommutation relation

[A, {B,C}] = F (A,B)C + F (A,C)B (9.31)

where the form F (A,B) is skew symmetric, F (d′j, dj”) = 1 (j = 1, 2, ...J) and the
other independent values of F (A,B) are equal to zero. The higher-dimensional ana-
log of the supersingleton IR can now be defined such that the representation space
contains a vector e0 satisfying the conditions

d′je0 = 0, d′jdj”e0 = 1/2 (j = 1, 2, ...J) (9.32)
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The basis of the representation space can be chosen in the form e(n1, n2, ...nJ ) =
(d”1)

n1(d”2)
n2 · · · (d”J)nJe0. In full analogy with the above consideration one can show

that the operators (d1”, ...dJ”) mutually commute on the representation space. As a
consequence, in the modular case each of the numbers nj (j = 1, 2, ...J) can take the
values 0, 1, ...p− 1 and the dimension of the IR is pJ . The fact that singleton physics
can be directly generalized to the case of higher dimensions has been indicated by
several authors (see e.g. Ref. [112] and references therein).

9.6 Tensor product of supersingleton IRs

We first consider the tensor product of IRs of the superalgebra (9.28) with q0 =
(p + 1)/2. The representation space of the tensor product consists of all linear com-
binations of elements x(1) × x(2) where x(j) is an element of the representation space
for the IR j (j = 1, 2). The representation operators of the tensor product are linear
combinations of the operators (d′, d”) where d′ = d(1)

′

+ d(2)
′

and d” = d(1)” + d(2)”.
Here d(j)

′

and d(j)” mean the operators acting in the representation spaces of IRs 1
and 2, respectively. In contrast to the case of tensor products of IRs of the sp(2) and
so(2,3) algebras, we now require that if d(j) is some of the d-operators for the IR j then
the operators d(1) and d(2) anticommute rather than commute, i.e. {d(1), d(2)} = 0
Then it is obvious that the independent operators defining the tensor product satisfy
Eq. (9.28).

Let e
(j)
0 be the generating vector for IR j and e

(j)
i = (d(j)”)ie

(j)
0 . Consider

the following element of the representation space of the tensor product

e(k) =

k
∑

i=0

c(i)(e
(1)
i × e

(2)
k−i) (9.33)

where c(i) is some function. This element will be the generating vector of the IR
of the superalgebra (9.28) if d′e(q) = 0. As follows from the above results and Eq.
(9.33)

d′e(q) =
1

2

k
∑

i=1

ic(i)(e
(1)
i−1 × e

(2)
k−i) +

1

2

k−1
∑

i=0

(−1)i(k − i)c(i)(e
(1)
i × e

(2)
k−i−1) (9.34)

Therefore d′e(k) = 0 is satisfied if k = 0 or

c(i+ 1) = (−1)i+1k − i

i+ 1
c(i), i = 0, 1, ...k − 1 (9.35)

when k 6= 0. As follows from this expression, if c(0) = 1 then

c(i) = (−1)
i(i+1)

2 C i
k (9.36)
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where C i
k = k!/i!(k − i)! is the binomial coefficient. As follows from Eq. (9.30), the

possible values of k are 0, 1, ...p− 1 and, as follows from Eq. (9.33), he(k) = q0e(k)
where q0 = 1 + k. The fact that the tensor product is fully decomposable into IRs
with the different values of k follows from the relation

∑p
q0=1D(q0) = p2.

The tensor product of the supersingleton IRs can be constructed as follows.
The representation space of the tensor product consists of all linear combinations
of elements x(1) × x(2) where x(j) is an element of the representation space for the
supersingleton j (j = 1, 2). The fermionic operators of the representation are linear

combinations of the operators (d′1, d
′
2, d1”, d2”) where d

′
1 = d

(1)′

1 +d
(2)′

1 and analogously

for the other operators. Here d
(j)′

k and d
(j)”
k (k = 1, 2) mean the operators d′k and dk”

acting in the representation spaces of supersingletons 1 and 2, respectively. We also
assume that if d(j) is some of the d-operators for supersingleton j then {d(1), d(2)} = 0.
Then all the d-operators of the tensor product satisfy Eq. (8.93) and the action of
the bosonic operators in the tensor product can be defined by Eq. (8.94).

Let e
(j)
0 be the generating vector for supersingleton j (see Eq. (8.96)) and

e0 = e
(1)
0 × e

(2)
0 . Consider the following element of the representation space of the

tensor product:

x(k1, k2) =
k1
∑

i=0

k2
∑

j=0

(−1)[
i(i+1)

2
+ j(j+1)

2
+k1j]C i

k1
Cj

k2

(d
(1)”
1 )i(d

(2)”
1 )k1−i(d

(1)”
2 )j(d

(1)”
2 )k2−je0 (k1, k2 = 0, 1, ...p− 1) (9.37)

By using Eq. (8.93) and the results of this section, one can explicitly verify that all
the x(k1, k2) are the nonzero vectors and

d′1x(k1, k2) = d′2x(k1, k2) = 0, d′2d
”
1x(k1, k2) = x(k1 + 1, k2 − 1) (9.38)

Since the e
(j)
0 (j = 1, 2) are the generating vectors of the IRs of the osp(1,4)

superalgebra with (q1, q2) = ((p + 1)/2, (p + 1)/2), it follows from Eq. (8.95) that
x(k1, k2) is the generating vector of the IRs of the osp(1,4) superalgebra with (q1, q2) =
(1 + k1, 1 + k2) if d

′
2d

”
1x(k1, k2) = 0. Therefore, as follows from Eq. (9.38), this is the

case if k2 = 0. Hence the tensor product of the supersingleton IRs contains IRs of the
osp(1,4) algebra corresponding to (q1, q2) = (1 + k1, 1) (k1 = 0, 1, ...p− 1). As noted
in Sect. 8.10, the case (0, 1) can be treated either as the massless IR with s = p− 1
or as the special massive IR; the case (1, 1) can be treated as the massive IR of the
osp(1,4) superalgebra and the cases when k1 = 1, ...p− 2 can be treated as massless
IRs with s = k1.

The results of standard theory follow from the above results in the formal
limit p → ∞. Therefore in standard theory the decomposition of tensor product
of supersingletons contains the IRs of the osp(1,4) superalgebra corresponding to
(q1, q2) = (1, 1), (2, 1), ...(∞, 1) in agreement with the results obtained by Flato and
Fronsdal [110] and Heidenreich [111].
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As noted in Sect. 9.4, the Flato-Fronsdal result for the tensor product
Di×Di is that it also contains a massive IR corresponding to q1 = q2 = 2. In terms
of the fermionic operators this result can be obtained as follows. If y = (d

(1)”
1 d

(2)”
2 −

d
(1)”
2 d

(2)”
1 )e0 then, as follows from Eqs. (8.93) and (8.94),

d
(1)′

1 y =
p+ 1

2
d
(2)”
2 e0, d

(2)′

1 y =
p+ 1

2
d
(1)”
2 e0, d

(1)′

2 y = −p + 1

2
d
(2)”
1 e0

d
(2)′

2 y = −p+ 1

2
d
(1)”
1 e0, h1y = h2y = 2y, L+y = L−y = 0 (9.39)

Since a′j = (d′j)
2 for j = 1, 2 (see Eq. (8.94)), it follows from these expressions that

a′1y = a′2y = 0, i.e. y indeed is the generating vector for the IR of the so(2,3) algebra
characterized by q1 = q2 = 2. However, y is not a generating vector for any IR of the
osp(1,4) superalgebra since it does not satisfy the condition d′1y = d′2y = 0.

The vector x(k1, k2) defined by Eq. (9.37) becomes the null vector when
k1 = p. Indeed, since C i

k1
= k1!/[i!(k1 − i)!], the sum over i in Eq. (9.37) does

not contain terms with i 6= 0 and i 6= p. At the same time, if i = 0 or i = p
the corresponding terms are also the null vectors since, as follows from the results
of the preceding section, (d′1)

pe0 = (d′2)
pe0 = 0. It is obvious that this result is

valid only in the modular case and does not have an analog in standard theory.
Therefore, as follows from Eq. (9.38), the decomposition of the tensor products of
two supersingletons also contains IRs of the osp(1,4) superalgebra characterized by
(q1, q2) = (0, 0), (0, 1), (0, 2), ...(0, p− 1).

We have shown that the decomposition of the tensor products of two su-
persingletons contains IRs of the osp(1,4) superalgebra characterized by the following
values of (q1, q2):

(0, 0), (0, 1), (0, 2), ...(0, p− 1), (1, 1), (2, 1), ...(p− 1, 1)

The question arises whether this set of IRs is complete, i.e. the decomposition of
the tensor products of two supersingletons does not contain other IRs of the osp(1,4)
superalgebra. Since the dimension of the supersigleton IR is p2 (see the preceding
section), this is the case if

p−1
∑

k=0

SDim(0, k) +

p−1
∑

k=1

SDim(1, k) = p4 (9.40)

It is obvious that SDim(0, 0) = 1 since the IR characterized by (q1, q2) = (0, 0) is
such that all the representation operators acting on the generating vector give zero.
Therefore, as follows from Eq. (8.103), the condition (9.40) can be rewritten as

2 +Dim(0) +Dim(2, 2) + 2

p−2
∑

s=1

Dim(s) + 2

p−1
∑

q2=1

Dim(0, q2) = p4 (9.41)
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since Dim(1, 1) = Dim(0). The expressions for Dim(s) and Dim(0, q2) are given
in Eqs. (8.37-8.40) and hence the only quantity which remains to be calculated is
Dim(2, 2).

The IR of the so(2,3) algebra characterized by (q1, q2) = (2, 2) is the
massive IR with mAdS = 4 and s = 0. Therefore, as follows from the results of
Sect. 8.2, the quantity k in Eq. (4.4) can take only the value k = 0 and the quantity
n can take the values 0, 1, ...nmax where nmax = p − 2. Hence, as follows from Eqs.
(8.7) and (8.28)

Dim(2, 2) =

p−2
∑

n=0

(p− 1− n)2 =
1

6
p(p− 1)(2p− 1) (9.42)

The validity of Eq. (9.41) now follows from Eqs. (8.37-8.40,9.42).
The main result of this chapter can now be formulated as follows:
In a quantum theory over a Galois field, the tensor product of two Dirac

supersingletons is fully decomposable into the following IRs of the osp(1,4) superalge-
bra:

• Massive IR characterized by (q1 = 1, q2 = 1)

• Massless IRs characterized by (q1 = 2, ...p− 1, q2 = 1)

• Special IRs characterized by (q1 = 0, q2 = 0, 1, ...p− 1)

and the multiplicity of each IR in the decomposition is equal to one.
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Chapter 10

Discussion and conclusion

In Secs. 1.1 and 6.1 we argue that the main reason of crisis in physics is that nature,
which is fundamentally discrete, is described by continuous mathematics. Moreover,
no ultimate physical theory can be based on continuous mathematics because it is
not self-consistent (as a consequence of Gödel’s incompleteness theorems). In the
first part of the work we discuss inconsistencies in standard approach to quantum
theory and then we reformulate the theory such that it can be naturally generalized
to a formulation based on discrete mathematics. In this chapter we discuss the
main results of the present work in position operator, cosmological constant problem,
gravity and particle theory.

10.1 Position operator and wave packet spreading

In standard physics education the position operator is typically discussed only in non-
relativistic quantum mechanics. Here it is postulated that coordinate and momentum
representations are related to each other by the Fourier transform and this leads to
famous uncertainty relations. This postulate has been accepted from the beginning
of quantum theory by analogy with classical electrodynamics. We argue that the
postulate is based neither on strong theoretical arguments nor on experimental data.

In relativistic quantum theory local fields are discussed but typically in
standard textbooks the argument x of those fields is not associated with any position
operator (in spite of the principle of quantum theory that any physical quantity can
be discussed only in conjunction with the operator of this quantity). Probably one of
the reasons is that local quantum fields do not have a probabilistic interpretation and
play only an auxiliary role for constructing the S-matrix in momentum space. When
this construction is accomplished the theory does not contain space-time anymore
in the spirit of the Heisenberg S-matrix program that in quantum theory one can
descibe only transitions of states from the infinite past when t→ −∞ to the distant
future when t → +∞. As a consequence, many physicists believe that the position
operators is meaningful only in nonrelativistic theory while in relativistic theory no
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position operator is needed.
However, relativistic position operator is needed in many problems. For

example, when we consider how photons created on distant objects move to Earth
we should know where those photons have been created (on Sun, Sirius or other
objects), what is the (approximate) trajectory of those photons etc. Meanwhile many
quantum physicists are not aware of the fact that relativistic position operator has
been intensively discussed in papers by Newton and Wigner, Pryce, Hawton and
other authors. By analogy with nonrelativistic quantum mechanics, in those papers
the position and momentum operators are also related to each other by the Fourier
transform.

Immediately after creation of quantum theory it has been realized that
an inevitable consequence of the fact that the position and momentum operators are
related to each other by the Fourier transform is the effect of wave packing spreading
(WPS). Several well-known physicists (e.g. de Broglie) treated this fact as unaccept-
able and proposed alternative approaches to quantum theory. At the same time, it
has not been shown that numerical results on WPS contradict experimental data. For
example, it is known that for macroscopic bodies the effect of WPS is negligible and
it is probably believed that in experiments on the Earth with atoms and elementary
particles spreading does not have enough time to manifest itself.

However, it seems rather strange that no one has posed a problem of what
happens to photons from distant stars which can travel to Earth even for billions
of years. As shown in Chap. 2, the results for WPS calculated in standard theory
are such that this effect is very important even for close stars and planets. As a
consequence, in standard theory we have several striking paradoxes discussed in Chap.
2.

We propose a consistent construction of the position operator where the
position and momentum operators are not related to each other by the Fourier trans-
form. Then the effect of WPS in directions perpendicular to the particle momentum
is absent and the paradoxes are resolved. Different components of the new position
operator do not commute with each other and, as a consequence, there is no wave
function in coordinate representation.

Our results give a strong arguments that the notion of space-time is pure
classical and does not exist on quantum level. Hence fundamental quantum theory
should not be based on Lagrangians and quantum field in coordinate representation.

10.2 Cosmological constant problem

As noted in Sect. 1.5, one of the main ideas of this work is that gravity might be
not an interaction but simply a manifestation of de Sitter symmetry over a Galois
field. This is obviously not in the spirit of mainstream approaches that gravity is
a manifestation of the graviton exchange or holographic principle. Our approach
does not involve General Relativity, quantum field theory (QFT), string theory, loop
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quantum gravity or other sophisticated theories. We consider only systems of free
bodies in de Sitter invariant quantum mechanics.

Then the fact that we observe the cosmological repulsion is a strong argu-
ment that the de Sitter (dS) symmetry is a more pertinent symmetry than Poincare
or anti de Sitter (AdS) ones. As shown in Refs. [37, 17] and in the present work, the
phenomenon of the cosmological repulsion can be easily understood by considering
semiclassical approximation in standard dS invariant quantum mechanics of two free
bodies. In the framework of this consideration it becomes immediately clear that the
cosmological constant problem does not exist and there is no need to involve empty
space-time background, dark energy or other artificial notions. This phenomenon
can be easily explained by using only standard quantum-mechanical notions without
involving dS space, metric, connections or other notions of Riemannian geometry.

One might wonder why such a simple explanation has not been widely
discussed in the literature. According to our observations, this is a manifestation
of the fact that even physicists working on dS QFT are not familiar with basic facts
about irreducible representations (IRs) of the dS algebra. It is difficult to imagine how
standard Poincare invariant quantum theory can be constructed without involving
well-known results on IRs of the Poincare algebra. Therefore it is reasonable to think
that when Poincare invariance is replaced by dS one, IRs of the Poincare algebra
should be replaced by IRs of the dS algebra. However, physicists working on QFT
in curved space-time believe that fields are more fundamental than particles and
therefore there is no need to involve IRs.

10.3 Gravity

The mainstream approach to gravity is such that gravity is the fourth (and probably
the last) interaction which should be unified with electromagnetic, weak and strong
interactions. While the electromagnetic interaction is a manifestation of the photon
exchange, the weak interaction is a manifestation of the W and Z boson exchange and
the strong interaction is a manifestation of the gluon exchange, gravity is supposed
to be a manifestation of the graviton exchange. However, the notion of the exchange
by virtual particles is taken from particle theory while gravity is known only at
macroscopic level. Hence thinking that gravity can be explained by mechanisms
analogous to those in particle theory is a great extrapolation.

There are several theoretical arguments in favor of the graviton exchange.
In particular, in the nonrelativistic approximation Feynman diagrams for the graviton
exchange can recover the Newton gravitational law by analogy with how Feynman
diagrams for the photon exchange can recover the Coulomb law. However, the Newton
gravitational law is known only on macroscopic level and, as noted in Sec. 2.1, the
conclusion that the photon exchange reproduces the Coulomb law can be made only
if one assumes that coordinate and momentum representations are related to each
other by the Fourier transform. As discussed in Chaps. 1 and 2, on quantum level
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the coordinates are not needed and, as shown in Chap. 2, standard position operator
contradicts experiments. In addition, as noted in Sec. 2.1, even on classical level the
Coulomb law for pointlike electric charges has not been verified with a high accuracy.
So on macroscopic level the validity of the Newton gravitation law has been verified
with a much greater confidence than the Coulomb law. In view of these remarks, the
argument that in quantum theory the Newton gravitational law should be obtained
by analogy with the Coulomb law is not convincing.

The existence of gravitons can also be expected from the fact that GR
(which is a classical theory) predicts the existence of gravitational waves and that from
the point of view of quantum theory each classical wave should consist of particles.
However, in spite of the fact that powerful facilities have been built for detecting
gravitational waves, no unambiguous detections have been reported yet. In addition,
as discussed in Sec. 5.8, the statement that the data on binary pulsars can be treated
as an indirect confirmation of the existence of gravitational waves is strongly model
dependent.

It has been also noted in Sec. 5.8 that any quantum theory of gravity
can be tested only on macroscopic level. Hence, the problem is not only to construct
quantum theory of gravity but also to understand a correct structure of the position
operator on macroscopic level. However, in the literature the latter problem is not
discussed because it is tacitly assumed that the position operator on macroscopic level
is the same as in standard quantum theory. This is an additional great extrapolation
which should be substantiated.

On the other hand, efforts to construct quantum theory of gravity have not
been successful yet. Mainstream theories are based on the assumption that G is a fun-
damental constant while, as argued throughout this work, there are no solid reasons
to think so. The assumption that G is a fundamental constant has been also adopted
in GR. However, as discussed in Sec. 5.8, the existing results on non-Newtonian
gravitational experiments cannot be treated as an unambiguous confirmation of GR.

In recent years a number of works has appeared where the authors treat
gravity not as a fundamental interaction but as an emergent phenomenon. We be-
lieve that until the nature of gravity has been unambiguously understood, different
approaches to gravity should be investigated. In the present work we consider grav-
ity as a pure kinematical manifestation of quantum dS symmetry in semiclassical
approximation.

In contrast to IRs of the Poincare and AdS algebras, in IRs of the dS
algebra the particle mass is not the lowest eigenvalue of the dS Hamiltonian which
has the spectrum in the range (−∞,∞). As a consequence, the free mass operator
of the two-particle system is not bounded below by (m1 +m2) where m1 and m2 are
the particle masses. The discussion in Secs. 3.6 and 5.1 shows that this property by
no means implies that the theory is unphysical.

Since in Poincare and AdS invariant theories the spectrum of the free mass
operator is bounded below by (m1 +m2), in these theories it is impossible to obtain
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the correction −Gm1m2/r to the mean value of this operator. However, in dS theory
there is no law prohibiting such a correction. It is not a problem to indicate internal
two-body wave functions for which the mean value of the mass operator contains
−Gm1m2/r with possible post-Newtonian corrections. The problem is to show that
such wave functions are semiclassical with a high accuracy. As shown in Chaps. 3
and 5, in semiclassical approximation any correction to the standard mean value of
the mass operator is negative and proportional to the energies of the particles. In
particular, in the nonrelativistic approximation it is proportional to m1m2.

Our consideration in Chap. 5 gives additional arguments (to those posed
in Chap. 2) that standard distance operator should be modified since a problem
arises whether it is physical at macroscopic distances. In Chap. 5 we argue that it is
not and propose a modification of the distance operator which has correct properties
and gives for mean values of the free two-body mass operators the results compatible
with Newton’s gravity if the width of the de Sitter momentum distribution for a
macroscopic body is inversely proportional to its mass. It has been also shown in Sec.
5.7 that for all known gravitational experiments, classical equations of motion can be
obtained without involving the Lagrangian or Hamiltonian formalism but assuming
only that time is defined as in Eq. (1.2), i.e. that the relation between the spatial
displacement and the momentum is as in standard theory for free particles.

10.4 Quantum theory over a Galois field

In Chaps. 6 and 7 we argue that quantum theory should be based on Galois fields
rather than complex numbers. We tried to make the presentation as simple as possi-
ble without assuming that the reader is familiar with Galois fields. Our version of a
quantum theory over a Galois field (GFQT) gives a natural qualitative explanation
why the width of the total dS momentum distribution of the macroscopic body is
inversely proportional to its mass. In this approach neither G nor Λ can be funda-
mental physical constants. We argue that only GΛ might have physical meaning.
The calculation of this quantity is a very difficult problem since it requires a detailed
knowledge of wave functions of many-body systems. However, GFQT gives clear in-
dications that GΛ contains a factor 1/lnp where p is the characteristic of the Galois
field. We treat standard theory as a special case of GFQT in the formal limit p→ ∞.
Therefore gravity disappears in this limit. Hence in our approach gravity is a conse-
quence of the fact that dS symmetry is considered over a Galois field rather than the
field of complex numbers.

In our approach gravity is a phenomenon which has a physical meaning
only in situations when at least one body is macroscopic and can be described in
the framework of semiclassical approximation. The result (5.29) shows that gravity
depends on the width of the total dS momentum distributions for the bodies under
consideration. However, when one mass is much greater than the other, the momen-
tum distribution for the body with the lesser mass is not important. In particular, this
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is the case when one body is macroscopic and the other is the photon. At the same
time, the phenomenon of gravity in systems consisting only of elementary particles
has no physical meaning since gravity is not an interaction but simply a kinematical
manifestation of dS invariance over a Galois field in semiclassical approximation. In
this connection a problem arises what is the minimum mass when a body can be
treated as macroscopic. This problem requires understanding of the structure of the
many-body wave function.

Implications of GFQT in particle theory are discussed in the next sections.

10.5 Particle theory

10.5.1 Particle theory based on standard dS symmetry

As noted above, in standard theory (based on complex numbers) the fact that Λ > 0
is a strong indication that dS symmetry is more pertinent than Poincare and AdS
symmetries. Hence it is reasonable to consider what happens when particle theory is
considered from the point of view of dS symmetry. Then the key difference between
IRs of the dS algebra on one hand and IRs of the Poincare and AdS algebras on the
other is that in the former case one IR can be implemented only on the upper and
lower Lorenz hyperboloids simultaneously. As a consequence, the number of states
in IRs is always twice as big as the number of states in the corresponding IRs of the
AdS or Poincare algebra. As explained in Sec. 3.5, an immediate consequence of this
fact is that there are no neutral elementary particles in the theory.

Suppose that, by analogy with standard theory, one wishes to interpret
states with the carrier on the upper hyperboloid as particles and states with the carrier
on the lower hyperboloid as corresponding antiparticles. Then the first problem which
arises is that the constant C in Eq. (3.58) is infinite and one cannot eliminate this
constant by analogy with the AdS or Poincare theories. Suppose, however, that this
constant can be eliminated at least in Poincare approximation where experiments
show that the interpretation in terms of particles and antiparticles is physical. Then,
as shown in Sec. 3.5, only fermions can be elementary.

One might think that theories where only fermions can be elementary and
the photon (and also the graviton and the Higgs boson, if they exist) is not elementary,
cannot be physical. However, several authors discussed models where the photon is
composite; in particular, in this work we discuss a possibility that the photon is a
composite state of Dirac singletons (see a discussion in the next section). An indirect
confirmation of our conclusions is that all known neutral particles are bosons.

Another consequence of the fact that the IRs are implemented on the
both hyperboloids is that there is no superselection rule prohibiting states which are
superpositions of a particle and its antiparticle, and transitions particle↔antiparticle
are not prohibited. As a result, the electric charge and the baryon and lepton quantum
numbers can be only approximately conserved. In particular, they are approximately
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conserved if Poincare approximation works with a high accuracy.
This shows that dS invariant theory implies a considerably new under-

standing of the notion of particles and antiparticles. In contrast to Poincare or AdS
theories, for combining a particle and its antiparticle together, there is no need to
construct a local covariant field since they are already combined at the level of IRs.

This is an important argument in favor of dS symmetry. Indeed, the fact
that in AdS and Poincare invariant theories a particle and its antiparticle are described
by different IRs means that they are different objects. Then a problem arises why
they have the same masses and spins but opposite charges. In QFT this follows from
the CPT theorem which is a consequence of locality since we construct local covariant
fields from a particle and its antiparticle with equal masses. A question arises what
happens if locality is only an approximation: in that case the equality of masses, spins
etc., is exact or approximate? Consider a simple model when electromagnetic and
weak interactions are absent. Then the fact that the proton and the neutron have
the same masses and spins has nothing to do with locality; it is only a consequence
of the fact that the proton and the neutron belong to the same isotopic multiplet.
In other words, they are simply different states of the same object—the nucleon. We
see, that in dS invariant theories the situation is analogous. The fact that a particle
and its antiparticle have the same masses and spins but opposite charges (in the
approximation when the notions of particles, antiparticles and charges are valid) has
nothing to do with locality or non-locality and is simply a consequence of the fact
that they are different states of the same object since they belong to the same IR.

The non-conservation of the baryon and lepton quantum numbers has
been already considered in models of Grand Unification but the electric charge has
been always believed to be a strictly conserved quantum number. In our approach all
those quantum numbers are not strictly conserved because in the case of dS symmetry
transitions between a particle and its antiparticle are not prohibited. The experimen-
tal data that these quantum numbers are conserved reflect the fact that at present
Poincare approximation works with a very high accuracy. As noted in Sec. 1.4, the
cosmological constant is not a fundamental physical quantity and if the quantity R is
very large now, there is no reason to think that it was large always. This completely
changes the status of the problem known as ”baryon asymmetry of the World” since
at early stages of the World transitions between particles and antiparticles had a
much greater probability.

One might say that a possibility that only fermions can be elementary
is not attractive since such a possibility would imply that supersymmetry is not
fundamental. There is no doubt that supersymmetry is a beautiful idea. On the
other hand, one might say that there is no reason for nature to have both, elementary
fermions and elementary bosons since the latter can be constructed from the former.
A well-known historical analogy is that the simplest covariant equation is not the
Klein-Gordon equation for spinless fields but the Dirac and Weyl equations for the
spin 1/2 fields since the former is the equation of the second order while the latter
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are the equations of the first order.
In 2000, Clay Mathematics Institute announced seven Millennium Prize

Problems. One of them is called ”Yang-Mills and Mass Gap” and the official descrip-
tion of this problem can be found in Ref. [114]. In this description it is stated that
the Yang-Mills theory should have three major properties where the first one is as
follows: ”It must have a ”mass gap;” namely there must be some constant ∆ > 0 such
that every excitation of the vacuum has energy at least ∆.” The problem statement
assumes that quantum Yang-Mills theory should be constructed in the framework of
Poincare invariance. However, as follows from the above discussion, this invariance
can be only approximate and dS invariance is more general. Meanwhile, in dS theory
the mass gap does not exist. Therefore we believe that the problem has no solution.

10.5.2 Particle theory over a Galois field

In standard theory a difference between representations of the so(2,3) and so(1,4)
algebras is that IRs of the so(2,3) algebra where the operatorsMµ4 (µ = 0, 1, 2, 3) are
Hermitian can be treated as IRs of the so(1,4) algebra where these operators are anti-
Hermitian and vice versa. Suppose now that one accepts arguments of Chap. 6 that
fundamental quantum theory should be constructed over a Galois field rather than
the field of complex numbers. As noted in Chap. 6, in GFQT a probabilistic interpre-
tation is only approximate and hence Hermiticy can be only a good approximation in
some situations. Therefore one cannot exclude a possibility that elementary particles
can be described by modular analogs of IRs of the so(2,3) algebra while modular
representations describing symmetry of macroscopic bodies are modular analogs of
standard representations of the so(1,4) algebra. In view of this observation, in Chap.
8 we consider standard and modular IRs of the so(2,3) algebra in parallel in order to
demonstrate common features and differences between standard and modular cases.

As noted in Chap. 6, GFQT does not contain infinities at all and all
operators are automatically well defined. In my discussions with physicists, some
of them commented this fact as follows. This is an approach where a cutoff (the
characteristic p of the Galois field) is introduced from the beginning and for this
reason there is nothing strange in the fact that the theory does not have infinities. It
has a large number p instead and this number can be practically treated as infinite.

However, the difference between Galois fields and usual numbers is not
only that the former are finite and the latter are infinite. If the set of usual numbers
is visualized as a straight line from −∞ to +∞ then the simplest Galois field can be
visualized not as a segment of this line but as a circumference (see Fig. 6.1 in Sec.
6.1). This reflects the fact that in Galois fields the rules of arithmetic are different
and, as a result, GFQT has many unusual features which have no analogs in standard
theory.

The Dirac vacuum energy problem discussed in Sec. 8.8 is a good illus-
tration of this point. Indeed, in standard theory the vacuum energy is infinite and, if
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GFQT is treated simply as a theory with a cutoff p, one would expect the vacuum en-
ergy to be of the order of p. However, since the rules of arithmetic in Galois fields are
different from standard ones, the result of exact (i.e. non-perturbative) calculation
of the vacuum energy is precisely zero.

The original motivation for investigating GFQT was as follows. Let us
take standard QED in dS or AdS space, write the Hamiltonian and other opera-
tors in angular momentum basis and replace standard IRs for the electron, positron
and photon by corresponding modular IRs. One might treat this motivation as an
attempt to substantiate standard momentum regularizations (e.g., the Pauli-Villars
regularization) at momenta p/R (where R is the radius of the World). In other terms
this might be treated as introducing fundamental length of the order of R/p. We now
discuss reasons explaining why this naive attempt fails.

One of the main results in Chap. 8 is that (see Sec. 8.2) in GFQT the
existence of antiparticles follows from the fact that any Galois field is finite. Moreover,
the very existence of antiparticles might be an indication that nature is described rather
by a finite field or ring than by complex numbers. We believe that this result is not
only very important but also extremely simple and beautiful. A simple explanation
of the above result follows.

In standard theory a particle is described by a positive energy IR where the
energy has the spectrum in the range [mass,∞). At the same time, the corresponding
antiparticle is associated with a negative energy IR where the energy has the spectrum
in the range (−∞,−mass]. Consider now the construction of a modular IR for some
particle. We again start from the rest state (where energy=mass) and gradually
construct states with higher and higher energies. However, in such a way we are
moving not along a straight line but along the circumference in Fig. 6.1. Then
sooner or later we will arrive at the point where energy=-mass.

The fact that in GFQT a particle and its antiparticle belong to the same IR
makes it possible to conclude that, in full analogy with the case of standard dS theory
(see the preceding section), there are no neutral particles in the theory, the very notion
of a particle and its antiparticle is only approximate and the electric charge and the
baryon and lepton quantum numbers can be only approximately conserved. As shown
in Sec. 8.7, if one tries to replace nonphysical annihilation and creation operators
(a, a∗) by physical operators (b, b∗) related to antiparticles then the symmetry on
quantum level is inevitably broken. In GFQT, by analogy with standard theory, it is
possible not to introduce the notion of antiparticles but work by analogy with Dirac’s
hole theory. Then the symmetry on quantum level is preserved and, as shown in Sec.
8.8, in contrast to standard theory, the vacuum can be chosen such that the vacuum
energy is not infinite but zero. This poses a problem whether there are physical
reasons for such a choice of the vacuum.

As explained in Sec. 8.9, the spin-statistics theorem can be treated as a
requirement that standard quantum theory should be based on complex numbers.
This requirement also excludes the existence of neutral elementary particles.
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Since GFQT can be treated as the modular version of both, dS and AdS
standard theories, supersymmetry in GFQT is not prohibited. In Sec. 8.10 we discuss
common features and differences between standard and modular IRs of the osp(1,4)
algebra. One of the most interesting feature of the modular case is how supersym-
metry describes Dirac singletons in GFQT. This question is discussed in the next
section.

10.6 Dirac singletons

One might conclude that since in GFQT the photon cannot be elementary, this theory
cannot be realistic and does not deserve attention. However, the nonexistence of
neutral elementary particles in GFQT shows that the photon (and the graviton and
the Higgs boson if they exist) should be considered on a deeper level. In Chap. 9
we argue that in GFQT a possibility that massless particles are composite states of
Dirac singletons is even more attractive than in standard theory.

As it has been noted in Chap. 9, the seminal result by Flato and Frons-
dal [110] poses a fundamental problem whether only Dirac singletons can be true
elementary particles. In this case one has to answer the questions (see Sec. 9.1):

• a) Why singletons have not been observed yet.

• b) Why such massless particles as photons and others are stable and their decays
into singletons have not been observed.

In the literature, a typical explanations of a) are that singletons are not observable
because they cannot be considered in the Poincare limit or because in this limit the
singleton four-momentum becomes zero or because the singleton field lives on the
boundary of the AdS bulk or as a consequence of other reasons. As shown in Sec.
9.3, in standard theory semiclassical approximations for singletons in Poincare limit
can be discussed in full analogy with the case of massive and massless particles.
As a result, in the general case the energy of singletons in Poincare limit is not
zero but, in contrast to the case of usual particles, singletons can have only two
independent components of standard momentum, not three as usual particles. A
problem arises whether such objects can be detected by standard devices, whether
they have a coordinate description etc. At the same time, in standard theory there
is no natural explanation of b).

While in standard theory there are four singleton IRs describing the Di and
Rac singletons and their antiparticles, in GFQT only two IRs remain since standard
Di and anti-Di now belong to the same IR and the same is true for standard Rac and
anti-Rac. We use Di and Rac to call the corresponding modular IRs, respectively.
Nevertheless, since each massless boson can be represented as a composite state of
two Dis or two Racs, a problem remains of what representation (if any) is preferable.
This problem has a natural solution if the theory is supersymmetric. Then the only
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IR is the (modular) Dirac supermultiplet combining (modular) Di and (modular) Rac
into one IR.

The main result of Chap. 9 is described in Sec. 9.6 where we explicitly
describe a complete set of supersymmetric modular IRs taking part in the decomposi-
tion of the tensor product of two modular Dirac supersingleton IRs. In particular, by
analogy with the Flato-Fronsdal result, each massless superparticle can be represented
as a composite state of two Dirac supersingletons and one again can pose a question
of whether only Dirac (super)singletons can be true elementary (super)particles.

This question is also natural in view of the following observation. As
shown in Sec. 3.2, the dS mass mdS and the standard Poincare mass m are related as
mdS = Rm where R is the radius of the world, and, as shown in Sec. 9.3, the relation
between the AdS and Poincare masses is analogous. If for example one assumes that
R is of the order of 1026m then the dS mass of the electron is of the order of 1039. It is
natural to think that a particle with such a dS mass cannot be elementary. Moreover,
the present upper level for the photon mass is 10−18ev which seems to be an extremely
tiny quantity. However, the corresponding dS mass is of the order of 1015 and so even
the mass which is treated as extremely small in Poincare invariant theory might be
very large in de Sitter theories. Nevertheless, assuming that only (super)singletons
can be true elementary (super)particles, one still has to answer the questions a) and
b).

As explained in Sec. 8.3, a crucial difference between Dirac singletons in
standard theory and GFQT follows. Since 1/2 in the Galois field is (p + 1)/2, the
eigenvalues of the operators h1 and h2 for singletons in GFQT are (p + 1)/2, (p +
3)/2, (p+ 5)/2..., i.e. huge numbers if p is huge. Hence the Poincare limit and semi-
classical approximation for Dirac singletons in GFQT have no physical meaning and
they cannot be observable. In addition, as noted in Chap. 6, the probabilistic inter-
pretation for a particle can be meaningful only if the eigenvalues of all the operators
Mab are much less than p. Since for Dirac singletons this is not the case, their state
vectors do not have a probabilistic interpretation. These facts give a natural answer
to the question a).

For answering question b) we note the following. In standard theory the
notion of binding energy (or mass deficit) means that if a state with the mass M is
a bound state of two objects with the masses m1 and m2 then M < m1 + m2 and
the quantity |M − (m1+m2)|c2 is called the binding energy. The binding energy is a
measure of stability: the greater the binding energy is, the greater is the probability
that the bound state will not decay into its components under the influence of external
forces.

If a massless particle is a composite state of two Dirac singletons, and
the eigenvalues of the operators h1 and h2 for the Dirac singletons in GFQT are
(p+1)/2, (p+3)/2, (p+5)/2... then, since in GFQT the eigenvalues of these operators
should be taken modulo p, the corresponding eigenvalues for the massless particle are
1, 2, 3.... Hence an analog of the binding energy for the operators h1 and h2 is p,
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i.e. a huge number. This phenomenon can take place only in GFQT: although, from
the formal point of view, the Dirac singletons comprising the massless state do not
interact with each other, the analog of the binding energy for the operators h1 and h2
is huge. In other words, the fact that all the quantities in GFQT are taken modulo
p implies a very strong effective interactions between the singletons. It explains why
the massless state does not decay into Dirac singletons and why free Dirac singletons
effectively interact pairwise for creating their bound state.

As noted in the literature on singletons (see e.g. the review [112] and
references therein), the possibility that only singletons are true elementary particles
but they are not observable has some analogy with quarks. However, the analogy
is not full. According to Quantum Chromodynamics, forces between quarks at large
distances prevent quarks from being observable in free states. In GFQT Dirac sin-
gletons cannot be in free states even if there is no interaction between them; the
effective interaction between Dirac singletons arises as a consequence of the fact that
GFQT is based on the arithmetic modulo p. In addition, quarks and gluons are used
for describing only strongly interacting particles while in standard AdS theory and
in GFQT quarks, gluons, leptons, photons, W and Z bosons can be constructed from
Dirac singletons.

As noted at the end of Sec. 9.5, singleton physics can be directly general-
ized to the case of higher dimensions, and this fact has been indicated in the literature
on singletons (see e.g. the review [112] and references therein).

The above discussion shows that singleton physics in GFQT is even more
interesting than in standard theory.

10.7 Open problems

As we argue in Sec. 1.1, the main reason of the crisis in quantum physics is that
nature, which is fundamentally discrete, is described by continuous mathematics. We
also note that any ultimate quantum theory cannot be based on continuous math-
ematics even because, as follows from from Gödel’s incompleteness theorems, that
mathematics is not self-consistent.

One of the main results of this work is that gravity can be described as
a pure kinematical manifestation of de Sitter symmetry over a Galois field. In this
approach G is not fundamental but a quantity which can be calculated. In Sec. 1.5
we argue that the very notion of interaction cannot be fundamental and interaction
constants can be treated only as phenomenological parameters. In particular, the
Planck length has no fundamental meaning and the notions of gravitational fields
and gravitons are not needed.

In view of these results the following problems arise. Since gravity can
be tested only on macroscopic level, any quantum theory of gravity should solve the
problem of constructing position operator on that level. As noted in Secs. 5.8 and
10.3, in the literature this problem is not discussed because it is tacitly assumed
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that the position operator on quantum level is the same as in standard quantum
theory, but this is a great extrapolation. In quantum theory it is postulated that
any physical quantity is defined by an operator. However, quantum theory does not
define explicitly how the operator corresponding to a physical quantity is related to the
measurement of this quantity. As shown in Chap. 5, the mass operator for all known
gravitational phenomena is fully defined by a function describing the classical distance
between the bodies in terms of their relative wave function. Therefore a fundamental
problem is to understand the physical meaning of parameters characterizing wave
functions of macroscopic bodies.

In our approach quantum theory is based on a Galois field with the char-
acteristic p. A problem arises whether p is a constant or it is different in different
periods of time. Moreover, in view of the problem of time in quantum theory, an ex-
tremely interesting scenario is that the world time is defined by p. As shown in Chap.
5, gravity is defined by the width of the distribution of the relative dS momentum.
As argued in Sec. 7.2, the width depends on p as lnp and the gravitational constant
in dS theory depends on p as 1/lnp. Therefore the observable dynamics and what is
treated as interactions might be simply manifestations of the fact that physics of our
world depends on p.

As shown in Chap. 8, in our approach the notion of particle-antiparticle
can be only approximate and the electric charge and other additive quantum numbers
(e.g. the baryon and lepton quantum numbers) can be only approximately conserved.
The extent of conservation depends on p: the greater is p, the greater is the extent of
conservation. One might think that at present the conservation laws work with a high
accuracy because the present value of p is extremely large. However, if at early stages
of the world the value of p was much less than now then the conservation laws were
not so strict as now. In particular, this might be a reason of the baryonic asymmetry
of the world.

By analogy with gravity, one might think that electromagnetic, weak and
strong interactions are not interactions but manifestations of higher symmetries. Sim-
ilar ideas have been already extensively discussed in the literature, e.g. in view of
compactification of extra dimensions.

The arguments and the results of this work give grounds to believe that
sooner or later fundamental quantum theory will be discrete and finite and so it will
be based either on finite fields or even on finite rings. In the present work we worked
with a Galois field because working with a field is convenient from the technical point
of view: in linear spaces over a field one can use the notions of basis and dimension.
However, in view of the discussion in Chap. 6, division does not play a fundamental
role in quantum theory and therefore a very interesting possibility is that the future
quantum theory will involve only finite rings (this possibility has been pointed out
by Metod Saniga).

Our results indicate that fundamental quantum theory has a very long
way ahead (in agreement with Weinberg’s opinion [115] that a new theory may be
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”centuries away”).
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