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Abstract A mother, a father, and their daughter were taking a picture. They were
5, 7, and 2 feet tall respectively. The parents stood in a row, and their daughter stood
in front of her mother. My son saw this and ran quickly in front of the father before the
picture was taken. I asked my son why. He answered that he was exactly 4 feet tall.
I figured out his reasoning, and afterwards I have become an astrophysicist. A pattern
is a distribution of differences. In the array pattern of the above-said four people, the
height differences between adults and between kids are equal, and the height differences
between females and between males are equal too. This simple pattern can be generalized
into any array of numbers. Assume the differences of numbers in a row are equal to the
corresponding differences in any other row. That is, there exist the common differences
in all rows. Similarly assume the common differences in all columns. Then the pattern is
called a rational structure. Assume the number at the bottom left corner is zero, C(0,0) =
0, and denote the series of numbers in the bottom row by U(i) and the series of numbers
in the first column by V(j). I found the formula for the rational array: C = U(i) + V(j).
This is called Skew Law. I generalized the rows and columns to be curved, and required
that the curves cross each other at a right angle. This was exactly my idea of galaxy
patterns. In this paper I show that the patterns are governed by the Riccati equation
with constant coefficients; and the curves are governed by a type of algebraic equations.
The cubic equation of the type gives a pattern which resembles the sharp bar of galaxy
NGC 1073. Are all barred galaxies governed by the cubic and higher degrees of algebraic
equations? The question will be resolved in the near future.
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1 Introduction

Understanding the origin of natural structure is the great challenge to humans. For
example, we haven’t had an accepted theory for the origin of the fundamental biological
unit, DNA. Most natural structures are governed by their environment so strongly that
their structuring force is difficult to identify. There exists a kind of natural structure
whose existence is relatively independent from their environment. These are galaxies.
Spiral galaxies are planar distribution of stars. Those with a barred pattern are referred
to as barred spirals and those without a barred pattern are termed ordinary spirals.
The stellar distribution of an ordinary spiral galaxy is axi-symmetric with respect to the
galaxy center, and its stellar density decreases exponentially radially. This distribution of
density is the exponential disk. Astronomers have shown that the main structure of barred
galaxies can also be described by an exponential law. When a fitted exponential disk is
subtracted from a barred spiral galaxy what is the result? I propose that the resulting
structure resembles human breasts [1-3]. I call it a double-breast structure. Barred spiral
galaxies, however, have more than a pair of breasts. The bar of barred spiral galaxies is
comprised of two or three pairs of breasts which are usually aligned. The addition of the
two or three pairs of breasts to the major structure of the exponential disk becomes a
bar-shaped pattern which crosses the galaxy center.

The only accepted theory applied to galaxies is Newton’s universal gravity which in
actuality is a theory of two bodies. When applied to three or more bodies, the theory gives
chaotic distribution of matter. However, natural distribution of matter always displays
regular patterns. Hence, Newton’s theory cannot predict the natural structures of many
bodies. Newton’s theory applied to galaxy structure has been used previously to predict
kinematical phenomena. These predictions are always wrong. A well known example is
the problem of constant rotational curves. To maintain the status of Newton’s theory,
people created the terminology of dark matter [4] which has never been observed.
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Understanding that galaxy structure may have a simple origin, we then want to de-
termine what is the simplest structure in a plane? The answer is the one of “equal
derivatives”. For example, let’s study a squared structure f(x, y) in a plane. We define
the row derivatives to be the partial derivatives u(x, y0) = f ′

x(x, y0) along the horizon-
tal direction and the column derivatives to be the partial derivatives v(x0, y) = f ′

y(x0, y)
along the vertical direction. The simplest pattern is realized if we assume that all row
derivatives are the same function of x and all column derivatives are the same function
of y: u(x, y0) = u(x), v(x0, y) = v(y). The integration of the row derivative defines a
new function (denoted as U(x)) and the integration of the column derivative defines a
new function V (y): U(x) =

∫
u(x)dx, V (y) =

∫
v(y)dy. They completely determine the

structure. For example, U(x) + V (y) must be the structure itself in a difference of a
constant, f(x, y) = U(x)+V (y)+ c where c is a constant. The quantities, U(x), V (y), are
called parallel quantities, and the sum C = U(x) + V (y) is called the skew quantity. We
generalize the rows and columns to be curved and they cross each other at a right angle.
This is exactly my idea of galaxy structure [5].

A structure is a two or three dimensional distribution of similar matter. This paper
deals with two dimensional structure only. A curve in the plane of the distribution is
called a proportion curve or a Darwin curve if the matter density on one side of the curve
is in constant ratio to the one on the other side of the curve. If there exists an orthogonal
net of Darwin curves in the plane, the distribution of matter is called a rational structure.
We found many evidences that galaxies are rational stellar distribution [2, 3]. We list a few
examples. Firstly, galaxy components (disks and bars) can be fitted with the above-said
rational structure [1]. Secondly, spiral arms can be fitted with the above-said proportion
curves [6]. Thirdly, if galaxy structure must be rational and gravitational force-lines must
be conservative then a new universal gravity is uniquely determined. The new gravity
generalizes Newton’s theory and explains constant rotation curves simply and elegantly
[7].

Rational structure in two dimension

ρ(x, y) (1)

means that not only there exists an orthogonal net of curves in the plane{
x = x(λ, µ),
y = y(λ, µ)

(2)

but also, along each curve, the matter density on one side of the curve is in constant ratio
to the one on the other side. Because the density ratio is equivalent to the derivative to
the logarithm of the density

f(x, y) = ln ρ(x, y) (3)

we from now on, are only concerned with the logarithmic density f(x, y). We show that
rational structures are governed by a Riccati equation with constant coefficients, and the
orthogonal curves are governed by a type of algebraic equations. The cubic equation of the
type gives a pattern which resembles the sharp bar of galaxy NGC 1073. Are all barred
galaxies governed by this type of algebraic equations? The question will be resolved in the
near future. Now we study the mathematical theory of rational structure and its graph
in the following Sections.
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2 Basic Theory of Rational Structure

2.1 Rational Structure Equation and Parallel Law

We know that, given the two partial derivatives

∂f

∂x
,

∂f

∂y
(4)

the structure f(x, y) is determined provided that the Green’s theorem is satisfied

∂2f

∂x∂y
=

∂2f

∂y∂x
(5)

Now we are interested in rational structure. Instead of calculating the partial derivatives
(4), we calculate the directional derivatives along the tangent direction to the above curves

∂f

∂lλ
,

∂f

∂lµ
(6)

where lλ is the linear length in the physical plane (x, y) and is along the row curves whose
parameter is λ while lµ is the linear length along the column curves whose parameter
is µ. The two derivatives (6) are called the parallel derivatives. Given the two parallel
derivatives, however, the structure f(x, y) may not be determined. A similar Green’s
theorem, which is called the rational structure equation, must be satisfied

∂

∂µ

(
P
∂f

∂lλ

)
− ∂

∂λ

(
Q
∂f

∂lµ

)
= 0 (7)

where
P (λ, µ) =

√
x′2λ + y′2λ ,

Q(λ, µ) =
√
x′2µ + y′2µ

(8)

are the lengths of the tangential vectors (x′λ, y
′
λ) and (x′µ, y

′
µ), respectively, and are called

the line magnitudes. Note that we use the simple notation x′λ = ∂x
∂λ
. From now on, we

always use the similar simple notations.
It is straightforward to show that the partial derivatives in the parameter space (λ, µ)

are

f ′
λ = P

∂f

∂lλ
, f ′

µ = Q
∂f

∂lµ
(9)

Therefore, the rational structure equation (7) is nothing but the following simple equation

∂2f

∂µ∂λ
=

∂2f

∂λ∂µ
(10)

To simplify the expression of our equations, we introduce the important notations for
our parallel derivatives {

û(λ, µ) = ∂f
∂lλ
,

v̂(λ, µ) = ∂f
∂lµ

(11)
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The requirement of rational structure is that the parallel derivative û depends only on λ
and the parallel derivative v̂ depends only on µ

û = û(λ), v̂ = v̂(µ) (12)

This necessary condition of rational structure is called the parallel law.
Now we prove the parallel law. Assume you walk along a row curve. The logarithmic

ratio of the density on your left side to the immediate density on your right side is
approximately the directional derivative to f(x, y) along the column direction. That is,
the logarithmic ratio is approximately the directional derivative v̂(λ, µ). Because v̂(λ, µ)
is constant along the row curve (rational), v̂(λ, µ) is independent of λ, v̂ = v̂(µ). Similarly,
we can prove that û(λ, µ) = û(λ). This concludes our proof.

Based on the parallel law, the Green’s theorem (7) turns out to be much simpler

û(λ)P ′
µ = v̂(µ)Q′

λ (13)

which is our rational structure equation [1, 8]. The following equation is the necessary
and sufficient condition for the curves to be orthogonal

x′λx
′
µ + y′λy

′
µ = 0 (14)

In fact, rational structures depend only on the geometric curves, not the choice of coor-
dinate parameters. Therefore, the general coordinate parameters (σ, τ) for the orthogonal
net of curves are 

λ = g(σ), µ = h(τ),
x = x(g(σ), h(τ)),
y = y(g(σ), h(τ))

(15)

All these expressions give the same orthogonal net of Darwin curves and generate the
same rational structure. In the following Section, we prove the existence of harmonic
coordinate parameters, and all of our following discussion is based on the parameters.

2.2 Harmonic Coordinate System and Skew Law

A harmonic coordinate system is the choice of coordinate parameters such that the fol-
lowing equations hold {

x′λ = y′µ,
x′µ = −y′λ

(16)

They are the well known Cauchy-Riemann equations, and the following complex function
in the parameter space (λ, µ)

z(λ, µ) = x(λ, µ) + i y(λ, µ) (17)

must be analytic. The real part x(λ, µ) and the imaginary part y(λ, µ) are determined by
each other, and both are harmonic functions,

x′′λλ + x′′µµ = 0,
y′′λλ + y′′µµ = 0

(18)
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They are called the conjugates to each other (see some textbook on analytic complex
functions).

Does there exist a harmonic pair of coordinate parameters for any net of curves? We
prove that the necessary and sufficient condition for the existence of harmonic coordinates
is that the net of curves is orthogonal. Application of the chain derivative rule to the
composite functions (15) gives

x′σ = x′λg
′
σ, x′τ = x′µh

′
τ ,

y′σ = y′λg
′
σ, y′τ = y′µh

′
τ

(19)

The Cauchy-Riemann equations for the harmonic coordinate parameter (σ, τ) are{
x′σ = y′τ ,
x′τ = −y′σ

(20)

That is, {
x′λg

′
σ − y′µh

′
τ = 0,

y′λg
′
σ + x′µh

′
τ = 0

(21)

The above linear algebraic equation system has non-zero solution λ = g(σ), µ = h(τ) if
and only if the determinant of the equation system is zero. The determinant turns out to
be the orthogonal condition (14). We have now proved an important and simple theorem
concerning analytic complex functions.

Orthogonal Curves’ Theorem: An analytic complex function defines an orthogonal
net of curves, and an orthogonal net of curves corresponds to a family of analytic complex
functions.

Because rational structure is always defined on some orthogonal net of curves, its
harmonic coordinate parameters always exist. Therefore, we from now on, assume that
the pair of parameters (λ, µ) is itself harmonic. An immediate result is the following

P (λ, µ) =
√
x′2λ + y′2λ ≡

√
x′2µ + y′2µ = Q(λ, µ) (22)

(see the formulas (8)). Accordingly the rational structure equation (13) becomes much
simpler

û(λ)P ′
µ = v̂(µ)P ′

λ (23)

The symbol Q(λ, µ) is no longer needed. Given û(λ) and v̂(µ), we know that the above
equation is a first order partial differential equation whose unknown is P (λ, µ). Its general
solution can be obtained with the standard characteristic method. The characteristic
equation is

dλ

v̂(µ)
=

dµ

−û(λ)
(24)

which is an ordinary differential equation. The general solution to the ordinary equation
is

Û(λ) + V̂ (µ) = Ĉ (25)
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where Ĉ is an arbitrary constant, and Û(λ) and V̂ (µ) are the indefinite integrals of the
parallel derivatives û(λ) and v̂(µ), respectively{

û(λ) = Û ′
λ(λ),

v̂(µ) = V̂ ′
µ(µ)

(26)

The quantities Û(λ) and V̂ (µ) are called the parallel integrals. From now on, the derivative
Û ′
λ(λ) is simply denoted by Û ′(λ) or Û ′. The notation applies to other quantities when

confusion may be avoided. Now the general solution to the original rational structure
equation (23) is

W (P, Ĉ) = 0 (27)

where W (P, Ĉ) is an arbitrary function of the two variables P and Ĉ, and P is replaced
with the unknown P (λ, µ) and Ĉ is replaced with the left–hand side of the equation (25)
where the arbitrary constant Ĉ must be isolated into the right–hand side. If we do not pay
much attention to possible multi-valued functions, the general solution (27) is essentially
the fact that P is a function of the single variable Ĉ (see (25))

P = P (Ĉ) = P (Û(λ) + V̂ (µ)) (28)

The above is our second result derived with the harmonic parameters. Note that P (λ, µ)
and P (Ĉ) are two different functions but we use the same symbol P to denote them.
Which is which can be recognized with its accompanying notations of the derivatives. For
simplicity we follow this convention for P and for other quantities if applicable.

The above result of rational structure, (28), is called the skew law. Based on the
formulas (25), we call Ĉ the skew variable, and call any function of the single-variable
Ĉ a skew quantity. Therefore, the line magnitude of any rational structure is a skew
quantity. In the following, we prove that the structure f(x, y) itself is a skew quantity
too.

The formulas (9) now become

f ′
λ = û(λ)P (λ, µ),
f ′
µ = v̂(µ)P (λ, µ)

(29)

Therefore,
û(λ)f ′

µ = v̂(µ)f ′
λ (30)

Given û(λ) and v̂(µ), we know that the above first order partial differential equation is
identical to the one (23). Therefore, we have

f = f(Ĉ) = f(Û(λ) + V̂ (µ)) (31)

This proves that f(x, y) is a skew quantity. Therefore,

f ′
λ = û(λ)f ′

Ĉ
(Ĉ),

f ′
µ = v̂(µ)f ′

Ĉ
(Ĉ)

(32)

Comparison of the above equation with the equation (29) leads to

f ′
Ĉ
(Ĉ) = P (Ĉ) (33)
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This is the important relation between the line magnitude and the density structure, and
is used to draw the graph of rational structure.

For simplicity, we introduce new quantities which are parallel to the above hatted
ones. That is, we introduce the corresponding un-hatted quantities:

C = Ĉ/h, u = û/h, v = v̂/h, U = Û/h, V = V̂ /h, etc. (34)

where h is a common constant. The pairs of quantities differ by a common constant
factor. But the hatted ones correspond to the physical variables. We will know that only
negative h can help achieve a realistic galaxy structure.

Now we have proved the basic theorems of rational structure. Firstly, an orthogonal
net of curves is equivalent to an analytic complex function. Secondly, the parallel law
is a necessary condition for rational structure. Thirdly, the rational structure equation
(23), i. e., Green’s theorem, results in the skew law for the line magnitude. However, they
are not the sufficient condition for rational structure. They are the necessary ones. For
example, the net of curves (2) solved from the following equation

P (λ, µ) =
√
x′2λ + x′2µ (35)

may not be orthogonal. Therefore, we look for the necessary and sufficient condition for
rational structure.

2.3 The Necessary and Sufficient Condition for Rational Struc-
ture

The net of curves (2) is orthogonal and its parameters are harmonic if and only if the
Cauchy-Riemann equations (16) hold. The equations hold if and only if x(λ, µ) is a
harmonic function. The function x(λ, µ) is harmonic if and only if the derivatives

Φ(λ, µ) = x′µ + i x′λ (36)

satisfy Cauchy-Riemann equations. The above complex function satisfies Cauchy-Riemann
equations if and only if the logarithm of its modulus

lnP (λ, µ) = ln
√
x′2λ + x′2µ (37)

is a harmonic function. Finally, applying harmonic operation to the above function gives
the necessary and sufficient condition for the net of curves to be orthogonal and its
parameters to be harmonic. We use the symbol L to denote the logarithm

L(λ, µ) = lnP (λ, µ) = lnP (C) = lnP (U(λ) + V (µ)) (38)

Its derivatives are
L′′

λλ = P ′′P−P ′2

P 2 u2(λ) + P ′

P
u′(λ),

L′′
µµ = P ′′P−P ′2

P 2 v2(µ) + P ′

P
v′(µ)

(39)
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Finally, the harmonic equation, L′′
λλ + L′′

µµ = 0, leads to the following necessary and
sufficient condition for the parameters (λ, µ) to be harmonic

P ′′

P ′ −
P ′

P
= − u′(λ) + v′(µ)

u2(λ) + v2(µ)
(40)

That is,
(lnP )′′

(lnP )′
= − U ′′(λ) + V ′′(µ)

U ′2(λ) + V ′2(µ)
(41)

Finally, the above equation is the necessary and sufficient condition for the harmonic
parameters (λ, µ). It is also the necessary and sufficient condition for rational structure
if we always remember the necessary conditions, i. e., the laws of parallel and skew. The
above equation is called the skew equation. However, it can be further simplified.

2.4 Riccati Equation and its Solutions

We know that skew equation is the necessary and sufficient condition for rational structure.
Its solution is all the single-variable functions P (C) whose derivatives must satisfy the
equation. In fact, the derivative of P (C) with respect to C is still a function of C.
Therefore, the left-hand side of skew equation is still a function of C. Let us denote it by
R(C)

R(C) =
P ′′

P ′ −
P ′

P
= − U ′′(λ) + V ′′(µ)

U ′2(λ) + V ′2(µ)
(42)

That is,
(U ′2(λ) + V ′2(µ))R(C) = −U ′′(λ)− V ′′(µ) (43)

The two variables λ and µ on the right-hand side of the above equation are separated.
Accordingly, the mixed partial derivatives to the left hand side of the above equation
must be zero

0 = ((U ′2(λ) + V ′2(µ))R(C))′′λµ
= U ′V ′ (2(U ′′ + V ′′)R′(C) + (U ′2 + V ′2)R′′(C))

(44)

Therefore, the final factor in the above formula must be zero, and we have

R′′(C)

2R′(C)
= − U ′′(λ) + V ′′(µ)

U ′2(λ) + V ′2(µ)
= R(C) (45)

Finally, we have the simple equation which rational structures must satisfy

R′′(C)− 2R(C)R′(C) = 0 (46)

Its first integration is exactly the Riccati equation

R′(C)−R2(C) = ±a2 (47)

where a is a positive constant. The above ordinary differential equation must be satisfied
by any rational structure. It is the Riccati equation with constant coefficients. Table 1 is
the list of all solutions to the equation where d is the integral constant for the first order
equation.
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Table 1: Solutions to Riccati Equation R′(C)−R2(C) = ±a2

constant term a = 0 +a2 −a2
/name /name /name

constant solution R(C) = 0 no solution R(C) = a
/Riccati-0 /Riccati-a

nonconstant solution − 1
C

a tan(aC + d) −a tanh(aC + d)
/Riccati-Pw /Riccati-Tw /Riccati-Hw

The solution − 1
C

in the Table corresponds to the zero coefficient, a = 0. Therefore,
it is called the parabolic solution and denoted by Riccati-Pw. The last two solutions are
denoted by Riccati-Tw and Riccati-Hw respectively, because their resulting orthogonal
curve equations involve trigonometric functions and hyperbolic functions, respectively.

This paper presents a preliminary study on the Riccati-Pw solution only,

R(C) = − 1

C
(48)

3 A Preliminary Study on the Parabolic Solution

3.1 Skew Density

The two equations (42) and (48) combined lead to the following

P ′′(C)

P ′(C)
− P ′(C)

P (C)
= − 1

C
(49)

whose solution P (C) is
P (C) = m|C|l (50)

where m(> 0), l are arbitrary constants. Finally, the formula (33) determines the rational
structure f

f(x, y) = f(Ĉ) =
∫
P (C)dĈ = h

∫
P (C)dC

= hm
∫

|C|ldC
(51)

where we see that the negative h can help achieve a decreasing stellar density ρ away from
the center if l + 1 is positive.

3.2 Parallel Integrals

The logarithmic density distribution (51) is the function of the single variable C, not the
function of the coordinates (x, y). Therefore, we can not draw its graph. To find (x, y),
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firstly we need to calculate the parallel integrals U(λ), V (µ). Substitution of the formula
(48) into the left-hand side of the equation (42) leads to

− 1

U + V
= − U ′′(λ) + V ′′(µ)

U ′2(λ) + V ′2(µ)
(52)

The above equation is

U(λ)V ′′(µ) + V (µ)U ′′(λ) = U ′2(λ) + V ′2(µ)− U(λ)U ′′(λ)− V (µ)V ′′(µ) (53)

The two variables λ and µ on the right-hand side of the above equation are separated.
Accordingly, the mixed partial derivatives to the left hand side must be zero

U ′(λ)V ′′′(µ) + V ′(µ)U ′′′(λ) = 0

The two variables λ and µ in the above equation are separated either. Accordingly, we
have {

U ′′(λ)− w2U(λ) = c1,
V ′′(µ) + w2V (µ) = c2

(54)

where w(> 0), c1, c2 are constants. The quantity w is exactly the letter included in the
name Riccati-Pw. The only solution to both the equation (53) and the equation (54) is

U(λ) = A cosh(wλ+ ϵ),
u(λ) = U ′(λ) = Aw sinh(wλ+ ϵ),
U ′′(λ) = Aw2 cosh(wλ+ ϵ),
V (µ) = A cos(wµ+ δ),
v(µ) = V ′(µ) = −Aw sin(wµ+ δ),
V ′′(µ) = −Aw2 cos(wµ+ δ)

(55)

where A(> 0), ϵ, δ are constants.
It appears that we have solved our rational structure equations. However, our final

goal is the determination of rational structure f(x, y) in the physical space (x, y). But
the results we have achieved are defined in the parameter space (λ, µ). The relationship
between the two spaces are exactly the net of orthogonal curves (2) which is determined
by P (C) (see the formula (35)). Therefore, in the following Sections we try to solve x(λ, µ)
and y(λ, µ) and their inverse based on the formula (35).

3.3 Orthogonal Curve Equations and their Solution

Now we look for x(λ, µ) and y(λ, µ), i. e., the harmonic coordinate curves (2) based on
the formula (35). Because C = A cosh(wλ+ ϵ)+A cos(wµ+ δ) is never negative, we have

P (λ, µ) = m|C|l = m|U + V |l = mC l (56)

The conjugate α(λ, µ) to L = ln(P ), satisfies the following Cauchy-Riemann equations

α′
µ = L′

λ = (lnP )′λ = lU
′(λ)
C
,

α′
λ = −L′

µ = −lV
′(µ)
C

(57)
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Therefore,
α′
λU

′(λ) = −α′
µV

′(µ) (58)

The solution to the corresponding characteristic equation is∫
dλ

U ′(λ)
−

∫
dµ

V ′(µ)
= c3 (59)

where c3 is another integral constant. Finally, the solution to the characteristic equation
is

tanh(ξ) tan(η) = c (60)

where c is a constant and

ξ =
wλ+ ϵ

2
, η =

wµ+ δ

2
(61)

Therefore, α(λ, µ) must be a composite function of the product Υ = tanh(ξ) tan(η)

α(λ, µ) = α(Υ) (62)

Substituting the above into an equation in (57), we have

α′
λ(λ, µ) = α′

ΥΥ
′
λ =

w

2
α′
Υ sech2ξ tan η = −lV

′(µ)

C
= l

Aw sin(2η)

A cosh(2ξ) + A cos(2η)
(63)

That is,

α′
Υ = 2l

2 cosh2 ξ cos2 η)

cosh(2ξ) + cos(2η)
(64)

Here we present a very important mathematical identity whose verification is left for the
readers,

2 cosh2 ξ cos2 η

cosh(2ξ) + cos(2η)
=

1

1 + tanh2 ξ tan2 η
(65)

Finally, we obtained the conjugate α to L,

α(λ, µ) = 2l arctanΥ + α0 = 2l arctan(tanh ξ tan η) + α0 (66)

where α0 is an integral constant. The constant rotates our structure in the (x, y) plane,
therefore, it is ignored.

Finally, we have the orthogonal curve equations derived from the formula (35)

x′µ = P cosα = mC l cos(2l arctan(tanh ξ tan η)),
x′λ = P sinα = mC l sin(2l arctan(tanh ξ tan η))

(67)

If we choose
l =

n

2
(68)

then we have the following result

x′µ = m(2A)n/2
(
Γn − (l2)Γ

n−2Λ2 + (l4)Γ
n−4Λ4 − · · ·

)
,

x′λ = m(2A)n/2
(
(l1)Γ

n−1Λ− (l3)Γ
n−3Λ3 + · · ·

) (69)
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Figure 1: Rational structures which result from the three roots of rational cubic equation.
The two graphs on the right side are the same rational structure in different resolutions.
The structure resembles the sharp bar of galaxy NGC 1073.

where (lk) are Newton’s binomial coefficients and

Γ = cosh ξ cos η, Λ = sinh ξ sin η (70)

In the above formulas and in the following We assume that

cos η ≥ 0 (71)

Introducing the complex variable
ζ = ξ + i η (72)

we have
x′µ + i x′λ = m

√
2A

n
coshn ζ (73)

This solution is denoted by Riccati-Pwn
2
. However, this paper deals with n = 3 only. In

the following Section, we solve the above equation and calculate f(x, y).

4 Graph of Riccati-Pw3
2 Solution

4.1 Orthogonal Curves

x′µ = P cosα = mC
3
2 cos(3 arctan(tanh ξ tan η)),

x′λ = P sinα = mC
3
2 sin(3 arctan(tanh ξ tan η))

(74)
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According to the formula (73), we have

x′µ + i x′λ = m
√
2A

3
cosh3 ζ =

m
√
A

3

√
2

(3 cosh ζ + cosh(3ζ)) (75)

Therefore,

x′η + i x′ξ = x′η − i (−y)′η =
d

dζ
(−y + i x) =

m
√
2
√
A

3

w
(3 cosh ζ + cosh(3ζ)) (76)

Its integration is

−y + i x =
m
√
2
√
A

3

w
(3 sinh ζ +

1

3
sinh(3ζ)) = H(3 sinh ζ + sinh3(ζ)) (77)

where H is a constant

H =
m2

√
2A

3

3w
(78)

To draw the graph of our rational structure, we need the inverse complex function to the
formula (77) {

ξ = ξ(x, y),
η = η(x, y)

(79)

That is, we need solve the following algebraic equation with a complex coefficient q

ν3 + pν + q = 0 (80)

where
ν = sinh ζ,
p = 3,
q = ŷ − i x̂ = y/H − i x/H

(81)

This equation is called a rational algebraic equation. In our case, it is a cubic equation.
Now we solve the cubic equation. It is straightforward to show that

(β + γ)3 − 3βγ(β + γ)− (β3 + γ3) = 0 (82)

which holds for any pair of complex numbers β, γ. Therefore,

ν = β + γ (83)

must be a solution to the cubic equation if

−3βγ = 3 = p (84)

and
−(β3 + γ3) = ŷ − i x̂ = q (85)

Simultaneously, β3, γ3 must be the two roots of the following quadratic equation

κ2 + qκ− p3/27 = κ2 + qκ− 1 = 0 (86)
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because the following identity holds

(κ− β3)(κ− γ3) = κ2 − (β3 + γ3)κ+ β3γ3 (87)

Now we look for the two roots of the quadratic equation (86). Its determinant is

∆ = q2 + 22 = δ1 + i δ2 = 4 + ŷ2 − x̂2 + i (−2x̂ŷ) (88)

The two roots are

κ1 = β3 = ϕ1 + i ϕ2 =
1
2

(
−ŷ +

√
|∆| cos(θ/2) + i (x̂+

√
|∆| sin(θ/2))

)
,

κ2 = γ3 = ψ1 + i ψ2 =
1
2

(
−ŷ −

√
|∆| cos(θ/2) + i (x̂−

√
|∆| sin(θ/2))

) (89)

where θ is a specific amplitude of the complex number ∆ while |∆| is its modulus (in this
paper, arg is always a specific amplitude)

θ = arg∆ = arccos
(
δ1/

√
δ21 + δ22

)
,

|∆| =
√

(4− r̂2)2 + 16ŷ2,

r̂ =
√
x̂2 + ŷ2

(90)

By now we have found the quantities β3, γ3. Their cubic roots are

βm = (ϕ2
1 + ϕ2

2)
1/6ei(arg κ1+2mπ)/3, m = 1, 2, 3

γn = (ψ2
1 + ψ2

2)
1/6ei(arg κ2+2nπ)/3, n = 1, 2, 3

(91)

The sum ν = βm + γn for an arbitrary pair of m and n may not be the solution to the
original cubic equation because the equation (84) may not be satisfied. However, the pair
(βm, γn) which satisfies (84) must exist. Suppose the pair is β, γ. Then the three roots of
the original cubic equation are

ν1 = β + γ,
ν2 = εβ + ε̄γ,
ν3 = ε̄β + εγ

(92)

where
ε = e2πi/3 = −1/2 + i

√
3/2, ε̄ = ε2 = e−2πi/3 = −1/2− i

√
3/2 (93)

Now we obtained the important quantity ν (see the formulas (92)). We can further
calculate ζ = sinh−1 ν (see the formulas (81)), and obtain the inverse function (79).
However, this is not necessary. In this paper we study the graph of rational structure
only. Therefore, our major concern is the logarithmic density f(x, y). It is the function
of the single variable C only (see (51)). That is, it is a skew quantity. Fortunately we
have a very simple formula for C

C = A(cosh(2ξ) + cos(2η)) = 2A| cosh ζ| = 2A
∣∣∣√1 + sinh2 ζ

∣∣∣
= 2A

∣∣√1 + ν2
∣∣ (94)

Its proof is straightforward and ignored. Therefore,

f(x, y) = hm

∫
C ldC =

hm

l + 1
C l+1 =

2hm

5
C5/2 (95)
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Figure 2: Longer wavelength image of NGC 1073 (image credit [9]).

Our structure involves the constant parameters, h,m,w,A. For example, a larger absolute
value of h corresponds to a sharper structure.

The graphs of the three rational structures which correspond to the three roots of the
cubic equation respectively, are displayed in Fig. 1. The structure which results from the
second root presents a bar pattern. It resembles the sharp bar of galaxy NGC 1073 (see
Fig. 2, image credit [9]). The first important question is: Do the structures approach the
exponential disk when r =

√
x2 + y2 → ∞?

4.2 The Limiting Structure of Riccati-Pw 3
2

Taking the complex number q to be in the first quadrant in the (x, y) plane (see the
formula (85)) and assuming

|q| = |ŷ − i x̂| =
√
x̂2 + ŷ2 → ∞ (96)

we have
x̂ ≤ 0, , ŷ ≥ 0, 0 ≤ θ ≤ π,

+
√
∆ → q,

κ1 → 0, βm → 0, m = 1, 2, 3
κ2 → q, |γn| → |q|1/3 = r̂1/3, n = 1, 2, 3
|ν| → |γ| → r̂1/3,

C = 2A
∣∣√1 + ν2

∣∣ → 2A
∣∣∣√ν2∣∣∣ = 2A|ν| → 2Ar̂1/3,

f ∼ C5/2 → r̂5/6 ∼ r̂,
ρ ∼ exp(−r̂)

(97)

That is, our rational structures do approach the exponential disk.
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5 Conclusion and Future Work

The discovery in 2013 of the skew law (see the formula (25) and the reference [10]), is the
greatest breakthrough in rational structure study. The mathematical theory discussed in
the current paper is based on the law. Our Riccati equation results from the law, and
all rational structures must satisfy the equation. The equation is an ordinary differential
equation and we found all its solutions in our case. Substituting each solution to the
necessary and sufficient condition for rational structure (i. e., the skew equation (41)),
leads to the equation systems governing the parallel integrals. The solutions of parallel
integrals always involve a constant w due to the method of separated variables. This
constant always appears in the names of our solutions. For example, Riccati-0w is the
constant solution to the Riccati equation with the zero coefficient a = 0 and nonzero
w(̸= 0). It is interesting that Riccati-00 is the familiar rational structure of exponential
disk. Astronomical observation shows that galaxy structure extends “infinitely” in its disk
plane and its stellar density becomes zero in the infinite area. These are called the galaxy
principles. A preliminary study shows that Riccati-0w, Riccati-a0, and Riccati-aw do not
meet the principles. The preliminary study also indicates that the density distribution
of Riccati-Tw and Riccati-Hw may not decrease radially in an exponential law. Instead,
it may decrease in a power law. Coincidentally, the stellar density of elliptical galaxies
obeys a power law. Therefore, the solutions of Riccati-Tw and Riccati-Hw deserve further
investigation.

The structure of Riccati-Pw 1
2
is the Heaven Breasts. Its density decreases in an ex-

ponential law, ρ(x, y) ∼ exp(−r3). However, it does not approach the exponential disk
exp(−r). Astronomical observation shows that galaxies always have a bright center.
Therefore, Heaven Breasts can not exist independently. I added the Heaven Breasts
structure ρb ∼ exp(−r3) to the exponential disk ρd ∼ exp(−r) to simulate barred galaxy
structure,

ρ ≈ ρd + ρb1 + ρb2 (98)

It fits to galaxy images very well. However, rational structure must satisfy the nonlinear
Riccati equation. Therefore, the above formula is not mathematically a rational structure.
However, it is a good approximation.

This paper presents a detailed study on Riccati-Pw 3
2
. It gives three different rational

structures corresponding to the three roots of rational cubic equation. Two of the solutions
present the similar structure to Heaven Breasts. The third solution displays a bar pattern.
It resembles the sharp bar of galaxy NGC 1073. Therefore, we need solve rational algebraic
equations of higher degrees and display the structure of Riccati-Pwn

2
. Especially we need

solve the rational quartic equation to see its four patterns. Are all barred galaxies governed
by the rational algebraic equations? The question will be resolved in the near future.

6 Acknowledgement

The author wishes to thank C. He, B. He, X. L. Yang, T. Hock, and M. Doyle for important
discussion.

17



7 Appendix

The following is the c++ computer program file whose data output gim[m][n] is used in
our graph (Figure 1):

#include<stdio.h>
#include<math.h>
#include<iomanip.h>
#include<fstream.h>
const int Mm=100,Nm=100;
int rs=2;
long double pi=3.14159265358979323846,hpi=pi*0.5,tpi=pi*2,qpi=pi*0.25;
long double rh0=8000,hh=-0.4,mm=1,AA=1,www=1,gim[102][102]=0;
int main()
int m,n,hM=Mm/2,hN=Nm/2;
long double MX,MY,DI,DJ;
long double cc,X,Y,xb,yb,da,db,argD,rb,rom,phi1,phi2,psi1,psi2,argka1,argka2,

betaR,betaI,gammaR,gammaI,nuR,nuI;
MX=10;MY=MX;DI=2*MX/Mm;DJ=2*MY/Nm;
for(m=hM+1;m¡=Mm;m++){

X=(m-hM-0.5)*DI;
xb=X*3*www/( 2*mm*exp(1.5*log(2*AA)) );
for(n=1;n¡=hN;n++){
Y=(n-hN-0.5)*DJ;
yb=Y*3*www/( 2*mm*exp(1.5*log(2*AA)) );
da=4+yb*yb-xb*xb; db=-2*xb*yb;
argD=acos(da/sqrt(da*da+db*db));
rb=sqrt(xb*xb+yb*yb);
rom=sqrt( (4-rb*rb)*(4-rb*rb)+16*yb*yb );
phi1=0.5*( -yb+sqrt(rom)*cos(0.5*argD) );
phi2=0.5*( xb+sqrt(rom)*sin(0.5*argD) );
psi1=0.5*( -yb-sqrt(rom)*cos(0.5*argD) );
psi2=0.5*( xb-sqrt(rom)*sin(0.5*argD) );
argka1=acos(phi1/sqrt(phi1*phi1+phi2*phi2));
argka2=acos(psi1/sqrt(psi1*psi1+psi2*psi2));
if(rs==1){
betaR=exp(log(phi1*phi1+phi2*phi2)/6.)*cos(argka1/3.+tpi/3.);
betaI=exp(log(phi1*phi1+phi2*phi2)/6.)*sin(argka1/3.+tpi/3.);
gammaR=exp(log(psi1*psi1+psi2*psi2)/6.)*cos(argka2/3.);
gammaI=exp(log(psi1*psi1+psi2*psi2)/6.)*sin(argka2/3.);

}else if(rs==2){
betaR=exp(log(phi1*phi1+phi2*phi2)/6.)*cos(argka1/3.+2*tpi/3.);
betaI=exp(log(phi1*phi1+phi2*phi2)/6.)*sin(argka1/3.+2*tpi/3.);
gammaR=exp(log(psi1*psi1+psi2*psi2)/6.)*cos(argka2/3.-tpi/3.);
gammaI=exp(log(psi1*psi1+psi2*psi2)/6.)*sin(argka2/3.-tpi/3.);
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}else{
betaR=exp(log(phi1*phi1+phi2*phi2)/6.)*cos(argka1/3.);
betaI=exp(log(phi1*phi1+phi2*phi2)/6.)*sin(argka1/3.);
gammaR=exp(log(psi1*psi1+psi2*psi2)/6.)*cos(argka2/3.+tpi/3.);
gammaI=exp(log(psi1*psi1+psi2*psi2)/6.)*sin(argka2/3.+tpi/3.);

}
nuR=betaR+gammaR; nuI=betaI+gammaI;
cc=AA*2*sqrt( (1+nuR*nuR-nuI*nuI)*(1+nuR*nuR-nuI*nuI)+4*nuR*nuI*nuR*nuI );
cc=hh*mm*exp( 2.5*log(cc) )/2.5;
gim[m][n]=rh0*exp(cc);
gim[hM-(m-hM)+1][n]=gim[m][n];
gim[m][hM-(n-hM)+1]=gim[m][n];
gim[hM-(m-hM)+1][hM-(n-hM)+1]=gim[m][n];

}//n
}//m
return 0;
}
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