Modern Space-Time Ken S. Tucker February 18, 2014

Abstract

The Interdefinition of Length and Time

Since 1983, the meter, second and speed of light "c" have been defined by N meters = c * 1 second with N = 299,792,458.

We find, that's had a profound effect on Relativity Theory.

In the MKS system of units we have the basis vectors \vec{e}^0 , \vec{e}^1 , \vec{e}^2 , \vec{e}^3 such that the magnitudes are,

$$|\vec{e}^{i}| = 1 meter, \{i = 1, 2, 3\} \ and \ |\vec{e}^{0}| = c * 1 \sec ond \ .$$
 (1)

These are related by $N*|\vec{e}^i|=|\vec{e}^0|$ as per International definition. We may of course eliminate the N by an arbitrary change in the length scale to simplify to $|\vec{e}^i|=|\vec{e}^0|$. With it understood the $|\vec{e}^u|$ are the 4D basis vectors, we define our metrics by the scalar products herein,

$$g_{uv} = \vec{e}_u \cdot \vec{e}_v \quad and \quad g^{uv} = \vec{e}^u \cdot \vec{e}^v,$$
 (2)

being the covariant and contra variant metric tensors.

In a Cartesian Coordinate System that yields,

$$g_{00} = g_{11} = g_{22} = g_{33} = 1 (3)$$

An Alternative to the conventional Minkowski Metric.

In flat space we set $g_{00} = g_{11} = g_{22} = g_{33} = 1$ and $g_{0i} = -dx^i/dx^0$, that and that works well when merging SR with GR, neatly expressed,

$$U_i U^i = 0 (4)$$

as the definition the modern Theory of Relativity as required by the new 1983 definition of time.

Expand that to detail time and space as,

$$U_0 U^0 + U_i U^i = 1, \{ i = 1, 2, 3 \}$$
(5)

The U_iU^i is *absolute velocity* and since one can always find a CS where motion of something is zero, is the same as saying motion is relative,

hence, $U_i U^i = 0 = absolute motion$ is the

covariant way (for all CS's using tensors) of writing "motion is relative".

Of course relative motion is retained by U^{i} and being non-zero generally produces,

$$U_i = 0$$
, generally. (6)

Now we can use association to obtain,

$$U_{i} = g_{i\mu}U^{\mu} = 0 \tag{7}$$

and expand index " μ " in time and space $\{0,i\}$ to,

$$0 = g_{i0}U^0 + g_{ij}U^j$$
 (8)

Using algebra we see,

$$g_{i0} = -g_{ij}U^{j}/U^{0} = -g_{ij}dx^{j}/dx^{0}$$
(9)

Specifying a flat space-time metric g_{ij} simplifies to the Kronecker delta and so, $g_{i0} = -dx^i/cdt$

simplified, and is aberration...a real effect well established by experiment.

Now we substitute the nonorthogonal components in in $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$ by expanding indices " μ " and " ν " over time and space,

$$ds^{2} = g_{00}dx^{o}dx^{0} + 2g_{oi}dx^{0}dx^{i} + g_{ij}dx^{i}dx^{j}$$
(10)

From Equation (9) substitute in $g_{0i} = -g_{ij}dx^{j}/dx^{0}$ and get

$$ds^{2} = g_{00}dx^{0}dx^{0} - g_{ii}dx^{i}dx^{j}$$
 (generally), (11)

substituting in a simplified metric $g_{00}g_{11}...=1$ and $dx^0=cdt$ to get the familiar

$$ds^{2} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}$$
(12)

that Minkowski and later Einstein needed for GR.

The relative motion and the vanishing of *absolute* motion has been deduced to $\boldsymbol{U}_i = \boldsymbol{0}$.

Above, we see the only metric compatible with $U_i = 0$ is, $ds^2 = g_{00}dx^0dx^0 - g_{ij}dx^idx^j \text{ (generally)}. \tag{13}$

Note: The $\sqrt{1}$ is not applicable or possible in time or space, (it may be mathematically possible to transform $\sqrt{-1}$ axes to normal axes).

For Conception Dynamics Ken S. Tucker

© 2014