Modern Space-Time

Ken S. Tucker
January 18, 2014

Abstract

The Interdefinition of Length and Time.

Since 1983, the meter, second and speed of light "c" have been defined by
N meters $=\mathrm{c} * 1$ second with $\mathrm{N}=299,792,458$.
We find, that's had a profound effect on Relativity Theory.
In the MKS system of units we have the basis vectors $\vec{e}^{0}, \vec{e}^{1}, \vec{e}^{2}, \vec{e}^{3}$ such that the magnitudes are,
$\left|\vec{e}^{i}\right|=1$ meter, $\{i=1,2,3\}$ and $\left|\vec{e}^{0}\right|=c * 1 \sec$ ond.
These are related by $\mathrm{N} *\left|\sim \mathrm{e}_{\mathrm{i}}\right|=|\sim \mathrm{e} 0|$ as per International definition. We may of course eliminate the N by an arbitrary change in the length scale to simplify to $\left|\vec{e}^{i}\right|=\left|\vec{e}^{0}\right|$. With it understood the $\left|\vec{e}^{u}\right|$ are the 4D basis vectors, we define our metrics by the scalar products herein,
$g_{u v}=\vec{e}_{u} \bullet \vec{e}_{v}$ and $g_{u v}=\vec{e}^{u} \bullet \vec{e}^{v}$,
being the covariant and contravariant metric tensors.
In a Cartesian Coordinate System that yields,

$$
\begin{equation*}
g_{00}=g_{11}=g_{22}=g_{33}=1 . \tag{3}
\end{equation*}
$$

An Alternative to the conventional Minkowski Metric.
In flat space we set $g_{00}=g_{11}=g_{22}=g_{33}=1$ and $g_{0 i}=-d x^{i} / d x^{0}$, that and that works well when merging SR with GR, neatly expressed,

$$
\begin{equation*}
U_{i} U^{i}=0 \tag{4}
\end{equation*}
$$

as the definition the modern Theory of Relativity as required by the new 1983 definition of tme.

Expand that to detail time and space as,

$$
\begin{equation*}
U_{0} U^{0}+U_{i} U^{i}=1,\{i=1,2,3\} \tag{5}
\end{equation*}
$$

The $U_{i} U^{i}$ is *absolute velocity* and since one can always find a CS where motion of something is zero, is the same as saying motion is relative,
hence, $U_{i} U^{i}=0=$ absolute motion is the covariant way (for all CS's using tensors) of writing "motion is relative". Of course relative motion is retained by U^{i} and being non-zero generally produces,
$U_{i}=0$, generally.
Now we can use association to obtain,
$U_{i}=g_{i \mu} U^{\mu}=0$
and expand index " μ " in time and space $\{0, i\}\{0, \mathrm{i}\}$ to,
$0=g_{i 0} U^{0}+g_{i j} U^{j}$

Using algebra we see,
$g_{i 0}=-g_{i j} U^{j} / U^{0}=-g_{i j} d x^{j} / d x^{0}$
Specifying a flat space-time metric $g_{\mathrm{ij}} \operatorname{simplifies}$ to the Kronecker delta and so,
$g_{i 0}=-d x^{i} / c d t$
simplified, and is aberration...a real effect well established by experiment.
Now we substitute the nonorthogonal components in
in $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$ by expanding indices " μ " and " v " over time and space,
$d s^{2}=g_{00} d x^{o} d x^{0}+2 g_{o i} d x^{0} d x^{i}+g_{i j} d x^{i} d x^{j}$

From Equation (9) sub in $g_{0 i}=-g_{i j} d x^{j} / d x^{0}$ and get
$d s^{2}=g_{00} d x^{0} d x^{0}-g_{i j} d x^{i} d x^{j}$ (generally).
Sub in a simplified metric $g_{00}, g_{11} \ldots=1$ and $d x^{0}=c d t$ to get the familiar
$d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$
that Minkowski and later Einstein needed for GR.
The relative motion and the vanishing of *absolute* motion has been deduced to $U_{i}=0$.

Above, we see the only metric compatible with $U_{i}=0$ is, $d s^{2}=g_{00} d x^{0} d x^{0}-g_{i j} d x^{i} d x^{j}$ (generally).
Note: The $\sqrt{1}$ is not applicable or possible in time or space, (it may be mathematically possible to transform $\sqrt{-1}$ axes to normal axes).

For Conception Dynamics
Ken S. Tucker

