MEASUREING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH HIERARCHY

KOBAYASHI KOJI

1. Abstract

This article describes about that NC/Polynomial hierarchy difference and P is not NP by using problem reduction. If L is not P, we can prove P is not NP by using difference between logarithm space reduction and polynomial time reduction. Like this, we can also prove NC hierarchy by using difference between AL0 and NC1. This means L is not P. Therefore P is not NP. And we can also prove Polynomial hierarchy by using P is not NP.

Theorem 1. $L \subsetneq P \rightarrow P \subsetneq NP$

Proof. To prove it by using contraposition $P = NP \rightarrow L = P$. P = NP then $\forall A \in NP \exists B \in P (A = B)$

As we all know $NP \circ FP \in NP$. From assumption P = NP, all $NP \circ FP$ correspond to P. Therefore

 $P = NP \to \forall C \in NP \forall D \in FP \exists E \in P (C \circ D = E)$

Mentioned [1] Theorem 10.43, all ${\cal P}$ are closed under logarithm space reduction FL. Therefore

 $\begin{aligned} \exists F \in P \forall H \in P \exists G \in FL \ (F \circ G = H) \\ \text{That is,} \\ P = NP \\ \rightarrow \exists F \in P \forall C \in NP \forall D \in FP \exists G \in FL \ (C \circ D = F \circ G) \\ \rightarrow \forall D \in FP \exists G \in FL \ (D = G) \\ \text{This means } L = P. \end{aligned}$

3. NC HIERARCHY

And we use circuit problem as follows;

Definition 2. We will use the term " AC^{i} " as uniform circuits family set that compute AC^{i} problem, " NC^{i} " as uniform circuits family set that compute NC^{i} problem, " RC^{i} " as reversible circuits family that compute NC^{i} problem. " $f \circ g$ " as connected circuit that g outputs connect to f inputs. In this case, we also use circuits family or circuits family set. For example, $A \circ BB$ of circuits family A and circuits family set BB means a circuit that $a \circ b \mid a \in A, b \in B \in BB$. Circuits family uniformity is that these circuits can compute AC^{0} .

Theorem 3. AC^i has Universal Circuits Family that can emulate all AC^i circuits family.

Proof. To prove this theorem by making universal circuit family $A^i \in AC^i$ that emulate circuit family $\{C_j\} \in AC^i$ by using "depth circuit tableau". Universal circuit $U_j \in A^i$ have partial circuit $u_{k,d}$ that emulate all C_j gates $g_{k\in n}$ (include input value) and connected wires $w_{p,q}$ from g_p output to g_q input in every depth d. $(w_{p,p}$ always exist)

 $u_{v \in n,d}$ have inputs from all $u_{u \in n,d-1}$ and g_u information that mean

a) validity of $u_{u,d-1}$

b) $u_{u,d-1}$ output (true if g_u output true)

c) existence of $w_{u,v}$ (true if $w_{u,v}$ is exists)

d) negation of $w_{u,v}$ (true if $w_{u,v}$ include not gate)

e) gate type of g_v (Or gate or And gate)

and outputs to $u_{w \in n, d+1}$ that mean

A) validity of $u_{v,d}$

B) $u_{v,d}$ output

These $u_{v,d}$ compute output like this;

If $u_{u,d-1}$ a) or c) input false then $u_{v,d}$ ignore $u_{u,d-1}$.

If $u_{u,d-1}$ a) and c) input true then $u_{v,d}$ A) output true and $u_{v,d}$ B) output g_k value that compute from e), b), d). b), d) include another $u_{w \in n,d-1}$ b), d).

If all a) input false then $u_{k,d}$ A) output false.

If all c) input false then $u_{k,d}$ A) output false.

And depth 0 circuit compute additional condition;

If $u_{k,0}$ is C_j input then $u_{k,0}$ A) output true and $u_{i,d}$ B) output C_j input value, else $u_{k,0}$ A) output false.

This U_j that consists of u emulate C_j . We can make every u in AC^0 , so that A^i in AC^i .

Therefore, this theorem was shown.

Definition 4. We will use the term " A^{i} " as universal circuits family that compute AC^{i} problem, " N^{i} " as universal circuits family that compute NC^{i} problem.

 \square

Theorem 5. AC^0 can reduce all AC^i to A^i . That is, A^i is closed under AC^0 reduction.

Proof. Mentioned above 23, we can make all AC^i by using AC^0 and we can connect these AC^i to A^i . That is, we can emulate all AC^i circuit by using $A^i \circ AC^0$. From the view of A^i , AC^0 is input reduction from AC^i to A^i . Therefore, this theorem was shown.

Theorem 6. $NC^i \subsetneq NC^{i+1}$

Proof. We can prove this theorem like mentioned above 1.

To prove it using reduction to absurdity. We assume that $NC^i = AC^i = NC^{i+1}$. From assumption, there is;

 $\forall A \in NC^{i+1} \exists B \in NC^{i} (A = B)$

 $\forall C \in AC^i \exists D \in NC^i \, (C = D)$

As we all know $NC^i \circ NC^1 \in NC^{i+1}$. From assumption $NC^i = AC^i = NC^{i+1}$, all $NC^i \circ NC^1$ correspond to NC^i . Therefore

 $NC^{i} = AC^{i} = NC^{i+1} \rightarrow \forall C \in NC^{i} \forall D \in NC^{1} \exists E \in NC^{i} (C \circ D = E)$

Mentioned above 5, all AC^i are closed by AC^0 reduction to universal circuit A^i . Therefore

 $\forall H \in AC^i \exists G \in AC^0 \left(A^i \circ G = H \right)$

MEASUREING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC & PH HIERARCHS

That is, $NC^{i} = AC^{i} = NC^{i+1}$ $\rightarrow \forall C \in NC^{i} \forall D \in NC^{1} \exists G \in AC^{0} (C \circ D = A^{i} \circ G)$ $\rightarrow \forall D \in NC^{1} \exists G \in AC^{0} (D = G)$ But this means $AC^{0} = NC^{1}$ and contradict $AC^{0} \subsetneq NC^{1}$. Therefore, this theorem was shown than reduction to absurdity.

4. P is not NP

Theorem 7. $P \neq NP$

Proof. Mentioned above 1, $L \subsetneq P \rightarrow P \subsetneq NP$. And mentioned above 6, $L \subset NC^i \subsetneq NC^{i+1} \subset P$. Therefore $P \subsetneq NP$.

5. Polynomial Hierarchy

Theorem 8. $\Pi_k \subsetneq \Sigma_{k+1}, \Sigma_k \subsetneq \Pi_{k+1}$

Proof. We can prove this theorem like mentioned above 6.

To prove it using reduction to absurdity. We assume that $\Pi_k = \Sigma_{k+1}$. From assumption, there is;

 $\forall A \in \Sigma_{k+1} \exists B \in \Pi_k \ (A = B)$

As we all know $\Pi_k \circ \Sigma_1 \in \Sigma_{k+1}$. From assumption $\Pi_k = \Sigma_{k+1}$, all $\Pi_k \circ \Sigma_1$ correspond to Π_k . Therefore

 $\Pi_{k} = \Sigma_{k+1} \to \forall C \in \Pi_{k} \forall D \in \Sigma_{1} \exists E \in \Pi_{k} \left(C \circ D = E \right)$

Mentioned [2] Theorem 6.21 and 6.22, all Σ_k and Π_k are closed under polynomial time reduction Δ_1 . Therefore

 $\exists F \in \Pi_k \forall H \in \Pi_k \exists G \in \Delta_1 \left(F \circ G = H \right)$ That is,

 $\Pi_k = \Sigma_{k+1}$

 $\rightarrow \exists F \in \Pi_k \forall C \in \Pi_k \forall D \in \Sigma_1 \exists G \in \Delta_1 \left(C \circ D = F \circ G \right)$

 $\rightarrow \forall D \in \Sigma_1 \exists G \in \Delta_1 \, (D = G)$

But this means $\Delta_1 = \Sigma_1$ and contradict $P \subsetneq NP$. Therefore $\Pi_k \subsetneq \Sigma_{k+1}$. We can prove $\Sigma_k \subsetneq \Pi_{k+1}$ like this.

Therefore, this theorem was shown than reduction to absurdity.

References

 Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION Second Edition, 2008

^[2] OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006