MEASUREING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC HIERARCHY

KOBAYASHI KOJI

1. Abstract

This article describes about that NC hierarchy and P is not NP by using problem reduction. If L is not P, we can prove P is not NP by using difference between logarithm space reduction and polynomial time reduction. Like this, we can also prove NC hierarchy by using difference between AL0 and NC1. This means L is not P. Therefore P is not NP.

2. PREPARATION

In this article, we will use words and theorems of References [1, 2, 3] in this paper. And we use description as follows;

Definition 1. We will use the term "pDTM" as Turing Machine set that compute P, "LDTM" as Turing Machine set that compute L. "RpDTM" as Reversible pDTM.

And we use circuit problem as follows;

Definition 2. We will use the term " AC^{i} " as uniform circuits family set that compute AC^{i} problem, " NC^{i} " as uniform circuits family set that compute NC^{i} problem, " RC^{i} " as reversible circuits family that compute NC^{i} problem. " $f \circ g$ " as connected circuit that g outputs connect to f inputs. In this case, we also use circuits family or circuits family set. For example, $A \circ BB$ of circuits family A and circuits family set BB means a circuit that $a \circ b \mid a \in A, b \in B \in BB$. Circuits family uniformity is that these circuits can compute AC^{0} .

3. P IS NOT NP IF L IS NOT P

Theorem 3. $L \subsetneq P \rightarrow P \subsetneq NP$

Proof. To prove it by using contraposition $P = NP \rightarrow L = P$. If P = NP, then all $A, B \in NP - Complete$ have $f \in LDTM$ that reduce A to B. $P = NP \rightarrow \forall A, B \in NP - Complete \exists f \in LDTM (f(A) = B)$ If $g \in RpDTM$ then $A \leq_p g(A)$ and $g(A) \leq_p g^{-1}(g(A)) = A \in NP \Longrightarrow g(A) \in NP$ Therefore $g(A) \in NP - Complete$ That is, $\forall A \in NP - Complete, g \in RpDTM \exists f \in LDTM (f(A) = g(A))$ As we all know, all pDTM correspond to RpDTM and LDTM can pick up pDTM output from RpDTM output. That is; $\forall f \in pDTM (\exists g \in RpDTM, h \in LDTM (h \circ g = f))$

So that this means L = P.

Therefore, this theorem was shown.

4. NC HIERARCHY

Theorem 4. AC^i has Universal Circuits Family that can emulate all AC^i circuits family.

Proof. To prove this theorem by making universal circuit family $A^i \in AC^i$ that emulate circuit family $\{C_j\} \in AC^i$ by using "depth circuit tableau". Universal circuit $U_j \in A^i$ have partial circuit $u_{k,d}$ that emulate all C_j gates $g_{k\in n}$ (include input value) and connected wires $w_{p,q}$ from g_p output to g_q input in every depth d. $(w_{p,p}$ always exist)

 $u_{v \in n,d}$ have inputs from all $u_{u \in n,d-1}$ and g_u information that mean

b) $u_{u,d-1}$ output (true if g_u output true)

c) existence of $w_{u,v}$ (true if $w_{u,v}$ is exists)

d) negation of $w_{u,v}$ (true if $w_{u,v}$ include not gate)

e) gate type of g_v (Or gate or And gate)

and outputs to $u_{w \in n, d+1}$ that mean

A) validity of $u_{v,d}$

B) $u_{v,d}$ output

These $u_{v,d}$ compute output like this;

If $u_{u,d-1}$ a) or c) input false then $u_{v,d}$ ignore $u_{u,d-1}$.

If $u_{u,d-1}$ a) and c) input true then $u_{v,d}$ A) output true and $u_{v,d}$ B) output g_k value that compute from e), b), d). b), d) include another $u_{w \in n,d-1}$ b), d).

If all a) input false then $u_{k,d}$ A) output false.

If all c) input false then $u_{k,d}$ A) output false.

And depth 0 circuit compute additional condition;

If $u_{k,0}$ is C_j input then $u_{k,0}$ A) output true and $u_{i,d}$ B) output C_j input value, else $u_{k,0}$ A) output false.

This U_j that consists of u emulate C_j . We can make every u in AC^0 , so that A^i in AC^i .

Therefore, this theorem was shown.

Definition 5. We will use the term " A^{i} " as universal circuits family that compute AC^{i} problem, " N^{i} " as universal circuits family that compute NC^{i} problem.

Theorem 6. AC^0 can reduce all AC^i to A^i . That is, A^i is $AC^i - Complete$ with AC^0 reduction.

Proof. Mentioned above 24, we can make all AC^i by using AC^0 and we can connect these AC^i to A^i . That is, we can emulate all AC^i circuit by using $A^i \circ AC^0$. From the view of A^i , AC^0 is input reduction from AC^i to A^i . Therefore, this theorem was shown.

Theorem 7. $NC^i \subsetneq NC^{i+1}$

a) validity of $u_{u,d-1}$

MEASUREING COMPLEXITY BY USING REDUCTION TO SOLVE P VS NP AND NC HIERARCHY

Proof. We can prove this theorem like mentioned above 3.

To prove it using reduction to absurdity. We assume that $NC^i = AC^i = NC^{i+1}$. From assumption $NC^i = AC^i$ and mentioned above 4, universal circuit $N^i \in NC^i$ also exists.

 $NC^i = AC^i \rightarrow \exists N^i \in NC^i (N^i = A^i)$

As we all know, NC^{i+1} include $N^i \circ a' \mid a \in RC^1$ circuits, and all NC^1 correspond to RC^1 and AC^0 can pick up NC^1 output from RC^1 output. That is; $\forall a \in RC^1 (N^i \circ a \in NC^{i+1})$ $\forall c \in NC^1 (\exists a \in RC^1, b \in AC^0, (b \circ a = c))$ From assumption $AC^i = NC^{i+1}$, all $N^i \circ a$ correspond to AC^i . Therefore $AC^i = NC^{i+1} \rightarrow \forall a \in RC^1 (N^i \circ a \in AC^i)$ Mentioned above 6, AC^i have AC^0 reduction to universal circuit A^i . $\forall d \in AC^i \exists e \in AC^0 (A^i \circ e = d)$ That is, $NC^i = AC^i = NC^{i+1}$ $\rightarrow \forall a \in RC^1 \exists e \in AC^0 (N^i \circ a = A^i \circ e)$ $\rightarrow \forall f \in NC^1 \exists e, h \in AC^0 (f = h \circ e)$ But this means $AC^0 = NC^1$ and contradict $AC^0 \subsetneq NC^1$. Therefore, this theorem was shown than reduction to absurdity.

Theorem 8. $P \neq NP$

Proof. Mentioned above 3, $L \subsetneq P \rightarrow P \subsetneq NP$. And mentioned above 7, $L \subset NC^i \subsetneq NC^{i+1} \subset P$. Therefore $P \subsetneq NP$.

References

- Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki, FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION Second Edition, 2008
- $\left[2\right]$ OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006
- [3] MORITA Kenichi, Reversible Computing, 2012