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The chiral potential is inverse square. The family of inverse square potentials includes the vector
Lorentz potential of the quantum Hall and Aharonov-Bohm effects, and the centrifugal, Coriolis, and
three body potentials. The associated impedances are scale invariant, quantum Hall being the most
familiar. Modes associated with scale invariant impedances communicate only quantum phase, not
an observable in a single quantum measurement. Modes associated with scale dependent impedances,
including among others those of the 1/r monopole and 1/r3 dipole potentials, communicate both
phase and energy. Making this clarifying distinction between phase (relative time) and energy
explicit presents a new perspective on the anomaly. This approach is introduced via the Rosetta
Stone of modern physics, the hydrogen atom. Precise impedance-based π0, η, and η′ branching ratio
calculations are presented as ratios of polynomials in powers of the fine structure constant, followed
by discussion. Mass generation via chiral symmetry breaking is not addressed in the present paper.

INTRODUCTION

Anomalies may be defined as “...breakings of classical
symmetries by quantum corrections, which arise when
the regularizations needed to evaluate small fermion loop
Feynman diagrams conflict with a classical symmetry of
the theory.”[1]

In a finite quantum theory chiral symmetry appears
to be broken only by weak interactions. The presence of
the anomaly in strong and electromagnetic quantum field
theory (QFT) calculations[1–8] seems to be an inevitable
result of the regularization needed to remove infinities
before mass and charge renormalizations can be accom-
plished. However, one has a choice - in the presence of
the anomaly either chiral symmetry or gauge invariance
must be broken.

The requirement for gauge invariance is driven by the
need to maintain phase coherence. In QFT, quantum
phase coherence in the presence of potentials is main-
tained via the covariant derivative. This is essential. A
theory without phase coherence is not a quantum theory.

The impedance approach is gauge invariant.
Gauge invariance is built in. Complex impedances shift
phases. Complex quantum impedances shift quantum
phases. The scale invariant impedance associated with
the chiral potential[9, 10] communicates quantum phase
and only quantum phase[11–13]. No need for the co-
variant derivative. One need only take the appropriate
impedances into account.

The phase-only character of inverse square potentials,
their incapacity to do work, is emphasized in the related
case of the centrifugal potential of the free Schroedinger
particle by Holstein[14]. The symmetry is understood to
be scale invariance (unbroken sans regularization).

The impedance approach is finite. Impedance is
a geometric concept, depends on size and shape. In the
limit of the small, the point/singularity is infinitely mis-

matched to you and I. We cannot share energy with it.
While presumably equally decoupled, the quantum limit
of the large is more subtle, in the emergent realm of
the classical, and ultimately the cosmological. In both
limits, small and large, divergences are removed by the
impedance mismatches. Regularization and renormaliza-
tion are not necessary.

The anomaly does not arise in the impedance ap-
proach, a result of the finiteness and gauge invariance.

The chiral current comprises quantum phase and only
quantum phase, not a single-measurement observable.
With proper inclusion of chiral phase, or more generally
appropriate scale invariant impedances, conflict between
chiral symmetry and gauge invariance is removed.

What then of the anomaly? QFT relies on the anomaly
for calculation of π0 branching ratios[1–8]. This suggests
that an inverse-square potential term is missing from the
Lagrangian, that this term would remove the anomaly,
and that in its presence the correct π0 branching ratios
would be found without the anomaly.

In what follows the generalization of quantum
impedances to all potentials is outlined, and the model to
which this generalization is applied is presented. Quan-
tum impedance matching is then introduced via the
Rosetta Stone of modern physics, the hydrogen atom.

The quantum impedance network and the unstable ele-
mentary particle spectrum are tied together by the man-
ner in which the coherence lengths of the unstable parti-
cles are determined by the α-spaced conjunctions of the
scale-dependent mode impedances. This is followed by
impedance-based branching ratio calculations of both π0

and η, and a quantitative discussion of the η′.

The next section (branching ratio calculations) is long
relative to the overall length of this note, and focused on
details of quantum impedances. The reader less familiar
with the concept of impedance might choose to browse
to the Discussion, giving good attention to the figures.
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FIG. 1. Far and near field 13.6eV photon and scale invariant
electron impedances as a function of spatial scale as defined
by photon energy. The role of the fine structure constant α
is prominent in the figure.

BRANCHING RATIO CALCULATIONS

Quantum Impedances

Every circuit designer knows - impedances govern the
flow of energy. This is not a theoretical musing. Classical
or quantum impedances, mechanical or electromagnetic,
fermionic or bosonic, topological,... To understand the
flow of energy it is essential to understand the relations
between the relevant impedances.

A novel method for calculating mechanical
impedances[15], both classical and quantum, was
presented earlier[12]. In that work a background in-
dependent version of Mach’s principle emerged from a
rigorous analysis of the two body problem, permitting
simple and direct calculation of these impedances.

The two body problem is innately one-dimensional.
The mechanical impedances derived from Mach’s prin-
ciple can be converted to the more familiar electrical
impedances by adding the attribute of line charge den-
sity, that of the electric charge quantum confined to the
Compton wavelength of the particle in question.

This method of generalizing quantum impedances from
the photon and quantum Hall impedances to those asso-
ciated with all potentials and forces provides a versatile
tool, one that has been effectively applied to the elemen-
tary particle spectrum, the mechanics of local and non-
local quantum state reduction, establishment of an ex-
act relationship between gravity and electromagnetism,
and a possible resolution of the black hole information
paradox[12].

More recently, quantum impedances have been em-
ployed in exploring the role of time symmetry in quantum
mechanics[13, 16], and the relationship of the impedance
approach to other interpretations of the formalism of
quantum mechanics has been clarified[11].

The Impedance Model

Physics without calculations is not physics, but rather
philosophy. This novel tool, this background independent
method of calculating impedances, is of no use to physics
without a model to which it may be applied. The model
adopted earlier [12] remains useful. It comprises

• quantization of electric and magnetic flux, charge,
and dipole moment

• three topologies - flux quantum (no singularity),
monopole (one singularity), and dipole (two)

• confinement to a fundamental length, taken to be
the Compton wavelength of the electron

• the photon

Coupling impedances of the interactions between these
three topologies have been calculated[12, 17], and will
be presented later in this note. With the exception of
the impedances associated with inverse square potentials,
they are parametric impedances, in the sense that they
are scale dependent, and consequently energy dependent.
As such, one might conjecture that the mismatches pro-
vide a confinement mechanism for the mode structures
that are present in the impedance model.

The Hydrogen Atom

The aim here is to see what insight may be gained by
exploring the role of quantum impedances in the transfer
of energy from a 13.6 eV photon to an electron.

In figure 1 the scale invariant far field photon
impedance is the red line entering the plot from the right
at Z0 ∼377 ohms. The photon impedance is strictly elec-
tromagnetic. Unlike massive particles, it has no mechan-
ical impedance. Also shown in the figure is the scale
invariant quantum Hall impedance, at RH ∼25.8 Kohm.
It is an electromechanical impedance.

The wavelength of the 13.6 eV photon is the inverse
Rydberg. The electric and magnetic flux quanta that
comprise a photon of that energy decouple there, at the
transition from the scale invariant far field to the scale
dependent near field[18]. The decoupled flux quanta are
not scale invariant, electric going to high impedance and
magnetic to low as one moves to shorter length scales.

The far field photon is mismatched to the electron
quantum Hall impedance. The electric component of the
photon near field dipole impedance (blue) does indeed
match the quantum Hall impedance (green) at the Bohr
radius. However, for energy to flow smoothly and con-
tinuously from the photon to the electron, from the Ry-
dberg to the Bohr radius, requires a smooth and contin-
uous match to an electron dipole impedance, a quantum
dipole impedance.



3

FIG. 2. A composite of 13.6eV photon impedances and a variety of background independent electron impedances[17], measured
branching ratios of the π0, η, and η’, the four fundamental quantum lengths shown in fig.1, and the coherence lengths of the
unstable particles.[19–21]

While such an impedance is not to be found in the
canonical literature, it exists in the impedance model,
and is shown in the impedance plot of figure 2. The elec-
tric flux quantum is well matched to the larger of the two
electric dipole impedances of the electron, the ‘external’
dipole impedance, where the electric dipole impedances
are represented by large and small blue diamonds.

The impedance plot of figure 2 was generated with the
electron in mind[17], with no thought of the hydrogen
atom or the photon. It was only later that the photon
was added. The resulting smooth impedance match from
the photon at the Rydberg to the electron at the Bohr
radius and the consequent ‘Bohr correspondence’ was a
nice serendipitous surprise.

As the head of the electric flux quantum wavepacket
arrives at the Bohr radius the (presumed Gaussian)
packet is still feeding increasing energy in from out
beyond the Rydberg. From figure 2 it can be seen

that at the Bohr radius there is a conjunction (upper
dashed circle) of the electron dipole impedance with
the scale invariant electric and magnetic vector Lorentz
impedances, the scale invariant centrifugal impedance,
and the scale dependent electric Coulomb and scalar
Lorentz impedances. The details of the couplings be-
tween the modes associated with the impedances (phases,
confinement mechanisms,...) remain to be investigated.
At the outset it is tempting to say that one knows the
outcome (the H atom is ionized) and can work backwards
from there.

But where is the proton in this plot? Given that the
many many short-lived resonances between the 70 MeV
classical radius and the 9.59 GeV coherence line are ad-
equately represented by the subset shown (more on the
neutrino later), only the proton is absent. What is it that
the electron is ionized from by that 13.6 eV photon? The
plot is in the rest frame of the electron.
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The magnetic flux quantum arrives at the Bohr
radius without benefit of an impedance match from
the scale of the Rydberg, but presumably still phase-
coherent. The excitation of the Bohr magneton (an ‘in-
ternal impedance’ denoted by the small red diamonds) at
the Bohr radius is presumably proportionally diminished.

The possible existence of a scale invariant five ohm
magnetic impedance should be noted. Detailed calcula-
tions suggest that the measured quantum Hall impedance
is the sum of electric and magnetic impedances.

It was shown earlier[12] that all massive particles have
an inertial impedance, a centrifugal impedance, repre-
sented by the green dots in figure 2. Similar to the case
of the five ohm scale invariant magnetic impedance, one
might consider the existence of the corresponding addi-
tional scale invariant five ohm centrifugal impedance, and
perhaps the full family of invariant impedances associ-
ated with the inverse square potentials.

The π0 Branching Ratios

The relatively simple π0 branching tree is shown in fig-
ure 3. As the image suggests, the impedance calculation
is done taking the paths in parallel.

As shown in figure 2, the π0 coherence length coincides
with the (inverse) Rydberg, where there is an impedance
match via the dipole mode. Ignoring the phases, the
impedance of the two photon decay can be written as

Zγγ =
1

1
Z0

+ 1
Z0

=
Z0

2
= 188.37 Ω (1)

and that of the e+e-γ mode as

Zeeγ =
1

1
RH

+ 1
RH

+ 4α2

Z0

=
Z0

4α2 + 4α
= 12 813 Ω (2)

where RH = Z0

2α is the quantum Hall resistance, so that

Zπ0 =
1

1
Zγγ

+ 1
Zeeγ

=
Z0

4α2 + 4α+ 2
= 185.64 Ω (3)

and the branching ratios are

Γγγ =
Zπ0
Zγγ

=
1

2α2 + 2α+ 1
= 0.9855 (0.988) (4)

Γeeγ =
Zπ0
Zeeγ

=
2α2 + 2α

2α2 + 2α+ 1
= 0.0145 (0.012) (5)

FIG. 3. The π0 branching tree

Codata 2010 values are shown in parentheses. That the
branching ratios can be expressed simply in powers of the
fine structure constant is a consequence of the α-spaced
conjunctions of the mode impedances. The calculated
branching ratios differ from the experimental data by the
factor ∼α/2π, suggesting that a higher-order calculation
would be more precise.

The η Branching Ratios

The more complex η branching tree is shown in figure
4. Here we follow the same method as in the previous
example, working from top to bottom and right to left
in the figure as we calculate. Again ignoring the phases,
as well as factors of two that will be addressed in the
discussion that follows, the impedance of the two photon
decay can be written as

Zγγ =
1

2
Z0

+ 2
Z0

=
Z0

4
(6)

The π0 impedance calculated in the previous section is

FIG. 4. The η branching tree
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used to find that of the three π0 decay

Z3π0 =
2

1
Zπ0

+ 1
Zπ0

+ 1
Zπ0

=
2Z0

3(4α2 + 4α+ 2)
(7)

We assume the neutrino has rest mass, and therefore
a scale invariant centrifugal impedance

Zν = RH =
Z0

2α
(8)

so that the muon impedance is

Zµ =
1

1
Ze

+ 1
Zν

+ 1
Zν

=
RH
3

=
Z0

6α
(9)

The impedances of the charged pions are then

Zπ+ = Zπ− =
1

1
Zν

+ 1
Zµ

=
Z0

8α
(10)

and the impedance of the π+π−π0 decay is

Zπππ0 =
1

1
Zπ+

+ 1
Zπ−

+ 1
Zπ0

=
Z0

4α2 + 20α+ 2
(11)

Finally, the impedance of the π+π−γ decay is

Zππγ =
2

1
Zπ+

+ 1
Zπ−

+ 1
Z0

=
2Z0

16α+ 1
(12)

so that the impedance of the η is

Zη =
1

1
Zγγ

+ 1
Z3π0

+ 1
Zπππ0

+ 1
Zππγ

=
2Z0

20α2 + 68α+ 19

(13)

and the branching ratios are

Γγγ =
Zη
Zγγ

=
8

20α2 + 68α+ 19

= 0.410 (0.393)

(14)

Γ3π0 =
Zη
Z3π0

=
3(4α2 + 4α+ 2)

20α2 + 68α+ 19

= 0.312 (0.326)

(15)

Γπππ0 =
Zη

Zπππ0
=

2(4α2 + 20α+ 2)

20α2 + 68α+ 19

= 0.220 (0.227)

(16)

Γππγ =
Zη
Zππγ

=
16α+ 1

20α2 + 68α+ 19

= 0.057 (0.046)

(17)

Again, codata 2010 values are shown in parentheses.
All four calculated branching ratios are in agreement with
the experimental values at better than two parts per hun-
dred. This is also true for the corresponding η′ decays of
figure 5, as discussed in the next subsection.

The η′ Branching Ratios

A simplified η′ branching tree is shown in figure 5.
Following the same method as in the previous examples
gives reasonable results for some of the branches, but not
for all. Looking at figure 2, it’s easy to see why.

The π0 coherence length sits at the inverse Rydberg,
well isolated from perturbation due to either the η at
smaller length scales or τ and the charm family at greater
scales. Similarly, the η stands on its own at the Bohr
radius, with the Σ0 nearest neighbor.

Unlike the π0 and η, the η′ is in the thick of it, its
coherence length at the Compton wavelength of the elec-
tron, in the middle of the mode structure of the excited
flavor states. It seems probable that coupling to those
states (and perhaps other effects resulting from taking
the Compton wavelength to define a fundamental length
in the impedance model) will require a more sophisti-
cated treatment than that given here for the π0 and η.

Again looking at figure 2, it remains that the similarity
of the impedance structures at the Bohr radius and the
Compton wavelength likely accounts for the similarity in
the experimental branching ratio values of the η (shown
in parentheses in eqns. 14-17) and the η′ (shown in figure
5). The calculated branching ratios for the η (shown in
eqns. 14-17) are in agreement with experimental values
of both η and η′ at better than two parts per hundred.
This suggests that, while the constituents of the decays
are different, at least in the present case the branching
ratios are determined more by the relative impedances
of the modes than the identity of the actual topological
objects (flux quantum, monopole, dipole,...).

FIG. 5. A simplified η′ branching tree
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Factors of Two

Unexplained factors of two are present in the
impedance model. The first, and most bothersome, ap-
pears when the quantum Hall impedance is written in
terms of the photon impedance.

RH =
Z0

2α
(18)

That factor of two is present in the vertical scale of
figures 1 and 2, but absent from the horizontal scale.
The horizontal axis was rescaled to remove the factors
of two. If one looks at the mathcad file that generates
the figures[17], the unexplained factor of two becomes
apparent. While the Compton radius is where it belongs
(it defines the quantization scale), according to the calcu-
lations the impedance conjunctions associated with the
‘classical’ radius should be not at 70MeV

rclassical = αλCompton (19)

but rather a factor of two closer, at 35MeV. Similarly,
conjunctions at the Bohr radius are a factor of two closer
to the Compton wavelength, the Rydberg a factor of
four,... The origin and meaning of these factors in the
present context is not understood.

Additional offsets by factors of two and three are
present in the scale dependent impedances, and in the
corresponding work of MacGregor[21], as well as factors
of pi presumed to be of topological origin and specific
to the weak decays. As mentioned earlier[12], without
understanding how to properly attribute them (after all,
the impedance approach is yet in its infancy) and in the
interest of simplicity, they were kept in mind but elim-
inated from the model until such time as they were in
need of attention. They could be of help in untangling
the mode structures and couplings, understanding what
connections might exist with the standard model con-
stituents, sorting out confinement, the phases,...

The phases are as yet undetermined in the impedance
plot of figure 2. To calculate branching ratios with the
precision shown here requires knowledge of both ampli-
tude and phase. Fortunately, the phase information is
given by the experimental data, by the measured co-
herence lengths of the unstable particles. This data is
utilized via the coherence length correlation with the α-
spaced conjunctions of the mode impedances.

Without phases to help tie the modes together, there
are as yet no dynamics in the impedance plot. Dynam-
ics requires change. Quantum dynamics requires phase-
coherent change of quantum phase, which requires knowl-
edge of mode structures and couplings. Given sufficient
computational resources, such knowledge seems accessi-
ble via iterative tuning of the impedance network phases
and mode structures to fit the data. Matlab seems like
an obvious choice, running on a gate array farm.

DISCUSSION

Historical Perspective on Quantum Impedances

Impedances govern the flow of energy. This is a fun-
damental concept of universal applicability. Historically,
it has been overlooked in quantum theory.

The 1980 discovery[22] of a new fundamental constant
of nature, the Nobel Prize discovery of exact impedance
quantization in the quantum Hall effect, was greatly fa-
cilitated by scale invariance. This classically peculiar
impedance is topological, the measured resistance being
independent of the size or shape of the Hall bar. Prior to
that discovery, impedance quantization was more implied
than explicit in the literature[23–28].

In the 1959 thesis of Bjorken[25] is an approach
summarized[29] as “...an analogy between Feynman dia-
grams and electrical circuits, with Feynman parameters
playing the role of resistance, external momenta as cur-
rent sources, and coordinate differences as voltage drops.
Some of that found its way into section 18.4 of...” the
canonical text[26]. As presented there, the units of the
Feynman parameter are [sec/kg], the units of mechan-
ical conductance[15]. Form factors are proportional to
conductances, inversely proportional to resistances.

With the confusion that resulted from interpreting con-
ductance as resistance, and more importantly lacking the
concept of quantized impedance, the anticipated intu-
itive advantage of the circuit analogy[26] was lost and
the possibility of the jump from well-considered analogy
to a photon-electron impedance model was not realized.

Like the first Rochester Conference on Coherence and
Quantum Optics in 1960, the 1963 paper/thesis by Ver-
non and Feynman[27] on the “Interaction of Systems”
was motivated by the invention of the maser. It is a
particularly suggestive combination of the languages of
the electrical engineer and the physicist. The authors
devoted a thesis to the concepts needed for impedance
matching to the maser. However, lacking again was the
explicit concept of quantized impedance in the maser.

Had exact impedance quantization been discovered
in 1950 rather than 1980, one wonders whether the
impedance concept might have found its way into the
foundation of QED at that time, before it was set in the
bedrock, to underpin rather than illuminate electroweak
theory, QCD, and gravity[12, 30–39].

Since the pivotal 1980 discovery, and particularly in
the past few years, understanding of quantum impedance
in electron dynamics, and particularly condensed matter,
has been expanding at an accelerating rate, as shown by
a sampling of the literature [40–85].

Extending the understanding beyond the photon and
Landauer/quantum Hall impedances to the generalized
impedances associated with all potentials appears to of-
fer great promise in condensed matter physics[86]. Unlike
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FIG. 6. Alternation of dark and observable with topology

the particle physics focus of the present approach, the rel-
evant length scale for the appropriate electron impedance
network in condensed matter is not the Compton wave-
length but rather the deBroglie wavelength, the wave-
length of the Doppler-shifted Compton frequency[87].

‘Dark’ Modes and Anomalies

The impedance plot of figure 2 is not complete.
Absent are the longitudinal dipole-dipole impedances,

the longitudinal and transverse charge-dipole impedances
(the charge-dipole impedances are a subset of the scale
invariant three body impedances), and the Coriolis
impedance. There may be others, and likely are. Given
the spin dependence of the weak interaction, one would
expect that adding the longitudinal impedances to the
figure would give additional insight into the weak de-
cays, probably essential for instance in impedance-based
calculations of those branching ratios.

Present in the plot are several impedances that (ex-
cepting the unstable particle spectrum) are absent in our
observations of the world, do not couple to the photon,
namely those associated with the electric flux quantum,
magnetic monopole, and electric dipole. Figure 6 shows
the alternation with topological complexity.

We see the magnetic flux quantum, electric monopole,
and magnetic dipole in the stable particles which com-
prise our physical world, but not their electromagnetic
complements. It seems that the only place we see these
‘dark’ components is in the unstable particle spectrum.
This broken symmetry is partially understood in terms of
the relative strengths of the magnetic and electric charge
quanta[12, 88], and might have a not-yet-obvious role in
the chiral anomaly.

Gravitational Anomalies

The impedance approach gives a fresh perspective on
anomalies in quantum theory. The chiral anomaly exists
in theories of gravity as well.

The model presented here takes the Compton wave-
length of the electron to be a fundamental length. If
one takes the Planck length to be a second fundamental
length, the impedance mismatch between the resulting
‘Planck particle’ and the electron (or any massive par-
ticle, for that matter) can be calculated[12]. The exact

identity of the gravitational force between these two par-
ticles with the mismatched electromagnetic force suggests
that in the case of gravity an impedance model might also
be anomaly free, and perhaps that an understanding of
the phases associated with the mass-related impedances
might inform gauge theories of quantum gravity[89–91].

CONCLUSION

Impedances govern the flow of energy. This is a fun-
damental concept of universal applicability. Historically,
it has been overlooked in quantum theory.

The impedances associated with inverse square poten-
tials are scale invariant. Scale invariant impedances can-
not couple energy - they only communicate phase. To the
extent that chirality can be identified with spin[92], this
suggests that a causative mechanism in quantized spin is
quantum phase.

For the photon this is obvious. The far field impedance
is scale invariant, and the angular momentum is defined
by the relative phase of the constituent electric and mag-
netic flux quanta. Witness the quarter wave plate.

For fermions, and massive particles in general, identi-
fying the constituent fields is not so straightforward. The
first and most serious obstacle is assumption of perfectly
impedance matched point particles in quantum field the-
ory. The second is perhaps abstraction of the fields in
the creation and annihilation operators. These obstacles
are absent in the impedance approach.

The impedance approach suggests that spin is at least
partially a manifestation of the phases communicated by
the relevant impedances. In the impedance approach
these phases are associated with identifiable modes. One
wonders what a quarter wave plate for the proton looks
like. And what changes when one goes from longitudinal
to transverse, where spin effects are prominent[93].

Despite the remarkable elegance and power of the stan-
dard model, proton spin structure remains a mystery[93–
96]. The hope is that this preliminary impedance ap-
proach to phenomena associated with the chiral anomaly
will motivate and illuminate the role of anomalies in pro-
ton spin, and a deeper understanding of spin itself.
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