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Abstract

In this paper, we shall study an electromechanical system, which is
capable of showing chaos. Our aim would be to identify deterministic
chaos, which effectively means finding out the conditions in which the
system would show aperiodicity. We shall study a coupled system,
consisting of a Bullard Dynamo driving a Faraday Disk. First, we
shall give a brief description of the system (by stating the equations
describing the system), then we shall identify the fixed points for the
system, and identify different dynamical regimes. Our objective here is
to elaborate the methods by which a dynamical system is characterized.

1 Introduction

Any system with quantities, which vary with time, is labelled as a Dynamical
System. Almost any system of interest is a dynamical system, because we
are almost always interested in predicting the evolution of a system, rather
than studying the conditions of equilibrium (not to say, that studying equi-
librium conditions isn’t important). Out of all sorts of systems, that are
under study in the modern research, the most important ones are those of
nonlinear systems. The recognition of the fact that whole is greater than
the sum of its parts, lies at the crux of all the new work being done on such
systems. But, what do they study?
One of the most wonderful discoveries of the later half 20th century is,
‘deterministic chaos’. It has its origins in the study of nonlinear systems,
and the most credited of them is Edward Lorenz’s seminal paper [8]. The
word ‘deterministic’ is because of the fact that time evolution of the system
doesn’t involve any random variables i.e. they are not stochastic. However,
the strange (exciting) part is that some of these systems can exhibit chaotic
i.e. aperiodic motion.
To study this aperiodic behavior i.e. chaos, we have chosen an electrome-
chanical system. The particular choice of this system is motivated by the
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ubiquity of electromechanical systems in day-to-day life. For the system,
we will take a Bullard Dynamo and a Faraday Disk. A Faraday disk or a
homopolar disk is a conducting disk(or a cylinder) rotating in a uniform
magnetic field. Owing to rotation, a potential difference is generated be-
tween the rims of the disk and the axis of rotation. A Bullard dynamo,
studied in details in [2], is a self-exciting homopolar disk. The current pro-
duced by the homopolar disk is used to create the magnetic field for the
disk.

2 Bullard Dynamo and Faraday Disk

The basic description of the system can be found in [6]. The fundamental
idea is to use the current I produced by rotating a Bullard dynamo, which
is being driven by a constant torque Γ, and hence moving with a variable
angular velocity Ωb, to drive the homopolar disk. The coefficient of mutual
inductance between coil of Bullard Dynamo and its disk, is 2πM and L is
the self-inductance of the coil. By passing a current through the disk, we are
applying the emf generated by the Bullard dynamo, across the axis and the
rim of the disk, as shown in the fig. (1). So, as a result the homopolar disk
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B

Ωb Ωf

Figure 1: Bullard Dynamo driving a Faraday disk

will start rotating with an angular velocity of Ωf . For simplicity we shall
assume that the disks are identical i.e. have the same moment of inertia
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J and have the same coefficient of friction λ. We shall assume that the
dynamics of the system are be governed by three variables, and hence our
phase space would be (I,Ωb,Ωf ).
Consider the following things:

• The emf generated by a Faraday disk of radius a with an angular
velocity Ωf , would be 1

2Ωfa
2B. We shall use α := 1

2a
2 for convenience

of notation. Hence, a Faraday disk is supplied with emf of αBΩf it
will rotate with Ωf .

• When a Bullard dynamo has an instantaneous velocity of Ωb and has
an instantaneous current of I, it will generate an emf of MΩbI, where
2πM is the mutual inductance between the coil and the disk.

The dynamical equations for the system are:

İ =

(
MΩb −R

L

)
I − αB

L
Ωf

Ω̇b =
Γ

J
− λ

J
Ωb −

MI2

J

Ω̇f =
αB

J
I − λ

J
Ωf

Before we can do any meaningful study of these, we should make these
equations dimensionless. After the following choice of variables:

t =
L

R
t′

I =
JR2

αBL2
x

Ωb =
R

M
y

Ωf =
R

M
z

we get this set of equations:

ẋ = x(y − 1)− γz (1)

ẏ = κ− βy − χx2 (2)

ż = γx− βz (3)

where,

β =
λL

JR

γ =
M

L

κ =
ΓML

JR2

χ =
M2J2R2

α2B2L3
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The technique of making equations dimensionless is important when we want
to discuss topics like ‘long term behavior’ etc. Words like ‘longterm’ have no
meaning for dimensional equations because, if something is long for one sys-
tem, might be very short for another. Take for example, the atomic system.
2 seconds might be a very long time for atomic processes, but is nothing for
macroscopic mechanical systems.
Notice that, we have a 4 dimensional parameter space here. We shall have
a different sorts of behavior for the system, based on the values of the pa-
rameters.

3 Fixed points of the System

For a system described like
ẋ = f(x)

the fixed points are the points in the phase space for which

f(x = 0)

. For our system, these points are

F1 =

(
0,
κ

β
, 0

)
F2 =

(
Λ
√
χ
,

{
1 +

γ2

β

}
,
γΛ

β
√
χ

)

F3 =

(
−Λ
√
χ
,

{
1 +

γ2

β

}
,
−γΛ

β
√
χ

)

where Λ =
√
κ− β − γ2. A crucial point to be noted is out of these, F2

and F3 exist only if Λ is real i.e. if κ − β > γ2. So, we have 4 parameters
to play with, and with different settings we expect different behaviors. To
know what values should we set to set different behvaiors, we should do a
linear stability analysis around these fixed points.

4 Stability of Fixed Points

The Jacobian matrix for the system

Df(x, y, z) =


y − 1 x −γ

−2χx −β 0

γ 0 −β

 (4)
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For F1

Let the eigenvalues for the Jacobian matrix at F1 be µi. The characteristic
equation turns out to be

(µ+ β)[µ2 + µ(β + 1− κ

β
) + β − κ+ γ2] = 0

So, one of the eigenvalues, µ1 = −β is always negative.
The signs of the other two, µ2 and µ3 depend on the values of β, κ and γ.

µ2 + µ3 =
k

β
− β − 1 (5)

µ2µ3 = β − κ+ γ2 (6)

If µ2µ3 < 0, F2 and F3 are created. Also, this condition will make F1

unstable, because one of µ2 and µ3 would be negative.
So, as κ passes the value of β + γ2, two new fixed points are formed the
other one looses stability. We have a pitchfork bifurcation. In the parameter
space, κ and χ are the only parameters which can be influenced externally.
Since, χ doesn’t enter into the discussion of the stability of the fixed points,
κ is the bifurcation parameter here.
If κ < β + γ2, we have only F1. For stability,

β2 + β − κ > 0

When this is true, we have the flow simply ending up at F1. When this is not
satisfied, numerical simulations show that the flow settles into an attractor,
shown in figure. (2). This is not a transient attractor. For different initial
conditions too, the orbit settles into the same attractor. We shall study the
exact nature of the attractor in the next chapter.
For Fixed point F2 and F3

F2 and F3 have the same characteristic equation,

(µ+ β)[µ2 + µ

(
β − γ2

β

)
+ 2Λ2]

One of the eigenvalues, like F1 will be µ1 = −β. As for µ2 and µ3 we have,

µ2 + µ3 =
γ2

β
− β (7)

µ2µ3 = 2Λ2 (8)

Since, 2Λ2 > 0, µ2 and µ3 will have same signs. However, we can see rich
behavior, because, there are chances of complex eigenvalues, mixed with real
ones. The way to play with these values is to try and make all the three
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Figure 2: Trajectories starting at [2,2,2] and [1,5,3], with β = 0.8, γ =
1.3, κ = 4, χ = 4, time it is run for is 200 units

fixed points unstable. We have already seen what happens when we have
β2 + β − κ < 0. For a particular choice, of parameters,

β = 2, γ = 2, κ = 20, χ = 4

we have a very interesting sort of orbit. It is shown in fig. (3). Also, the
same settings are allowed to run for longer i.e. 3000 units of time, the image
is particularly heavy [fig. (4)] and seems to have filled the region in ques-
tion. It should be noted that this is not a transient attractor. Orbits settle
into the same attractor for different initial conditions. Different parameter

Figure 3: Trajectory, starting at [2,2,2], with β = 2, γ = 2, κ = 20, χ = 4,
time it is run for is 200 units of time
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settings yield all sorts of behaviors. Most of the settings would make up for
a situation in which the values of current and the angular velocities settle
into one of the fixed values. It may spiral into that value, or it may be
attracted like a node.
Now that we have established two different scenarios, our next task would
be to characterize these. We shall illustrate different tools and methods that
can be used to draw conclusions.

Figure 4: Trajectory, starting at [2,2,2], with β = 2, γ = 2, κ = 20, χ = 4,
time it is run for is 3000 units of time

5 Characterizing the Dynamics

We define two scenarios from the beginning to avoid any redundancies.
These two scenarios are basically two set of values for the parameters.
Scenario 1
Will be referred to as S1 has the following parameter values:

β = 0.8, γ = 1.3, κ = 4, χ = 4

Orbits starting at any point, for S1, eventually end up in an attractor shown
in fig.(2).
Scenario 2
Will be referred to as S2 and has the parameter values as:

β = 2, γ = 2, κ = 20, χ = 4
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Orbits starting at any point, for S2, eventually end up in an attractor shown
in fig.(3).

5.1 Lyapunov Exponents

While Chaos is a well established phenomenon, the characterization of chaos
is still under scrutiny. Lyapunov exponents have proved to be the most
useful diagnostic tool for dynamical system. Hence, we start by finding the
spectrum of Lyapunov exponents for the system.
The Lyapunov exponent is defined as

λ(x0) = lim
N→∞

lim
ε→0

1

N
log

fN (x0 + ε)− fN (x0)

ε

= lim
N→∞

1

N
log

dfN (x0)

dx0

In order words, two trajectories in phase space with a separation of |δx0| at
time t = 0, will have a separation of |δxt| at t = t, given by

|δxt| = eλt|δx0|

Since, the rate of divergence of trajectories can be different in different di-
rections in the phase space, there are as many Lyapunov exponents as is the
dimensionality of phase space. Lyapunov exponents basically quantify how
sensitive the system is to initial conditions. They measure the growth rates
of generic perturbations. The interest is usually on the maximal Lyapunov
exponent (MLE). If the phase space is compact, a positive MLE would mean
that the prediction of the system is impossible. The system is then labelled
to be sensitively dependent on initial conditions.
A few properties of Lyapunov Exponents are as follows [9]:

1. The Lyapunov exponents are dynamical invariants i.e. do not depend
metric used or the choice of the variables for the system. So, they can
characterize dynamics of a system.

2. A positive MLE implies chaos only when the phase space is bounded.

3. The sum of all Lyapunov exponents give a measure of the contraction
of volume in whole of phase space. For a conservative system, the sum
of the Lyapunov exponents is zero, where as for a dissipative systems
it is negative.

4. For a bounded system, if the flow doesn’t end at a point, then at least
one of the Lyapunov exponents is zero.
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5. Pesin’s formula relates the Lyapunov exponents to the Kolmogorov-
Sinai Entropy. The sum of the positive Lyapunov exponents gives an
upper bound for KS entropy i.e.

HKS <
∑

j:λj>0

λj

6. The multiplicative inverse of the MLE is called the Lyapunov time.
It defines, the characteristic e-folding time i.e. the time taken for
the trajectory to diverge by a factor of e. It gives a time for which
predictions hold value. For chaotic orbits it is finite, and for periodic
orbit, expectedly, it is infinite.

Lyapunov exponents are computed by exploiting the natural tendency of
n-dimensional volume to align along the n most expanding subspaces. To
find the n largest Lyapunov exponents, one has to find the rate of expansion
of an n-dimensional volume. The crux of the problem is to keep track of the
evolution of n perturbations. These should be linearly independent, but the
Lyapunov vectors have a nasty habit of aligning along the same direction.
This leads to numerical overflow, because of the exponentially diverging so-
lutions. To get around this, one has to use Gram-Schmidt normalization to
change the base. It can be done after each step of integration, or can be
done after a chosen period. A method for finding the Lyapunov exponents
(all of them) was given by Benettin et.al. in [1]. We have implemented the
same algorithm, with variations hinted in [10].
The code is run for two scenarios. Here are the results:

For S1

The time steps of Gram-Schmidt normalization was chosen to be .01, and
the time interval for computation was between (0,200), starting at the initial
point of (2,2,2). The spectrum converged to (with 2-digit accuracy):

{0.00,−0.35,−0.52}

A few comments are in order here:

• One of the Lyapunov exponents is 0. It is a corroborating result to
the fact that the trajectories ultimately don’t settle to a point. They
end up on an attractor, as shown in the fig.(2).

• The MLE here is 0. So, we are certain that the attractor is not chaotic.

• The sum of the positive Lyapunov constants is 0. So, from Pesin’s
formula, HKS = 0. The motion on the attractor is hence periodic.
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The attractor in S1 is an isolated periodic orbit i.e. a Limit cycle. It is
a stable limit cycle, because the orbits from initial points both inside and
outside of the orbit settle into it.

For S2

The time steps of Gram-Schmidt normalization was chosen to be .1, and the
time interval for computation was between (0,10000), starting at the initial
point of (2,2,2). The spectrum converged to (with 2-digit accuracy):

{0.34, 0.00,−1.65}

As for this scenario,

• One of the Lyapunov exponents is 0. Same as S1 and also matches with
the fact that the orbit doesn’t converge to a point but to a subspace
of the phase space.

• The MLE is 0.34 i.e. positive. So, the attractor in fig.(3) is indeed a
chaotic attractor.

• The Lyapunov time for the system is 2.94 units of time (the scaled
time). For times much longer than 3 units of time, system is irregular.

• We have an upper bound for HKS . HKS ≤ 0.34.

We can find the Kaplan-Yorke Dimension of the attractor. It is defined as [5]

DL = k +
Λk
|λk+1|

where, Λk =
k∑
i=0

λi, k is the largest integer such that
k∑
i=0

λi > 0. Also, the

{λi} should be arranged in the descending order.
For our spectrum, we have k = 2 and hence,

DL = 2 +
0.34

1.65
= 2.21

So, the KY dimension for the attractor in S2 is 2.21.
In a way, the Kaplan-Yorke dimension can be defined as the dimension
within which a cluster of initial conditions neither expand nor contract dur-
ing the evolution of the system. The system of ODEs under study is not
pathological, hence we can use the result proved by Ledrappier in [7], and
say that this is also equal to the Information Dimension of the attractor.
Information dimension of an attractor gives a measure of the average infor-
mation needed to identify an occupied box of size p. It is defined as:

D1 = lim
ε→0

− < log pε >

log 1
ε

where <> is for average over the partitions of phase space.
So, we have the information dimension equal to 2.21.
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Poincaré Surface of Section

Poincaré Surface of section is a useful tool when it comes to studying the
nature of dynamics of the system. The primary reason for its usefulness is
that you can study a 3 dimensional system in a plane. We shall plot the
Poincaré maps for two scenarios. The code used to do this is given in the
last chapter.

For S1

Poincaré section for a trajectory with initial points as (2,2,2), with the sur-
face z = 0 is shown in fig. (5). Since the points on the Poincaré map are
attracted to a point, we conclude that the 3D orbit is in fact a limit cycle.
It is an attractive limit cycle, since orbits from all the initial points ulti-
mately settle into that orbit. This is corroborates with what was concluded
with Lyapunov exponents for S1

Figure 5: Trajectory, starting at [2,2,2], in setting S1. Time it is run for is
200 units

For S2

The orbit into which the trajectories settle has different sorts of structures
at different parts. We take the section at y = 2. If each of the intersec-
tion is observed sequentially, it seems that the points jump from one region
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to another. To see an emerging pattern, the Poincaré sections are shown
for two different runtimes. Fig. (6) shows when the simulation is run for
200 units of time. While, fig. (8) shows the Poincaré section when the

Figure 6: Trajectory, starting at [2,2,2], in setting S2. Time it is run for is
200 units. Section is taken at y = 2

Figure 7: Power Spectrum for x for the Poincaré section, for S1 with section
y = 2

equations are iterated for 30000 units of time. 375001 points are generated.
The Poincaré section gets 20291 intersections. Notice how densely the two
regions have been filled. It starts getting filled in the first run of 200 units
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of time, however after 30000 units, it is obvious. This sort of space-filling of
points in the Poincaré map is also a signature of Chaos.
We could have concluded from the Poincaré section from 200 units of time,

Figure 8: Trajectory, starting at [2,2,2], in setting S2. Time it is run for is
30000 units. Section is taken at y = 2

from the power spectrum fig. (7). The spectrum is continuous and hence
we can conclude that there’s no correlation between them.

Power Spectra

Power spectrum of a time series gives information about the periodicity
of the concerned signal. The analysis of chaotic dynamics in the Fourier
space reveals important information, and is especially useful for identifying
transitions between periodic and chaotic regimes [3]. Power Spectra are thus
very useful in discerning whether there is an order in a system or not. There
are three possibilities with power spectra

1. Delta peaks at certain frequencies and integral multiple of that fre-
quency. This happens for periodic time series.

2. Several peaks at frequencies which aren’t the multiples of a particular
frequency and are of different heights. This happens for quasiperiodic
time series.
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3. Broadband nature for the spectrum. This happens for stochastic time
series.

Figure 9: Power spectrum for x, y and z. Trajectory, starting at [2,2,2], in
S1. Time it is run for is 200 units

We use the built-in Fast Fourier transform function of the MATLAB to find
the power spectra of for two scenarios. The power spectra for S1 are shown
in fig. (9). It was established that we have a limit cycle in this scenario
and hence, the sharp peaks at certain frequencies, not surprisingly, indicate
periodic motion.
For S2, the power spectra are shown in fig. (10). Clearly, except for power

Figure 10: Power spectrum for x, y and z. Trajectory, starting at [2,2,2], in
S2. Time it is run for is 200 units

spectrum for y, both of the spectra are broadband. Since, the dynamics
were deterministic, we have deterministic chaos here.
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6 Conclusion

The purpose of this work was illustrate the use certain techniques to charac-
terize the dynamics of a physical system. You might have noticed that, other
than the derivation of the dynamical equations, the fact that we are using
an electromechanical system hardly came into picture. Thus, the techniques
shown here are fairly general. The power of mathematical modelling is in full
display here. Once the differential equations are set up, all that separated
the different behaviors of the system were the value of the parameters. The
parameters thus determine what sort of system we are dealing with. The
system under consideration is certainly not a new one. But, by looking at
it from all the facets explains how meticulously we can characterize systems.
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