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Abstract

Novel physical consequences of the Extended Relativity Theory in C-spaces (Clif-
ford spaces) are explored. The latter theory provides a very different physical expla-
nation of the phenomenon of “relativity of locality” than the one described by the
Doubly Special Relativity (DSR) framework. Furthermore, an elegant nonlinear
momentum-addition law is derived in order to tackle the “soccer-ball” problem in
DSR. Neither derivation in C-spaces requires a curved momentum space nor a de-
formation of the Lorentz algebra. While the constant (energy-independent) speed
of photon propagation is always compatible with the generalized photon dispersion
relations in C-spaces, another important consequence is that these generalized pho-
ton dispersion relations allow also for energy-dependent speeds of propagation while
still retaining the Lorentz symmetry in ordinary spacetimes, while breaking the
extended Lorentz symmetry in C-spaces. This does not occur in DSR nor in other
approaches, like the presence of quantum spacetime foam. We conclude with some
comments on the quantization program and the key role that quantum Clifford-Hopf
algebras might have in the future developments since the latter q-Clifford algebras
naturally contain the κ-deformed Poincare algebras which are essential ingredients
in the formulation of DSR.

Keywords : Clifford algebras; Extended Relativity in Clifford Spaces; Doubly Special
Relativity; Quantum Clifford-Hopf algebras.
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1 Clifford Algebras

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces) and
Clifford-Phase spaces were developed [1], [2]. The Extended Relativity theory in Clifford-
spaces (C-spaces) is a natural extension of the ordinary Relativity theory whose general-
ized coordinates are Clifford polyvector-valued quantities which incorporate the lines, ar-
eas, volumes, and hyper-volumes degrees of freedom associated with the collective dynam-
ics of particles, strings, membranes, p-branes (closed p-branes) moving in a D-dimensional
target spacetime background. C-space Relativity permits to study the dynamics of all
(closed) p-branes, for different values of p, on a unified footing. Our theory has 2 fun-
damental parameters : the speed of a light c and a length scale which can be set equal
to the Planck length. The role of “photons” in C-space is played by tensionless branes.
An extensive review of the Extended Relativity Theory in Clifford spaces can be found
in [1]. The polyvector valued coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are now linked to the basis
vectors generators γµ, bi-vectors generators γµ ∧ γν , tri-vectors generators

γµ1 ∧ γµ2 ∧ γµ3 , ... of the Clifford algebra, including the Clifford algebra unit element
(associated to a scalar coordinate). These polyvector valued coordinates can be inter-
preted as the quenched-degrees of freedom of an ensemble of p-loops associated with the
dynamics of closed p-branes, for p = 0, 1, 2, ..., D−1, embedded in a target D-dimensional
spacetime background.

The C-space polyvector-valued momentum is defined as P = dX/dΣ where X is the
Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in four-dimensions, for
example,

X = s 1 + xµ γµ + xµν γµ ∧ γν + xµνρ γµ ∧ γν ∧ γρ + xµνρτ γµ ∧ γν ∧ γρ ∧ γτ (1)

where we have omitted combinatorial numerical factors for convenience in the expansion
(1). It can be generalized to any dimensions, including D = 0. The component s is the
Clifford scalar component of the polyvector-valued coordinate and dΣ is the infinitesimal
C-space proper “time” interval which is invariant under Cl(1, 3) transformations which
are the Clifford-algebra extensions of the SO(1, 3) Lorentz transformations [1]. One should
emphasize that dΣ, which is given by the square root of the quadratic interval in C-space

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (2)

is not equal to the proper time Lorentz-invariant interval dτ in ordinary spacetime (dτ)2 =
gµνdx

µdxν = dxµdx
µ. In order to match units in all terms of eqs-(1,2) suitable powers

of a length scale (say Planck scale) must be introduced. For convenience purposes it
is can be set to unity. For extensive details of the generalized Lorentz transformations
(poly-rotations) in flat C-spaces and references we refer to [1].

Let us now consider a basis in C-space given by

EA = γ, γµ, γµ ∧ γν , γµ ∧ γν ∧ γρ, ... (3)
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where γ is the unit element of the Clifford algebra that we label as 1 from now on. In (3)
when one writes an r-vector basis γµ1∧γµ2∧...∧γµr we take the indices in ”lexicographical”
order so that µ1 < µ2 < .... < µr. An element of C-space is a Clifford number, called also
Polyvector or Clifford aggregate which we now write in the form

X = XAEA = s1 + xµγµ + xµνγµ ∧ γν + ... (4)

A C-space is parametrized not only by 1-vector coordinates xµ but also by the 2-
vector coordinates xµν , 3-vector coordinates xµνα, ..., called also holographic coordinates,
since they describe the holographic projections of 1-loops, 2-loops, 3-loops,..., onto the
coordinate planes . By p-loop we mean a closed p-brane; in particular, a 1-loop is closed
string. In order to avoid using the powers of the Planck scale length parameter Lp in the
expansion of the polyvector X (in order to match units) we can set it to unity to simplify
matters. In a flat C-space the basis vectors EA, EA are constants. In a curved C-space
this is no longer true. Each EA, EA is a function of the C-space coordinates

XA = { s, xµ, xµ1µ2 , ....., xµ1µ2.....µD } (5)

which include scalar, vector, bivector,..., p-vector,... coordinates in the underlying D-dim
base spacetime and whose corresponding C-space is 2D-dimensional since the Clifford
algebra in D-dim is 2D-dimensional.

Defining

EA ≡ γA, J AB ≡ 1

2
(γA ⊗ γB − γB ⊗ γA), J A ≡ 1

2
(γA ⊗ 1− 1⊗ γA) 6= 0 (6)

for arbitrary polyvector valued indices A,B, .... and after using the relations

[ γA ⊗ γB, γC ⊗ γD ] =
1

2
[ γA, γC ]⊗ {γB, γD } +

1

2
{ γA, γC } ⊗ [ γB, γD ] (7)

{ γA ⊗ γB, γC ⊗ γD } =
1

2
[ γA, γC ]⊗ [ γB, γD ] +

1

2
{ γA, γC } ⊗ { γB, γD } (8)

yields, for example, the commutator relation involving the boost generator J 01 (along
the X1 direction) and the area-boost generator J 0 12 (along the bivector X12 direction)
in C-space

[ J 0 12, J 01 ] =
1

4
[ γ0 ⊗ γ12 − γ12 ⊗ γ0, γ01 ⊗ 1− 1⊗ γ01 ] =

− 1

8
g11 (γ20 ⊗ γ0 − γ0 ⊗ γ20) − 1

8
g00(γ1 ⊗ γ12 − γ12 ⊗ γ1) (9)

The (anti) commutators of all the gamma generators are explicitly given in the Appendix.
One requires to use the expressions in the Appendix in order to arrive at the last terms
of eq-(9). Hence, from the definitions in eqs-(6) one learns that

[ J 0 12, J 01 ] =
1

4
g00 J 12 1 +

1

4
g11 J 02 0 (10)
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A careful study reveals that the commutators obtained in eq-(10) (after using the expres-
sions in eqs-(7,8) and in those in the Appendix) do not obey the relations

[ J AB, J C ] ∼ − GAC J B + GBC J A (11)

[ J AB, J CD ] ∼ − GAC J BD + GAD J BC − GBD J AC + GBC J AD (12)

where the C-space metric is chosen to be GAB = 0 when the grade A 6= grade B. And
for the same-grade metric components g[a1a2...ak] [b1b2...bk] of GAB, the metric can decom-
posed into its irreducible factors as antisymmetrized sums of products of ηab given by the
following determinant [16]

GAB ≡ det


ηa1b1 . . . . . . ηa1bk

ηa2b1 . . . . . . ηa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
ηakb1 . . . . . . ηakbk

 (13)

The spacetime signature is chosen to be (−,+,+, ....,+).
It would be tempting to suggest that the C-space generalization of the Poincare algebra

could be given by the commutators in eq-(12) and

[ J AB, PC ] ∼ − GAC PB + GBC PA, [PA, PB] = 0 (14)

where PA is the poly-momentum and J AB are the generalized Lorentz generators. A
more careful inspection suggests that this is not the case. The actual commutators are
more complicated as displayed by eq-(10). One always must use the relations in eqs-(7,8)
and in the Appendix in order to determine the [J AB,J CD], [J AB,J C ] commutators. In
this way one will ensure that the Jacobi identities are satisfied.

Let us provide some examples of the generalized Lorentz relativistic transformations
in C-space. Performing an area-boost transformation along the bivector X12 direction
and followed by a boost transformation along the X1 direction one arrives after some
laborious but straightforward algebra at

X ′′0 = ( X0 coshβ + L−1 X12 sinhβ ) coshα + X1 sinhα (15a)

X ′′1 = ( X0 coshβ + L−1 X12 sinhβ ) sinhα + X1 coshα (15b)

X ′′12 = L X0 sinhβ + X12 coshβ (15c)

where α is the standard Lorentz boost parameter and β is the area-boosts one. Due to
the identities cosh2α − sinh2α = 1 and cosh2β − sinh2β = 1, a straightforward algebra
leads to

− (X ′′0 )2 + (X ′′1 )2 + L−2 (X ′′12)
2 = − (X0)

2 + (X1)
2 + L−2 (X12)

2 (16)

which is a consequence of the invariance of the norm in C-space [1]
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< X† X > = XA X
A = s2 + Xµ X

µ + Xµ1µ2 X
µ1µ2 + ...... Xµ1µ2.....µD X

µ1µ2....µD (17)

where X† denotes the reversal operation obtained by reversing the order of the gamma
generators in the wedge products. The symbol < .... > denotes taking the scalar part in
the Clifford geometric product.

In the particular case when the spacetime dimension is chosen to be D = 3 for sim-
plicity, one has in addition to the transformations provided by eqs-(15) that the other
remaining coordinates remain invariant under boosts along the X1 direction and area-
boosts along X12,

X ′′2 = X2, X ′′01 = X01, X ′′02 = X02, X ′′012 = X012 (18)

the Clifford scalar parts of the polyvectors are trivially invariant s′′ = s as they should.
Performing, instead, a boost transformation along the X1 direction and then followed

by an area-boost transformation along the bivector X12 direction one arrives at

X ′′0 = ( X0 coshα + X1 sinhα ) coshβ + L−1 X12 sinhβ (18a)

X ′′1 = X0 sinhα + X1 coshα (18b)

X ′′12 = X12 coshβ + L ( X0 coshα + X1 sinhα ) sinhβ (18c)

straightforward algebra leads again to

− (X ′′0 )2 + (X ′′1 )2 + L−2 (X ′′12)
2 = − (X0)

2 + (X1)
2 + L−2 (X12)

2 (19)

We may notice the mixing of polyvector valued coordinates under generalized Lorentz
transformations in C-space. Stringy (area coordinates) Xµν and point particle coordinates
Xµ in eqs-(15,18) appear mixed with each other under the C-space transformations.

Because [ J 0 12, J01 ] 6= 0 the order in which one performs the generalized
boosts transformations matters. In ordinary Relativity the commutator of two boosts
[M0i,M0j] ∼ η00 M ij gives a rotation. This is the reasoning behind the Thomas preces-
sion. In C-space, one will arrive at different results if one first performs an area-boost
followed by an ordinary boost, compared if we perform an ordinary boost followed by an
area boost. This is the reason why eqs-(15) differ from eqs-(18) although both of them
lead to the same invariance property of the C-space interval (17) .

The C-space rotations mixing the area-bivector X12 with the X1 vector component
are of the form

X ′1 = X1 cosθ − L−1 X12 sinθ; X ′12 = L X1 sinθ + X12 cosθ (20)

such that

L−2 (X ′12)
2 + (X ′1)

2 = L−2 (X12)
2 + (X1)

2 (21)

Due to the fact that g11 = g22 = 1 this explains why (X12)
2 appears with a plus sign in

all the above equations. The spacetime signature is chosen to be (−,+,+, ....,+).
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We shall provide next a very different physical explanation of the phenomenon of
Relativity of Locality than the one described in [12] and which does not rely on the nature
of curved momentum space. Let us look at the transformations in eqs-(18) and compare
the values of the coordinates of two events 1,2 in C-space in the primed and double-
primed framed of references, respectively. Denoting the coordinate intervals between the
two events in different frames of reference by ∆X0 = X0(2)−X0(1), ∆X ′0 = X ′0(2)−X ′0(1),
∆X ′′0 = X ′′0 (2)−X ′′0 (1), etc.... one gets from eqs-(18)

∆X ′′0 = (∆X0 coshα + ∆X1 sinhα) coshβ +
∆X12

L
sinhβ (22a)

∆X ′′1 = ∆X0 sinhα + ∆X1 coshα (22b)

∆X ′′12 = L (∆X0 coshα + ∆X1 sinhα) sinhβ + ∆X12 coshβ (22c)

An immediate consequence of the above relations is that locality in ordinary spacetime is
not an invariant concept, it becomes relative. In particular, from eqs-(22) one learns that
if one has two ordinary spacetime events obeying the locality condition in the unprimed
reference frame ∆X0 = ∆X1 = 0, in the double primed frame we have that

∆X ′′1 = 0, but ∆X ′′0 =
∆X12

L
sinhβ =

∆X ′′12
L coshβ

sinhβ =
∆X ′′12
L

tanhβ 6= 0 (23)

If we repeat the same arguments for the transformations in eqs-(15), instead of eqs-
(18), one arrives when ∆X0 = ∆X1 = 0 at

∆X ′′0 =
∆X12

L
sinhβ coshα 6= 0

∆X ′′1 =
∆X12

L
sinhβ sinhα 6= 0 (24)

Therefore from eqs-(23, 24) we can conclude that the invariant notion of spacetime
locality is now lost due to the nonvanishing contribution of the area-coordinates interval
∆X12 6= 0 in C-space. Therefore, we have seen how the concept of spacetime locality is
relative and does not rely on the nature of curved momentum space like it does in [12]. If
one imposes full locality in the full C-space this would require to set ∆X12 = 0 in eqs-(22)
leading in this restrictive case to a locality in spacetime.

We learnt from Special Relativity that the concept of simultaneity is also relative.
This can also be seen simply by setting β = 0 and ∆X0 = 0 in eqs-(22) leading to
∆X ′′0 = ∆X1 sinhα 6= 0 when ∆X1 6= 0. For example, if two doors of a train (separated
by a distance ∆X1) open/close simultaneously in one frame of reference, they will not
open/close simultaneously in another frame of reference. Hence, the concept of simultane-
ity is relative in Special Relativity due to the mixing of spatial and temporal coordinates
under Lorentz transformations. By the same token, we have shown in the above exam-
ples that the concept of spacetime locality is relative due to the mixing of area-bivector
coordinates with spacetime vector coordinates under generalized Lorentz transformations
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in C-space. In the most general case, there will be mixing of all polyvector valued coordi-
nates. This was the motivation to build a unified theory of all extended objects, p-branes,
for all values of p subject to the condition p+ 1 = D.

In [4] we explored the many novel physical consequences of Born’s Reciprocal Relativ-
ity theory [6], [8], [9] in flat phase-space and generalized the theory to the curved phase-
space scenario. We provided six specific novel physical results resulting from Born’s Recip-
rocal Relativity and which are not present in Special Relativity. These were : momentum-
dependent time delay in the emission and detection of photons; energy-dependent notion
of locality; superluminal behavior; relative rotation of photon trajectories due to the
aberration of light; invariance of areas-cells in phase-space and modified dispersion rela-
tions. We finalized by constructing a Born reciprocal general relativity theory in curved
phase-spaces which required the introduction of a complex Hermitian metric, torsion and
nonmetricity.

In particular, if two photons of different momentum P1, P2 are emitted simultaneously
in a given reference frame, ∆T = 0, there is a time delay in the emission times as measured
with respect to an accelerated frame of reference. The time delay experienced in the
accelerated frame of reference, corresponding to pure acceleration boosts represented by
the ξ parameter, was shown to be given by [4]

∆T ′ =
P2 − P1

b
sinhξ (24)

where b is the maximal proper force sustained by a fundamental particle and was given
by (mP c

2/LP ). mP is the Planck mass. LP is the Planck scale. A momentum dependent
delay in the emission times of photons will also cause a time delay in their detection as
measured with respect to an accelerated frame of reference. Coincidentally, one could
also write b in terms of an upper mass MU (Universe mass), and the Hubble scale RH as
b = (MUc

2/RH) reflecting some sort of large/small scale duality and compatibility with
Mach’s principle [4].

We should emphasize that no spacetime foam was introduced, nor Lorentz invariance
was broken, in order to explain the time delay in the photon emission/arrival in eq-
(24). In the conventional approaches of DSR (Double Special Relativity) where there is a
Lorentz invariance breakdown [12], a longer wavelength photon (lower energy) experiences
a smoother spacetime than a shorter wavelength photon (higher energy) because the
higher energy photon experiences more of the graininess/foamy structure of spacetime at
shorter scales. Consequently, the less energetic photons will move faster (less impeded)
than the higher energetic ones and will arrive at earlier times.

However, in our case above [4] the time delay is entirely due to the very nature of Born’s
Reciprocal Relativity when one looks at pure acceleration (force) boosts transformations of
the phase space coordinates in flat phase-space. No curved momentum space is required
as it happens in [12]. The condition ∆T ′ > 0 in eq-(24) implies also that higher momentum
(higher energy) photons will take longer to arrive than the lower momentum (lower energy)
ones.

Another novel consequence of C-space Relativity deals with the concept of mass. The
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true quadratic Casimir invariant is now given by

P2 = P 2 + Pµ P
µ + Pµ1µ2 P

µ1µ2 + . . . Pµ1µ2....µD P µ1µ2.....µD = M2 (25)

where as usual one must introduce a dimensionful parameter of length or mass in the
expansion in (25) in order to match physical units. P is the Clifford scalar component
of the poly-momentum P. The usual quantity PµP

µ = m2 identified with the ordinary
mass-squared is no longer an invariant quantity. It is now a variable. M2 is now the
proper C-space invariant mass quantity. This has important consequences for the so-
called “soccer-ball” problem [12], [13].

Let us focus in the D = 2 case to simplify matters. Eq-(25) gives in this case after
introducing a length scale parameter L to match units

(P )2 − (P0)
2 + (P1)

2 − (LP01)
2 = M2 (26)

Choosing P 2 =M2 and after dividing by (LP01)
2 leads to

(
P1

LP01

)2 − (
P0

LP01

)2 = 1 (27)

Multiplying by m2 (which is no longer an invariant quantity) gives

(
mP1

LP01

)2 − (
mP0

LP01

)2 = m2 ⇒ (π1)
2 − (π2)

2 = m2 (28)

where the nonlinearly-defined momenta π0, π1 obeying the ordinary dispersion relation in
eq-(28) are defined as

π0 ≡
mP0

LP01

, π1 ≡
mP1

LP01

(29)

Due to the definition (29) one can infer the nonlinear addition law for π0, π1 derived from
a linear addition law in C-space. Given two poly-momentum variables in C space :

P = P 1 + P0 γ
0 + P1 γ

1 + L P01 γ
0 ∧ γ1 (30a)

Q = Q 1 + Q0 γ
0 +Q1 γ

1 + L Q01 γ
0 ∧ γ1 (30b)

The linear addition law in C-space is

P + Q = (P +Q) 1 + (P0 +Q0) γ
0 + (P1 +Q1) γ

1 + L (P01 +Q01) γ
0 ∧ γ1 (31)

From which we can derive the nonlinear addition law from the definitions in eq-(29)
associated with the linear addition law in C-space provided by eq-(31)

(π ⊕ ξ)0 = π0 ⊕ ξ0 =
m(P0 +Q0)

L(P01 +Q01)
6= mP0

LP01

+
mQ0

LQ01

= π0 + ξ0 (32a)
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(π ⊕ ξ)1 = π1 ⊕ ξ1 =
m(P1 +Q1)

L(P01 +Q01)
6= mP1

LP01

+
mQ1

LQ01

= π1 + ξ1 (32a)

From these nonlinear addition laws we can deduce that the nonlinear addition law for N
identical particles is

π0 ⊕ π0 ⊕ ...... ⊕ π0 =
m(P0 + P0 + ...... + P0)

L(P01 + P01 + .....+ P01)
=

N m P0

N L P01

=
mP0

LP01

(33a)

π1 ⊕ π1 ⊕ ...... ⊕ π1 =
m(P1 + P1 + ...... + P1)

L(P01 + P01 + .....+ P01)
=

N m P1

N L P01

=
mP1

LP01

(33a)

The immediate physical consequence of eqs-(33a, 33b) is that the nonlinear addition law
of N identical particles will not exceed a given momentum bound. Namely, if the π0, π1
momenta are bound by the Planck momentum, the nonlinear addition of N identical
particles will also be bound by the Planck momentum values. To sum up, C-space provides
a different physical realization of the nonlinear addition law in order to tackle the
“soccer-ball” problem in DSR [13], [12] and which does not involve a curved momentum
space.

Superluminal particles were studied within the framework of the Extended Relativity
theory in Clifford spaces (C-spaces) in [5]. In the simplest scenario, it was found that it is
the contribution of the Clifford scalar component P of the poly-vector-valued momentum
P which is responsible for the superluminal behavior in ordinary spacetime due to the
fact that the effective mass

√
M2 − P 2 can be imaginary (tachyonic). However from

the point of view of C-space there is no superluminal behaviour (tachyonic) because
the true physical mass still obeys M2 > 0. As discussed in detailed by [1], [3] one can
have tachyonic (superluminal) behavior in ordinary spacetime while having non-tachyonic
behavior in C-space. Hence from the C-space point of view there is no violation of
causality nor the Clifford-extended Lorentz symmetry. The analog of “photons” in C-
space are tensionless strings and branes [1].

Long ago [17] we showed how the quadratic Casimir invariant in C-space given by
eq-(25) leads to modified wave equations, dispersion laws and to the generalizations of
the stringy-uncertainty principle relations. The on-shell mass condition for a massless
polyparticle in the 24-dimensional C-space corresponding to a Clifford algebra in D = 4,
can be rewritten in terms of the polyvector valued components of a wave polyvector K,
after setting L = 1, h̄ = c = 1 for simplicity, as

k2 + KµK
µ + Kµ1µ2K

µ1µ2 + ...... + Kµ1µ2....µ4K
µ1µ2...µ4 = M2 = 0 (34)

A particular slice through the 24-dimensional C-space can be taken by imposing the set
of algebraic conditions

k2 = 0, Kµ1µ2K
µ1µ2 = λ1 (KµK

µ)2 = λ1 K
4 (35a)
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Kµ1µ2µ3 K
µ1µ2µ3 = λ2 (KµK

µ)3 = λ2 K
6, Kµ1µ2µ3µ4 K

µ1µ2µ3µ4 = λ3 (KµK
µ)4 = λ3 K

8

(35b)
where the λ’s are numerical parameters. Since k is the Clifford scalar part of the wave
polyvector it is invariant under C-space transformations. Hence the condition k2 = 0
will not break the C-space symmetry. However the other slice conditions in eqs-(35a,
35b) will break the generalized (extended) Lorentz symmetry in C-space because these
conditions are not preserved under the most general C-space transformations as described
earlier. There will be only the residual standard Lorentz symmetry (in ordinary spacetime)
remaining which preserves these conditions/constraints in eqs-(35a, 35b).

Inserting the conditions of eqs-(35) into eq-(34), after setting k2 = 0, yields the mod-
ified dispersion law

K2 ( 1 + λ1 K
2 + λ2 K

4 + λ3 K
6 ) = M2 − k2 = 0 (36)

Upon writing explicitly

K2 = Kµ K
µ = | ~K|2 − (K0)

2 = | ~K|2 − (ω)2 (37)

and solving the algebraic equation for ω in terms of | ~K| obtained from eq-(36) leads to

ω = ω(| ~K|). Finally, the group velocity (after reinstating c) is given by

c(| ~K|) =
∂ω(| ~K|)
∂| ~K|

= c + ... (38)

The group velocity might be greater, smaller or equal to c. From eq-(36) one can deduce

immediately that one solution is K2 = | ~K|2 − (ω)2 = 0 ⇒ ω = | ~K| ⇒ ∂ω(| ~K|)
∂| ~K| = 1 (in

c = 1 units) and as expected massless particles move at the speed of light. However, there
are other solutions to eq-(36) besides the trivial one leading to energy dependent speed of
propagation. Setting K2 = Z leads to a cubic equation inside the parenthesis of eq-(36)

1 + λ1 Z + λ2 Z
2 + λ3 Z

3 = 0 (39)

that can be solved exactly in terms of the λ’s parameters giving 3 roots zi(λ1, λ2, λ3), i =
1, 2, 3. The roots can be all real, or one real and a pair of complex conjugate roots. In
the former case we have (after reinstating c and adjusting the proper units for zi) the
particular solutions are

K2 = c2 | ~K|2 − (ω)2 = zi(λ1, λ2, λ3), ⇒ ω =
√
c2| ~K|2 − zi ⇒

c(| ~K|) =
∂ω(| ~K|)
∂| ~K|

= c
c | ~K|√

c2 | ~K|2 − zi
= c

√
(ω)2 + zi

ω
i = 1, 2, 3 (40)

Therefore, from eq-(40) one has an energy dependent speed of propagation that can be
superluminal if zi > 0, or subluminal if zi < 0, in the case one has 3 real roots to the cubic
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equation (39). In order to make contact with experiment, gamma ray bursts for example,
the simplest scenario is obtained after inserting the proper units in eq-(36). This requires
to replace

λ1 → λ1 L
2, λ2 → λ2 L

4, λ3 → λ3 L
6 (41)

For very small scales L of the order of the Planck length LP the leading order terms in
eq-(36) becomes K2 ( 1 + λ1 L

2 K2) ' 0 and the solution to the latter equation besides
the trivial one K2 = 0 is

K2 = c2 | ~K|2 − (ω)2 = z1 = − 1

λ1L2
⇒

c(| ~K|) = c
c | ~K|√

c2 | ~K|2 + 1
λ1L2

= c

√
(ω)2 − 1

λ1L2

ω
< c (42a)

Upon reabsorbing the parameter λ1 into a rescaled L as λ1L
2 = L̃2, one finally arrives at

the energy-dependent speed (in units of h̄ = 1) given by

c

√
(ω)2 − L̃−2

ω
< c (42b)

after assuming that L is a very small scale of the order of the Planck length. This does
not necessarily mean that the rescaled length L̃ has to be that small. For instance in
Pavlopoulos’s modified dispersion relations [14] the length scale was estimated to be of
the order of 10−13cm.

To ensure that the terms inside the square root are positive (no imaginary solutions
in eqs-(42)) one must have bounds on the ω-domains to ensure that (ω)2 − L̃−2 ≥ 0.
For very small lengths L̃ (very low values of λ1) compared to the Planck length one will
have very high-energy domains for ω compared to the Planck energy when these effects
(energy-dependent photon speed) are seen. And vice versa, for very large lengths L̃ (very
high values of λ1) compared to the Planck length one will have very low- energy domains
ω compared to the Planck energy one. These would be the experimental signals which
could in principle help us find the values of L̃, and in turn, determine the parameter λ1
when L is identified with the Planck length.

One should add that after differentiating c2 | ~K|2 − (ω)2 = zi in eq-(40) gives

2 c2 | ~K| d| ~K| = 2 ω dω ⇒ c2 =
ω

| ~K|
dω

d| ~K|
(43)

leading always to the standard relation vgroup vphase = c2 between group and phase ve-
locities for all the possible solutions. The above results were all obtained by setting the
Clifford scalar part k of the wave polyvector to zero. The calculations in the simplest
D = 2 case when k2 6= 0 can be found in [5] leading also to the possibility of superluminal
propagation.

Thus the key novel results one obtains from our analysis of wave propagation in C-
space when k2 = 0 are :
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1. Irrespective of the solutions found in eqs-(40,42) the standard dispersion relation

K2 = c2| ~K|2 − (ω)2 = 0 is always a solution to eq-(36) giving a constant speed of photon
propagation. This is a valid solution to choose whether or not an energy-dependent photon
speed is found.

2 . Because the modified dispersion relation in eq-(36) is Lorentz invariant since the

proper norm K2 = c2| ~K|2 − (ω)2 is Lorentz invariant, one is able to arrive at the energy-

dependent speed of propagation c(| ~K|) in eqs-(40,42) while still retaining the Lorentz
symmetry. This does not occur in DSR nor in other approaches.

To our knowledge, Pavlopoulos [14] was the first to propose modifications to the
wave equation involving an invariant length scale L0 and leading to modified dispersion
relations which are very different than the ones discussed in this work based on the
Extended Relativity Theory in Clifford Spaces. Other modified dispersion relations were
proposed by Fujiwara [15]. For a relative recent analysis of the observations of gamma-
ray bursts (GRBs) based on the dispersion laws proposed by Pavlopoulos [14]. It appears
that spectral time lags exist between higher-energy gamma rays photons and lower-energy
photons which vary with the energy difference and time (distance) traveled.

Einstein’s gravity in Riemannian spacetimes was extended to curved Clifford spaces
in [16] and relations to Lovelock-Lanczos higher curvature gravity were found. Born’s
Reciprocal Relativity principle [6] in phase spaces, based on a maximal velocity (speed of
light) and maximal proper force (that can be postulated to be mP c

2/LP ), was extended
to Clifford Phase Spaces in [2]. It required the introduction of a maximal (Hubble) and
minimal (Planck) scales. The idea of maximal acceleration was proposed by [7] later on.

Quantization might be studied from the perspective of Noncommutative Geometry by
introducing noncommutative spacetime coordinates [21]. As emphasized by the authors
[18], conformal symmetry represents the fundamental spacetime symmetry, and it contains
the Poincare and de Sitter geometries as particular cases, besides describing massless
particles and field symmetries. In order to investigate modifications of the relativistic
kinematics at sufficiently high energy, quantum deformations of the Poincare algebra
were introduced by [19], [20] and followed by the doubly special relativity (DSR) [12] ,
which contains two observer-independent parameters, the light velocity and the Planck
length.

The DSR framework coincides with the algebraic structure of the kappa-deformation
of the Poincare algebra , where the deformation parameter κ is related to the Planck
mass. The conformal transformations, κ-deformed Poincare algebras, and a quantum κ-
deformed Poincare symmetry (with algebraic and co-algebraic structures) were formulated
together with the respective Hopf algebra relations, in the context of quantum Clifford-
Hopf algebras, by [18]. The subject of quantum Clifford-Hopf algebras is vast [22]. Since
they contain κ-deformed Poincare algebras as the authors [18] have shown, it is warranted
to extend the formalism of quantum Clifford-Hopf algebras to Noncommutative Clifford
spaces. Noncommutative coordinates in Clifford spaces were studied in [23].

To finalize we should also mention that the theory of Scale Relativity proposed by
Nottale [11] based on a minimal observational length-scale, the Planck scale, as there is
in Special Relativity a maximum speed, the speed of light, deserves to be looked within
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the Clifford algebraic perspective. Nottale aims to unify Quantum Physics and Relativity
Theory by introducing explicitly the scales of observation in physical equations as char-
acterizing the ”state of scale” of the coordinate system. This is made possible by the
fundamental relative nature of scales: only scale ratios have a physical meaning, never
an absolute scale, in the same way as there exists no absolute velocity, but only velocity
differences. The immediate application to this work lies in the key fact that in eqs-(41,42)
the parameter λ1 was defined as the ratio of two scales L̃/L when L is the Planck scale.
Also, in Scale Relativity, the composition of two scale changes is inferior to the product of
these two scales. Similarly, in special relativity, the composition of two speeds is inferior
to the sum of those two speeds. This is very reminiscent of the nonlinear addition laws
for the momenta found in eqs-(32,33).

APPENDIX

In this Appendix we shall write the (anti) commutator relations for the Clifford algebra
generators.

1

2
{ γa, γb } = gab 1;

1

2
[ γa, γb ] = γab = − γba, a, b = 1, 2, 3, · · · ,m (A.1)

[ γa, γbc ] = 2 gab γc − 2 gac γb, { γa, γbc } = 2 γabc (A.2)

[ γab, γcd ] = − 2 gac γbd + 2 gad γbc − 2 gbd γac + 2 gbc γad (A.3)

In general one has [10]

pq = odd, [γm1m2....mp , γ
n1n2....nq ] = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ
[n1n2

[m1m2
γ
n3....nq ]
m3......mp]

+

2p!q!

4!(p− 4)!(q − 4)!
δ
[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp]

− ............ ()

pq = even, { γm1m2....mp , γ
n1n2....nq } = 2 γn1n2....nq

m1m2....mp
− 2p!q!

2!(p− 2)!(q − 2)!
δ
[n1n2

[m1m2
γ
n3....nq ]
m3......mp]

+

2p!q!

4!(p− 4)!(q − 4)!
δ
[n1....n4

[m1....m4
γ
n5....nq ]
m5......mp]

− ............ ()

pq = even, [γm1m2....mp , γ
n1n2....nq ] =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[n1

[m1
γ
n2....nq ]
m2....mp]

−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp]

+ ....... ()
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pq = odd, { γm1m2....mp , γ
n1n2....nq } =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[n1

[m1
γ
n2....nq ]
m2....mp]

−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[n1n2n3

[m1m2m3
γ
n4....nq ]
m4......mp]

+ ....... ()

The generalized Kronecker delta is defined as the determinant

δa1a2.....akb1b2.....bk
≡ det


δa1b1 . . . . . . δa1bk
δa2b1 . . . . . . δa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
δakb1 . . . . . . δakbk

 ()
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