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We present an alternative type of sixteen-component hypercomplex scalar-vector values named “space-time 
sedenions”, generating associative noncommutative space-time Clifford algebra.  

1. Introduction 

The eight-component hypercomplex numbers such as biquaternions and octonions [1-6] 
enclosing scalar, pseudoscalar, vector and pseudovector components are widely used for the 
generalization of equations of quantum mechanics and field theory. These structures take into 
account the space symmetry with respect to the spatial inversion. However, a consistent relativistic 
approach requires taking into consideration full time and space symmetries that leads to the sixteen-
component space-time algebras.  

The well known sixteen-component hypercomplex numbers, sedenions, are obtained from 
octonions by the Cayley-Dickson extension procedure [7,8]. In this case the sedenion is defined as  

1 2S O O  e ,      (1) 

where iO  is an octonion and the parameter of duplication e  is similar to imaginary unit 2 1 e . 
The algebra of sedenions has the specific rules of multiplication. The product of two sedenions  

1 11 12S O O  e , 

2 21 22S O O  e , 
is defined as  

      1 2 11 12 21 22 11 21 22 12 22 11 12 21S S O O O O O O O O O O O O      e e e ,  (2) 

where iO  is conjugated octonion. The sedenionic multiplication (2) allows one to introduce a well 
defined norm of sedenion. However such procedure of constructing the higher hypercomplex 
numbers leads to the fact that the sedenions as well as octonions generate normed but 
nonassociative algebra [9-11]. This greatly complicates the use of the Cayley-Dickson sedenions in 
the physical applications. 

Recently we have developed an alternative approach to constructing the multicomponent values 
based on our scalar-vector conception realized in associative eight-component octons [12-14] and 
sixteen-component sedeons [15-18]. In this paper we present an alternative version of the sixteen-
component associative space-time algebra.  

2. Sedenionic space-time algebra 

It is known, the quaternion is a four-component object 

0 1 2 3q q q q q   0 1 2 3a a a a ,     (3) 

where components q (Greek indexes 0,1, 2, 3  ) are numbers (complex in general), 10a  is 
scalar units and values ma  (Latin indexes m 1, 2, 3 ) are quaternionic units, which are interpreted 
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as unit vectors. The rules of multiplication and commutation for ma  are presented in Table 1. We 
introduce also the space-time basis , ,t r tre e e , which is responsible for the space-time inversions. 
The indexes t and r indicate the transformations (t for time inversion and r for spatial inversion), 
which change the corresponding values. The value 10e  is a scalar unit. For convenience we 
introduce numerical designations 1 te e  (time scalar unit); 2 re e  (space scalar unit) and 3 tre e  
(space-time scalar unit). The rules of multiplication and commutation for this basis we choose 
similar to the rules for quaternionic units (see Table 2). 

 
Table 1.           Table 2. 

 
 
 
 
 
 
 
 

 

Note that the unit vectors , ,1 2 3a a a  and the space-time units , ,1 2 3e e e  generate the anticommutative 
algebras: 

,
,

 
 

n m m n

n m m n

a a a a
e e e e

       (4) 

for n m , but , ,1 2 3e e e  commute with , ,1 2 3a a a : 

n m m ne a a e ,       (5) 

for any n  and m . Then we can introduce the sixteen-component space-time sedenion V  in the 
following form: 

   
   

00 01 02 03 10 11 12 13

20 21 22 23 30 31 32 33 .

V V V V V V V V

V V V V V V V V

       

       
0 0 1 2 3 1 0 1 2 3

2 0 1 2 3 3 0 1 2 3

e a a a a e a a a a

e a a a a e a a a a

V
 (6) 

The sedenionic components V  are numbers (complex in general). Introducing designation of 
scalar and vector values in accordance with the following relations 

00V V 0 0e a ,         

 01 02 03V V V V  0 1 2 3e a a a


,       

10V V V t 1 1 0e a ,        

 11 12 13V V V V V   t 1 1 1 2 3e a a a
 

,           (7) 

20V V V r 2 2 0e a ,        

 21 22 23V V V V V   r 2 2 1 2 3e a a a
 

,      

30V V V tr 3 3 0e a ,        

 31 32 33V V V V V   tr 3 3 1 2 3e a a a
 

,      

We can represent the sedenion in the following scalar-vector form: 

   1a    2a    3a  

1a  1    3a   2a  

2a   3a  1    1a  

3a    2a   1a  1  
 

   1e    2e    3e  

1e  1    3e  2e  

2e  3e  1    1e  

3e    2e  1e  1  
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V V V V V V V V       t t r r tr tr

   
V .     (8) 

Thus, the sedenionic algebra encloses four groups of values, which are differed with respect to 
spatial and time inversion.  

(1) Absolute scalars (V ) and absolute vectors (V


) are not transformed under spatial and time 
inversion.  

(2) Time scalars (Vt ) and time vectors (Vt


) are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  
(3) Space scalars (Vr ) and space vectors (Vr


) are changed under spatial inversion and are not 

transformed under time inversion.  
(4) Space-time scalars (Vtr ) and space-time vectors (Vtr


) are changed under spatial and time 

inversion. 

Further we will use the symbol 1 instead units 0a  and 0e  for simplicity. Introducing the 
designations of scalar-vector values 

0 00 01 03V V V V   1 2 3a a a02V ,      

1 10 11 12 13V V V V   1 2 3a a aV ,           (9) 

2 20 21 22 23V V V V   1 2 3a a aV ,      

3 30 31 32 33V V V V   1 2 3a a aV ,      

we can write the sedenion (6) in the following compact form  

0 1 2 3 1 2 3e e eV = V + V V V .     (10) 

On the other hand, introducing designations of space-time sedenion-scalars 

0 00 10 20 30( )V V V V   1 2 3e e eV ,      

1 01 11 21 31( )V V V V   1 2 3e e eV ,      

2 02 12 22 32( )V V V V   1 2 3e e eV ,         (11) 

3 03 13 23 33( )V V V V   1 2 3e e eV ,      

we can write the sedenion (6) as 

0 1 2 3   1 2 3a a aV V V V V ,     (12) 

or introducing the sedenion-vector  

1 2 3V V V V    t r tr 1 2 3a a a
    

V = = V V V ,     (13) 

we can rewrite the sedenion in following compact form 

0 


V V V .       (14) 

Further we will indicate sedenion-scalars and sedenion-vectors with the bold capital letters. 
Let us consider the sedenionic multiplication in detail. The sedenionic product of two 

sedenions A and B can be represented in the following form  

    0 0 0 0 0 0            
      

 AB A A B B A B A B AB A B A B   (15) 

Here we denoted the sedenionic scalar multiplication of two sedenion-vectors (internal product) by 
symbol “  ” and round brackets 
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  1 1 2 2 3 3    
 
A B A B A B A B ,    (16) 

and sedenionic vector multiplication (external product) by symbol “” and square brackets, 

     2 3 3 2 3 1 1 3 1 2 2 1       1 2 3a a a
 
A B A B A B + A B A B + A B A B .  (17) 

In (16) and (17) the multiplication of sedenionic components is performed in accordance with (11) 
and Table 2. Thus the sedenionic product  

0


 F = AB F + F       (18) 
has the following components: 

0 0 0 1 1 2 2 3 3  F = A B A B A B A B ,      

 1 1 0 0 2 3 3 21F = A B + A B + A B A B ,         (19) 

 2 2 0 0 2 3 1 1 3 F = A B + A B A B A B ,      

 3 3 0 0 3 1 2 2 1 F = A B + A B A B A B .      

Note that in the sedenionic algebra the square of vector is defined as  

  2 2 2
1 2 3

2A A A A A A     
  

,     (20) 

and the square of modulus of vector is  

 2 2 2 2
1 2 3A A A A + A + A   

  
.    (21) 

3. Spatial rotation and space-time inversion 

The rotation of sedenion V on the angle   around the absolute unit vector n  is realized by 
uncompleted sedenion  

   cos / 2 sin / 2n  
U       (22) 

and by conjugated sedenion *U : 

   * cos / 2 sin / 2n  
U      (23) 

with 
* * 1   UU = U U .      (24) 

The transformed sedenion V  is defined as sedenionic product  
*    V U  V U ,      (25) 

Thus the transformed sedenion V can be written as  

         cos / 2 sin / 2 cos / 2 sin / 20n n             
 V V V  

  cos 1 cos sin0 n n n          
    V V V V .    (26) 

It is clearly seen that rotation does not transform the sedenion-scalar part, but the sedenionic vector 


V  is rotated on the angle   around n . 
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The operations of time inversion ( tR̂ ), space inversion ( rR̂ ) and space-time inversion ( trR̂ ) are 
connected with transformations in 1e , 2e , 3e  basis and can be presented as  

R̂      t 2 2 1 2 3e e e e e 
0 1 2 3V  V V V V V ,      

R̂      r 1 1 1 2 3e e e e e 
0 1 2 3V V V V V V ,          (27) 

R̂      tr 3 3 1 2 3e e e e e 
0 1 2 3V V V V V V .      

4. Sedenionic Lorentz transformations 

The relativistic event four-vector can be represented in the follow sedenionic form: 

+ct r 1 2e e S .      (28) 

The square of this value is the Lorentz invariant 
2 2 2 2 2c t + x + y + z  S S .     (29) 

The Lorentz transformation of event four-vector is realized by uncompleted sedenions 

ch shm   3e L ,      (30) 

ch shm   3e *L ,      (31) 

where th 2 v / c  , v  is velocity of motion along the absolute unit vector m . Note that 

 1     L L L L .      (32) 

The transformed event four-vector S  is written as 

    ch sh + ch shm ct r m        3 1 2 3e e e e    *S L  S L  

 ch2 sh2ct m r  1 1e e          (33) 

     2sh2 2 sh 1 ch2r ctm m r m m r m       2 2 2 2+e e e e        . 

Separating the values with 1e  and 2e  we get the well known formulas for time and coordinates 
transformation [19]: 

2

2 2

/
1 /

t x v ct
v c

 


, 
2 21 v /

x t vx
c

 


, y y  , z z  ,   (34) 

where x  is the coordinate along the m  vector. 

Let us also consider the Lorentz transformation of the full sedenion V .  

The transformed sedenion V  can be written as sedenionic product 
    *V L  V L .       (35) 

    
 

 
2 2

2 2

ch sh ch sh

ch sh ch sh

ch sh ch sh .

0

0 0 0 0

m m

m

m m m m

   

   

   

    

   

   

tr tr

tr rt tr tr

tr tr tr tr

e e

e e e e

e e e e

 



      

V V V

V V V V

V V V V

   (36) 

Rewriting the expression (36) with scalar (16) and vector (17) products we get  
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2 2

2 2 2

ch sh ch sh

ch sh 2 sh

ch sh ch sh .

0 0 0 0 m

m m

m m m m

   

  

   

    

   

             

tr tr tr tr

tr tr tr tr

tr tr tr tr

e e e e

e e e e

e e e e



   

      

V V V V V

V V V

V V V V

  (37) 

Thus, the transformed sedenion has the following components:  

V V  ,          
V V tr tr ,          

 ch 2 sh 2V V m V    r r tr te
 ,       

 ch 2 sh 2V V m V    t t tr re
 ,       

  2ch 2 2 sh sh2V V m V m m V         tr rte
      ,        (38) 

  2ch 2 2 sh sh2V V m V m m V         tr tr tr tre
      ,    

  22 sh sh 2V V m V m V m     r r r tr te
     ,      

  22 sh sh 2V V m V m V m     t t t tr re
     .      

4. Subalgebras of space-time quaternions and octonions 

The sedenionic basis introduced above enables constructing different types of quaternions, 
which differ in their properties with respect to the operations of the spatial and time inversion. 

 0 1 2 3q q q q q   0 0 1 2 3a e a a a ,     (39) 

 0 1 2 3q q q q q   t 0 t 1 2 3a e a a a ,    (40) 

 0 1 2 3q q q q q   r 0 r 1 2 3a e a a a ,    (41) 

 0 1 2 3q q q q q   tr 0 tr 1 2 3a e a a a ,    (42) 

The absolute quaternion (39) is the sum of the absolute scalar and absolute vector. It remains 
constant under the transformations of space and time inversion (27). Time quaternion qt

 , space 
quaternion qr

  and space-time quaternion qtr

  are transformed under inversions in accordance with 
the commutation rules for the basis elements , ,t r tre e e . For example, performing the operation of 
time inversion (see (27)) with the quaternion qt

  we obtain the conjugated quaternion  

 0 1 2 3q q q q q q    t r t r 0 t 1 2 3= e e a e a a a  .    (43) 

On the other hand, the sedenionic basis allows one to construct various types of space-time eight-
component octonions: 

 00 01 02 03 10 11 12 13G = G +G +G +G + G + G +G +Gt 1 2 3 t t 1 2 3a a a e e a a a


,   (44) 

 00 01 02 03 20 21 22 23G = G +G +G +G + G + G +G +Gr 1 2 3 r r 1 2 3a a a e e a a a


,  (45) 

 00 01 02 03 30 31 32 33G = G +G +G +G + G + G +G +Gtr 1 2 3 tr tr 1 2 3a a a e e a a a


.  (46) 

 



 7 

6. Concluding remarks  

The algebra of sedenions proposed in this article is the anticommutative associative space-time 
Clifford algebra. The sedenionic basis elements na  are responsible for the spatial rotation, while the 
elements ne  are responsible for the space-time inversions. Mathematically, these two bases are 
equivalent, and the different physical properties attributed to them are an important physical essence 
of our sedenionic hypothesis.  

In contrast to the previously discussed sedeonic algebra [15-18], which uses the multiplication 
rules of basic elements na and ne  proposed by A.Macfarlane [20], the multiplication rules for 
sedenionic basis elements na and ne  coincide with the rules for quaternion units introduced by 
W.R.Hamilton [21]. There is a close connection between these two basses. The transition from the 
sedeonic basis to sedenionic basis is performed by following replacement: 

i n na a , 
i n ne e . 

There is one disadvantage of sedenions connected with the fact that the square of the vector is a 
negative value. However, on the other side the sedenionic rules of cross-multiplying do not contain 
the imaginary unit and this leads to the considerable simplifications in the calculations. But of 
course, the physical results do not depend on the choice of algebra, so these two algebras are 
equivalent. 
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