The proof of the Bill conjecture

Jiang Shan
China Chongqing University
January 21, 2014

The math problem is Bill conjecture:

Guess one: if \(A^x + B^y = C^z \), and A, B, C, x, y, z are all positive integers, and x, y, z are greater than 2, then the A, B, C must have a common prime factor.

Guess two: if A, B, C are positive integers and overall coprime. Then the equation \(A^x + B^y = C^z \), no x, y, z all positive integer solutions of greater than 2.

The essence of these two kinds of conjecture is the same.

Prove:
Let x, y, z is a positive integer, and greater than 2.
Let \(x = y, z = x + 1 \), have to

\[
2^x + 2^y = 2^z \quad (1)
\]

Obviously 2 and 2 are not coprime.

Let \(n = y = z, D, E, F \) is a positive integer, and \(D > E \). Then \(F = D^n - E^n \), according to the Catalan (Eugne Charles Catalan) theorem, F will not equal to 1.

Have to

\[
F + E^n = D^n \quad (2)
\]

Both sides also multiplied by \(F^n \) term, have to

\[
F^{(n+1)} + (EF)^n = (DF)^n
\]

Let \(F = GH, G \) is a positive integer, H is a prime.

Have to

\[
(GH)^{(n+1)} + (EGH)^n = (DGH)^n \quad (3)
\]
Let $A = GH$, $B = EGH$, $C = DGH$, and $x = n + 1$, $y = z = n$. Because E, D can be any value, n also can be any value, for the type (2) both sides only multiplied by F^n term can turn into the indefinite equation form $A^x + B^y = C^z$.

So in addition to the type (1), the type (3) is the indefinite equation $A^x + B^y = C^z$ solution form only. In this kind of indefinite equation A, B, C must have a common a prime factor H.

So for $y \neq z$ case? In addition to $y|z$ or $z|y$, for $F + E^y = D^z$ equation on both sides, no matter what multiplied by about y, z, D, E, F term can’t turn into the indefinite equation form $A^x + B^y = C^z$. When $y|z$ or $z|y$, $F = D^z - E^y$ can be written as $F = (D^p)^y - E^y$ or $F = D^z - (E^q)^z$ (p, q is an integer greater than 1, and $yp = z$ or $zq = y$), then the type (3) is the same indefinite equation $A^x + B^y = C^z$ solution form, just the D turn into D^p or the E turn into E^q.

By the discussion above all, the Bill conjecture is proved.