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Abstract 

Let us consider odd numbers which share a prime factor>>>>1 as a kind, then the 

number axis’s positive half line which begins with odd point 3 consists of infinite 

many equivalent line segments on same permutation of χχχχ kinds’ odd points plus 

odd points amongst the χχχχ kinds’ odd points, where χχχχ≥1. In this article, we shall 

prove the unproved half of the Polignac’s conjecture by mathematical induction 

with the aid of such equivalent line segments and kinds of odd points thereon.  
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Basic Concepts  

In 1849, Polignac conjectured that for every even number 2n are there 

infinitely many pairs of consecutive primes which differ by 2n, where 

n≥1. Yet this is an unproved conjecture up to now.  

Happily, I had proven a half of the conjecture by the end of last year, and 

the half states that there are infinitely many pairs of consecutive odd 

prime numbers. The paper with relation to the half is published at pp. 

17-26, Number 1 (2013) of learned journal “Advances in Theoretical and 

Applied Mathematics” of Research India Publications.  

What we need is to successively prove another half of the conjecture by 

now, namely prove that every positive even number 2n is a difference of 

two consecutive odd prime numbers. Nevertheless apply more or less 
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alike method as compared with the proven half, therefore following basic 

concepts expounded have more repeats. Of course, this is inevitable and 

indispensable for the new proof.  

Everyone knows, each and every odd point at positive half line of the 

number axis expresses a positive odd number. Also infinite many a 

distance between two consecutive odd points at the positive half line 

equal one another. Afterwards, the number axis’s positive half line which 

begins with odd point 3 is called the half line for short. 

Let us use symbol “•” to denote an odd point at the beginning’s half line 

and in formulations. Moreover the half line is marked merely with 

symbols of odd points here. Please, see following first illustration. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••         

First Illustration 

We use also symbol “•s” to denote at least two undefined odd points in 

formulations. We consider smallest positive odd prime number 3 as №1 

odd prime number, and consider positive odd prime number Jχ as №χ odd 

prime number, where χ ≥1, then odd prime number 3 is written as J1 as 

well. And then, we consider positive odd numbers which share prime 

factor Jχ as №χ kind of odd numbers. If an odd number contains α 

different prime factors, then, the odd number concurrently belongs in α 

kinds of odd numbers, where α ≥1.  

There is an only odd prime number Jχ within №χ kind’s odd numbers. 

Existing Jχ, we term others as №χ kind of odd composite numbers.  
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If one • is defined as an odd composite point, then we change symbol “◦” 

for symbol “•”. And use symbol “◦s” to denote the plural in formulations. 

If one • is affirmed as an odd prime point, then this • is rewritten as one ♠. 

And use ♠s to denote the plural in formulations. 

In the course of the proof, we shall change ◦s for •s at places of ∑№χ [χ≥1] 

kind’s odd composite points orderly according as χ is from small to large. 

Since №χ kind’s odd numbers are infinitely many a product which 

multiplies every odd number by Jχ, so there is a №χ kind’s odd point 

within consecutive Jχ odd points at the half line.   

We analyze seriatim №χ kind of odd points at the half line according to χ 

=1, 2, 3 … in one by one, and range them as second illustration.  

 
  3   9  15  21  27  33  39 45  51  57 63  69  75  81  87  93  99 105   117    129    

   •••◦••◦••◦•◦◦••◦◦•◦••◦•◦◦•◦◦••◦◦•◦••◦◦•◦•◦◦•◦◦◦•◦••◦••◦•◦◦◦◦◦◦•◦          

№1•  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦  ◦   ◦  ◦  ◦…     

№2 •   ◦   ◦   ◦   ◦   ◦   ◦   ◦    ◦   ◦   ◦    ◦   ◦…       

  №3•    ◦    ◦    ◦     ◦    ◦     ◦    ◦    ◦…       

     ◦                                                                        

   №4 •       ◦       ◦        ◦        ◦        ◦…     

№5 •.             ◦         ◦        ◦        ◦…      

                    

Second Illustration 

Thus it can seen, one another’s permutation of χ kinds of odd points plus 

odd points amongst the χ kinds of odd points assumes always infinite 

many recurrences on same pattern at the half line, irrespective of their 

prime/composite attribute. We consider one another’s-equivalent shortest 

line segments of the half line according to same permutation of χ kinds’ 
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odd points plus odd points amongst the χ kinds’ odd points as recurring 

segments of the χ kinds’ odd points. And use character “RLS№1~№χ” to 

express a recurring segment of ∑№χ [χ≥1] kind of odd points, also use 

RLSS№1~№χ to express the plural. 

Number the ordinals of odd points at seriate each RLS№1~№χ by 

consecutive natural numbers ≥1, namely from left to right each odd point 

at seriate each RLS№1~№χ is marked with from small to great a natural 

number which begins with 1 in the proper order. 

Then, there is one №(χ+1) kind’s odd point within Jχ+1 odd points which 

share an ordinal at Jχ+1 RLSS№1~№χ of seriate each RLS№1~№(χ+1). 

Excepting most left one at №1 RLS№1~№χ is an odd prime point, others are 

all odd composite points, in №χ kind’s odd points. Thus №1 RLS№1~№χ is 

a particular RLS№1~№χ in contradistinction to each of others.  

There are ∏Jχ odd points at each RLS№1~№χ , where ∏Jχ=J1*J2*…*Jχ, and 

χ ≥1. Justly №1 RLS№1~№χ begins with odd point 3. Yet №1 RLS№1~№1 

ends with odd point 7; №1 RLS№1~№2 ends with odd point 31; №1 

RLS№1~№3 ends with odd point 211; №1 RLS№1~№4 ends with odd point 

2311, etc. Undoubtedly one RLS№1~№(χ+1) consists of Jχ+1 consecutive 

RLSS№1~№χ , and they link, one by one.  

Jχ+1 RLSS№1~№χ of any RLS№1~№(χ+1) may be folded at an illustration, so 

as to view conveniently. For instance, after change ◦s for •s at places of 

∑№χ [χ≤3] kind’s odd composite points, for odd points at №1 RLS№1~№3 
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i.e. 3(211) and at another RLS№1~№3 CD, please, see third illustration. 

 

№: 1     5     10    15         №: 1    5    10    15   

  3 ♠ ♠ ♠ ◦ • • ◦ • • ◦ • ◦ ◦ • •           C ◦ ◦ ◦ ◦ • • ◦ • • ◦ • ◦ ◦ • •   

    ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • •             ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • •   

    ◦ ◦ • ◦ • • ◦ ◦ • ◦ • ◦ ◦ • ◦             ◦ ◦ • ◦ • • ◦ ◦ • ◦ • ◦ ◦ • ◦   

    ◦ ◦ • ◦ • • ◦ • • ◦ • ◦ ◦ ◦ •             ◦ ◦ • ◦ • • ◦ • • ◦ • ◦ ◦ ◦ •   

    ◦ ◦ • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • •             ◦ ◦ • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • •   

    ◦ ◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • •             ◦ ◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • •   

◦ ◦ • ◦ • • ◦ • • ◦ ◦ ◦ ◦ • •211          ◦ ◦ • ◦ • • ◦ • • ◦ ◦ ◦ ◦ • •D  

 

Third Illustration 

Thus it can seen, after change ◦s for •s at places of ∑№χ [χ≥1] plus 

№(χ+1) kind’s odd composite points, there is one №(χ+1) kind’s odd 

composite point within Jχ+1 odd points on an ordinal of every odd point of 

a RLS№1~№χ at seriate each RLS№1~№(χ+1) on the right of №1 RLS№1~№(χ+1). 

After change ◦s for •s at places of ∑№χ [χ≥1] kind’s odd composite points, 

if an odd point P1 is separated from another odd point P2 by λχ ◦s, then 

express such a combinative form as a pair of P1 λχ(◦s) P2, where λχ ≥0. 

After change ◦s for •s at places of ∑№χ [χ≥1] kind’s odd composite points, 

there are pairs of ♠ λχ(◦s) ♠ on the right of Jχ at №1 RLS№1~№χ and pairs of 

• λχ(◦s) • on ordinals of ♠ λχ(◦s) ♠ at seriate each RLS№1~№χ on the right of 

№1 RLS№1~№χ, where λχ ≥0.   

  

From the definition for recurring segments of χ kinds’ odd points, we can 

conclude that after change ◦s for •s at places of ∑№χ [χ≥1] kind’s odd 

composite points, provided there is a pair of ♠ λχ(◦s) ♠ on the right of Jχ at 

№1 RLS№1~№χ, then there is surely a pair of • λχ(◦s) • on ordinals of the 
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pair of ♠ λχ(◦s) ♠ at seriate each RLS№1~№χ on the right of №1 RLS№1~№χ. 

Undoubtedly, the converse proposition is tenable too. Namely after 

change ◦s for •s at places of ∑№χ [χ≥1] kind’s odd composite points, 

provided there is a pair of • λχ(◦s) • at seriate each RLS№1~№χ on the right 

of №1 RLS№1~№χ , and all such pairs of • λχ(◦s) • share a set of ordinals, 

then there is surely a pair of ♠ λχ(◦s) ♠ on ordinals of any such pair of 

•λχ(◦s)• at №1 RLS№1~№χ. Of course, either ♠ of the pair of ♠ λχ(◦s) ♠ and 

every prime factor of an odd number which each • of all such pairs of 

•λχ(◦s) • expresses are greater than Jχ .  

To be brief, after change ◦s for •s at places of ∑№χ [χ≥1] kind’s odd 

composite points, a pair of ♠ λχ(◦s) ♠ on the right of Jχ at №1 RLS№1~№χ 

and infinite many pairs of • λχ(◦s) • on ordinals of the pair of ♠ λχ(◦s) ♠ at 

seriate RLSS№1~№χ on the right of №1 RLS№1~№χ coexist at the half line.   

We term the aforesaid conclusion as the coexisting theorem for a pair of 

♠λχ(◦s) ♠ and infinite many pairs of •λχ(◦s) • at the half line, or term it as 

the coexisting theorem for short.  

 The Proof   

We shall prove indirectly the unproved half of the Polignac’s conjecture 

by mathematical induction with the aid of the coexisting theorem for a 

pair of ♠ λχ(◦s) ♠ and infinite many pairs of • λχ(◦s) • at the half line, below.   

(1). When χ=1, there is a pair of ♠ 0(◦s) ♠ on the right of J1 at №1 RLS№1，

and the pair of ♠ 0(◦s) ♠ is the very odd prime points 5 and 7.  
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When χ=2, there are pairs of ♠ Ω2(◦s) ♠ on the right of J2 at №1 RLS№1~№2, 

where Ω2 =0, 1, 2.  

When χ=3, there are pairs of ♠ Ω3(◦s) ♠ on the right of J3 at №1 RLS№1~№3, 

where Ω2≤ Ω3 ≤6.  

When χ=4, there are pairs of ♠ λ4(◦s) ♠ on the right of J4 at №1 RLS№1~№4 , 

where λ4= Ω4 plus κ4, Ω3≤ Ω4 ≤11, and κ4 =16.  

(2). When χ= β ≥4, suppose that there are pairs of ♠ λβ(◦s) ♠ on the right of 

Jβ at №1 RLS№1~№β, where λβ=Ωβ plus κβ, and Ωβ expresses any of 

consecutive natural numbers ≥1 plus 0, and Ωβ≥Ω4. In addition, let 

greatest value of Ωβ is ηβ, then ηβ ≥11, and κβ > ηβ+1.  

(3). When χ= β+1, we must prove that there are pairs of ♠ λβ+1(◦s) ♠ on the 

right of Jβ+1 at №1 RLS№1~№(β+1), where λβ+1=Ωβ+1 plus κβ+1, and Ωβ+1 

expresses any of consecutive natural numbers ≥1 plus 0, and Ωβ+1 ≥ Ωβ. 

That is to say, at least one of Ωβ+1 must be equal to ηβ+1 on a minimum, 

and let greatest value of Ωβ+1 is ηβ+1, and κβ+1 > ηβ+1+1.  

 

Prooffff．．．．For the number axis’s positive half line which is marked merely 

with symbols of undefined odd points，after change ◦s for •s at places of 

№1 kind’s odd composite points, there is a pair of • 0(◦s) • on the right of 

J1 at №1 RLS№1. Besides there are pairs of • Ω1(◦s) • on the right of J1 at 

seriate each RLS№1~№2, where Ω1=0, 1. And every pair of •Ω1(◦s) • with a 

pair of •Ω1(◦s)• on either side except for the left side of №1 pair of •0(◦s)• 
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forms two concurrent pairs which share an odd point.  

Provided successively change ◦s for •s at places of №2 kind’s odd 

composite points, since there is one №2 kind’s odd composite point 

within J2 odd points on an ordinal of every odd point of a RLS№1 at 

seriate each RLS№1~№2 on the right of №1 RLS№1~№2, so this has made 

preparations for an increase of the number of consecutive odd composite 

points, where Ω1+1+ Ω1 = 2.  

 

After successively change ◦s for •s at places of №2 kind’s odd composite 

points, there are both pairs of • Ω1(◦s) • and pairs of • Ω2(◦s) • on the right 

of J2 at seriate each RLS№1~№2, where Ω1 ≤ Ω2 ≤ 2. Excepting a part of 

pairs of •Ω2(◦s)• belong to pairs of •Ω1(◦s)•, each of others exists at the 

place of two concurrent pairs of original •Ω1(◦s)•, hence every pair of 

•Ω2(◦s) • with a pair of •Ω1(◦s)• on either side of the pair of •Ω2(◦s) • is still 

two concurrent pairs, where Ω1=0, 1.  

Provided successively change ◦s for •s at places of №3 kind’s odd 

composite points, since there is one №3 kind’s odd composite point 

within J3 odd points on an ordinal of every odd point of a RLS№1~№2 at 

seriate each RLS№1~№3 on the right of №1 RLS№1~№3, so this has made 

preparations for an increase of the number of consecutive odd composite 

points, where 2<Ω2+1+Ω1 ≤6.   
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After successively change ◦s for •s at places of №3 kind’s odd composite 

points, there are both pairs of • Ω2(◦s) • and pairs of • Ω3(◦s) • on the right 

of J3 at seriate each RLS№1~№3, where Ω2 ≤ Ω3 ≤ 6.  

Since every pair of • Ω3(◦s) • is either a pair of • Ω2(◦s) •, or at the place of 

two concurrent pairs of original • Ω2(◦s) •, hence every pair of •Ω3(◦s)• with 

a pair of •Ω2(◦s)• on either side of the pair of •Ω3(◦s)• is still two 

concurrent pairs, where Ω2=0, 1 and 2.  

Provided successively change ◦s for •s at places of №4 kind’s odd 

composite points, since there is one №4 kind’s odd composite point 

within J4 odd points on an ordinal of every odd point of a RLS№1~№3 at 

seriate each RLS№1~№4 on the right of №1 RLS№1~№4, so this has made 

preparations for an increase of the number of consecutive odd composite 

points, where 6<Ω3 +1+Ω2 ≤11.  

 

After successively change ◦s for •s at places of №4 kind’s odd composite 

points, there are both pairs of • Ω3(◦s) • and pairs of • λ4(◦s) • on the right of 

J4 at seriate each RLS№1~№4, where λ4=Ω4 plus κ4, Ω3≤ Ω4 ≤11, and κ4 =16. 

Since every pair of • λ4(◦s) • is either a pair of •Ω3(◦s) •, or at the place of 

two concurrent pairs of original • Ω3(◦s) •, hence every pair of •λ4(◦s)• with 

a pair of •Ω3(◦s)• on either side of the pair of •λ4(◦s)• is still two concurrent 

pairs, where Ω3=0, 1, 2, 3, 4, 5 and 6. 

Let υ4 expresses any of consecutive natural numbers ≥12. Provided 
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successively change ◦s for •s at places of №5 kind’s odd composite points, 

since there is one №5 kind’s odd composite point within J5 odd points on 

an ordinal of every odd point of a RLS№1~№4 at seriate each RLS№1~№5 on 

the right of №1 RLS№1~№5, so this has made preparations for an increase 

of the number of consecutive odd composite points, where Ω4+1+Ω3= υ4.   

And so on and so forth… 

 

Up to after successively change ◦s for •s at places of №β kind’s odd 

composite points, there are both pairs of • λβ-1(◦s) • and pairs of •λβ(◦s) • on 

the right of Jβ at seriate each RLS№1~№β, where λβ=Ωβ plus κβ, Ωβ 

expresses any of consecutive natural numbers ≥1 plus 0, Ωβ ≥ Ωβ-1 ≥ Ω4, 

and κβ ≥ κβ-1 ≥ κ4.  

Since every pair of • λβ(◦s) • is either a pair of • λβ-1(◦s) •, or at the place of 

two concurrent pairs of original • λβ-1(◦s) •, hence every pair of •λβ(◦s)• 

with a pair of •λβ-1(◦s)• on either side of the pair of •λβ(◦s)• is still two 

concurrent pairs, where λβ-1 ≥ λ4.  

Let greatest value of Ωβ is ηβ, and υβ expresses any of consecutive natural 

numbers ≥ηβ+1. Provided successively change ◦s for •s at places of 

№(β+1) kind’s odd composite points, since there is one №(β+1) kind’s 

odd composite point within Jβ+1 odd points on an ordinal of every odd 

point of a RLS№1~№β at seriate each RLS№1~№(β+1) on the right of №1 

RLS№1~№(β+1), so this has made preparations for an increase of the number 
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of consecutive odd composite points, where Ωβ+1+Ωβ-1=υβ. Evidently 

when Ωβ+1+Ωβ-1= ηβ+1, it will exceed first the super-limit of Ωβ, for 

example, a pair of • ηβ(◦s) • with a pair of • 0 (◦s) •, a pair of • (ηβ-1)(◦s) • 

with a pair of •1 (◦s) •, a pair of •(ηβ-2)(◦s) • with a pair of • 2 (◦s) •, etc. 

 

After successively change ◦s for •s at places of №(β+1) kind’s odd 

composite points, there are both pairs of •λβ(◦s) • and pairs of •λβ+1(◦s) • on 

the right of Jβ+1 at seriate each RLS№1~№(β+1), where λβ+1=Ωβ+1 plus κβ+1, 

Ωβ+1 expresses any of consecutive natural numbers ≥1 plus 0, Ωβ ≤Ωβ+1 

≤υβ, and κβ+1 ≥κβ. Thus, where Ωβ+1 > greatest value ηβ of Ωβ, Ωβ+1 exactly 

oversteps the super-limits of Ωβ.  

Since the half line has infinitely many RLSS№1~№(β+1), thus there are 

infinitely many pairs of •λβ+1(◦s) • which share a set of ordinals, then there 

is a pair of ♠λβ+1(◦s)♠ on the set of ordinals at №1 RLS№1~№(β+1) according 

to the aforesaid coexisting theorem, besides Ωβ+1 of λβ+1 contains natural 

number υβ.  

In order to attain the final goal, we need yet to further explain hereinafter, 

though we have proven the conclusion when χ= β+1 hereinbefore.   

Since every pair of •λβ+1(◦s) • is either a pair of •λβ(◦s) •, or at the place of 

two concurrent pairs of original • λβ(◦s) •, hence every pair of •λβ+1(◦s)• 

with a pair of •λβ(◦s)• on either side of the pair of •λβ+1(◦s)• is still two 

concurrent pairs, where λβ ≥ λβ-1 ≥ λ4.  
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Let greatest value of Ωβ+1 is ηβ+1, and υβ+1 expresses any of consecutive 

natural numbers ≥ηβ+1+1. Provided successively change ◦s for •s at places 

of №(β+2) kind’s odd composite points, since there is one №(β+2) kind’s 

odd composite point within Jβ+2 odd points on an ordinal of every odd 

point of a RLS№1~№(β+1) at seriate each RLS№1~№(β+2) on the right of №1 

RLS№1~№(β+2), so this has made preparations for an increase of the number 

of consecutive odd composite points, where Ωβ+1+1+Ωβ= υβ+1.  

   

If let such steps proceed infinitely according to the aforesaid way of 

doing, and let χ to express any natural number, then after change ◦s for •s 

at places of ∑№χ [χ≥1] kind’s odd composite points, there are pairs of 

•λχ(◦s) • on the right of Jχ at seriate each RLS№1~№χ, where λχ=Ωχ plus κχ, 

Ωχ expresses any of consecutive natural numbers ≥1 plus 0, and κχ-1> 

greatest value of Ωχ. Since the half line has infinitely many RLSS№1~№χ, 

thus there are infinitely many pairs of • λχ (◦s) • on ordinals of a set of odd 

points of a RLS№1~№χ, consequently there is a pair of ♠λχ (◦s)♠ on ordinals 

of the set of odd points at №1 RLS№1~№χ according to the aforesaid 

coexisting theorem, where λχ=Ωχ plus κχ. Obviously, if χ tends to 

infinitely great ∞, then Ωχ tends to equal every natural number plus 0, and 

2Ωχ+2 tends to equal every positive even number, then it can replace 

2Ωχ+2 by 2n, where n ≥1.  

Since a pair of ♠ Ωχ(◦s) ♠ expresses a pair of consecutive odd prime 
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numbers which differ by 2Ωχ+2, so there are pairs of consecutive odd 

prime numbers which differ by 2n always. Namely every positive even 

number 2n is a difference of two consecutive odd prime numbers. Thus 

far, we have proven the remainder half of the Polignac’s conjecture.  

Pro tanto, I firmly believe that the Polignac’s conjecture is proven quite 

into the true according to the former and now proven propositions.  


