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Abstract. In this article I describe an efficient, randomized algorithm (section 3) that 

I think solves the 3- SAT problem (known to be NP complete)  with high probability 

in polynomial time, and a bit of the history   of the problem under consideration. In 

the last section I present an interesting application, based on an idea that belongs to 

Godel. The appendix contains a Markov chain model for the dynamics of the 

algorithm. 
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Introduction. In this article I propose an algorithm that has the potential of changing 

the way we do mathematics (based on an idea that belongs to Godel), and also has 

many applications in many fields of activity. I build on the work of Professor Uwe 

Schoning, but my algorithm is more efficient. Ultimately, my algorithm is inspired by 

nature, since it can be related to gene acquisition/deletion and speciation in the greater 

theory of evolution. 

 

Section 1. Useful notions that are used for the analysis of the algorithm. 

 

A Boolean expression is said to be in conjunctive normal form (CNF) if it is of the 

form   ⋀   ⋀    ⋀    ⋀  , and each Ei, called a clause (or conjunct), is of the 

form                      , where each ij  is a literal, either x or  x, for some 

variable x.  

 

A Boolean expression is said to be in disjunctive normal form (DNF) if it is of the 

form                   , and each Fj, called a clause (or disjunct), is of the form                    

   ⋀    ⋀    ⋀    ⋀   , where each jk  is a literal, either y or  y, for some 

variable y.  

 

A Boolean expression in CNF form is called satisfiable if there is some assignment of 

0’s and 1’s to the variables that gives the expression the value 1.   

 

The satisfiability problem is to determine, given a Boolean expression, whether it is 

satisfiable.  

 

An expression is said to be 3 - CNF if each clause has exactly three distinct literals. 

 

Theorem 1 ( see reference [1] ). L3SAT, the satisfiability problem for 3 - CNF 

expressions, is NP - complete. 

 

The Hamming distance dH(x, y) between two vectors x, y is the number of 

components in which they differ. It is known that the Hamming distance dH(x, y) 
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satisfies the conditions for a metric.  

 

Related to the theory of symmetric random walks (in one dimension), we have the 

following theorem. 

 

Theorem 2 ( see reference [2] ). Limit theorem for first passages. For fixed t, the 

probability that the first passage through r occurs before epoch        tends to               

    √
 

 
   ∫   

 

 
   

 

√ 

        (   (
 

√ 
)) , as        , where N is the normal 

distribution function. We note that when       , then P tends to 1.  
 

Section 2. The description of Schoning’s algorithm. 

 

Input: a formula in 3-CNF with n variables. 

 

Guess an initial assignment for the n variables, uniform at random. 

 

Repeat 3n times: 

 

If the formula is satisfied by the actual assignment: stop and accept. 

 

Let C be some clause not being satisfied by the actual assignment. 

 

Pick one of the 3 literals in the clause at random, and flip its value in the 

current assignment. 

 

Schoning proves (see reference [3]) that the complexity of k-SAT (with this 

algorithm) is within a polynomial factor of  (    (   
 

 
))

 

. This means that this 

algorithm does not have direct practical value, since the expected time needed to hit a 

solution grows exponentially with the number of variables. 

 

Section 3. The presentation of the DEA class of algorithms. 

 

3.1. The proposed dual expression algorithm (DEA2).  
 

Basically, given a 3-CNF expression, we want to construct a 2-CNF path through all 

the 3-clauses from the 3-CNF expression. In the following, I will explain what I mean 

by a 2-CNF path though the 3-CNF expression. Each 3-clause in the original 3-CNF 

expression has the form           , where each    represents a variable or the 

negation of one of the original variables that appear in the given 3-CNF expression. 

For example, the 3-clause              contains all the 2 – clauses          , 
         , and         .  
 

By the active 2-CNF chain, I mean a conjunction of 2 – clauses so that each 2 – clause 

is chosen from a corresponding 3 – clause from the original 3-CNF expression. In the 

current state (during the execution of the algorithm), the length of the active 2-CNF 

chain could be equal to the number of clauses or less than the number of clauses in the 

original 3-CNF expression.  
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The function Test2CNF will check whether the conjunction of all the 2 – clauses from 

the active 2-CNF chain (in the current state) is satisfiable or not. We note that we do 

not work with the original variables, the function Test2CNF is just a 2-CNF 

tester/solver, it will not look for a satisfiable assignment in the original variables 

unless all the 3 – clauses from the original 3-CNF expression are satisfied. 

 

We also notice that 2-SAT can be solved in linear time. The reason why I call it 

DEA2 (dual expression algorithm) has to do (intuitively) with the fact that the 3 – 

clauses from the original 3-CNF expression, for example,              can also 

be written as                               , and I look at the 2-clauses as 

some sort of new variables (but the way you look at it does not affect the 

understanding of the algorithm, but this is the way I thought about it when I invented 

the algorithm). 

 

We also assume that we order the clauses in the 3-CNF expression such that when we 

talk about the next unsatisfied clause (for example), or the first clause satisfying a 

certain condition, we know which clause we are talking about. When we choose a 

clause at random, it does not matter. 

 

Here is the algorithm, the dual expression algorithm (DEA2): 

 

Input: a formula in 3-CNF with n variables   . 

 

Choose a 2 – clause from the first 3 – clause (of the given 3-CNf expression) and add 

it to the active 2-CNF chain. 

 

Repeat A(n) times (where A(n) is a polynomial discussed later): 

 

Call the routine Test2CNF for the conjunction of all the 2 – clauses  that are 

currently part of the active 2-CNF chain.  

 

If Test2CNF finds that the active 2-CNF chain is satisfied (I will sometimes 

say that the chain is consistent), and if all the 3 – clauses from the original 3-

CNF expression are satisfied, then the original 3-CNF expression is satisfied, 

and we finished, return “expression satisfiable”. 

 

If Test2CNF finds that the active 2-CNF chain is satisfied (I will sometimes 

say that the chain is consistent), but not all the 3 – clauses from the original 3-

CNF expression are satisfied (or not considered yet), then choose a random 

unsatisfied 3 – clause, and choose a random 2 – clause from it (from the three 

possible) and add this 2 – clause to the active 2-CNF chain. 

 

If Test2CNF finds that the active 2-CNF chain is not satisfied (I will 

sometimes say that the chain is inconsistent), then discard a 2 – clause 

(chosen at random) from the active 2-CNF chain. 

 

Repeat cycle. 

 

If a solution has not been found yet, return “expression unsatisfiable”. 
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In a slightly different version of this algorithm, if Test2CNF finds consistency, then 

we look at all 2- clauses (there are three of them) from an unsatisfied 3 - clause such 

that the 3 – clause can be satisfied while maintaining consistency of the active 2-CNF 

chain (we try to force consistency). The modified version of the DEA2 algorithm can 

be written as follows: 

 

Input: a formula in 3-CNF with n variables   . 

 

Choose a 2 – clause from the first 3 – clause (of the given 3-CNF expression) and add 

it to the active 2-CNF chain. 

 

Repeat A(n) times (where A(n) is a polynomial discussed later): 

 

Call the routine Test2CNF for the conjunction of all the 2 – clauses  that are 

currently part of the active 2-CNF chain.  

 

If Test2CNF finds that the active 2-CNF chain is satisfied (I will sometimes 

say that the chain is consistent), and if all the 3 – clauses from the original 3-

CNF expression are satisfied, then the original 3-CNF expression is satisfied, 

and we finished, return “expression satisfiable”. 

 

If Test2CNF finds that the active 2-CNF chain is satisfied (I will sometimes 

say that the chain is consistent), but not all the 3 – clauses from the original 3-

CNF expression are satisfied (or not considered yet), then choose at random 

an unsatisfied 3 – clause, and choose another 2 – clause from it (from the 

three possible, in order)  and add this 2 – clause to the active 2-CNF chain 

only if the 2-CNF chain stays consistent, otherwise do not add any 2 – clause 

to the active 2-CNF chain. Basically, we add a 2- clause to the active 2-CNF 

chain only if we are sure that the chain stays consistent. 

 

If Test2CNF finds that the active 2-CNF chain is not satisfied (I will 

sometimes say that the chain is inconsistent), then discard a 2 – clause 

(chosen at random) from the active 2-CNF chain. 

 

Repeat cycle. 

 

If a solution has not been found yet, return “expression unsatisfiable”. 

 

3.2. The proposed dual expression algorithm (simplified version, DEA1).  
 

We will consider now a simplified version of the algorithm, a version that is more 

intuitive and easy to understand. We will call a literal, a variable or its negation. For 

example,   or    are literals. We also note that the negation of the literal   is    , 

and the negation of the literal    is  . Given a 3-CNF expression, by a 1-CNF path 

through all the clauses of the 3-CNF expression we mean a conjunction of literals, one 

from each clause, such that once a literal appears in the 1-CNF path, its negation does 

not appear in the conjunction.  

 

By the active 1-CNF chain, I mean a conjunction of literals so that each literal is 

chosen from a corresponding 3 – clause from the original 3-CNF expression. In the 
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current state (during the execution of the algorithm), the length of the active 1-CNF 

chain could be equal to the number of clauses or less than the number of clauses in the 

original 3-CNF expression.  

 

The function Test1CNF will check whether the conjunction of all literals from the 

active 1-CNF chain (in the current state) is satisfiable or not. We note that in this case 

we work with the original variables. The function Test1CNF basically checks that if 

one literal appears in the active 1-CNF chain, then its negation does not appear in it. 

 

Here is the algorithm, the dual expression algorithm (DEA1): 

 

Input: a formula in 3-CNF with n variables   . 

 

Choose a literal from the first 3 – clause (of the given 3-CNf expression) and add it to 

the active 1-CNF chain. 

 

Repeat A(n) times (where A(n) is a polynomial discussed later): 

 

Call the routine Test1CNF for the conjunction of all the literals that are 

currently part of the active 1-CNF chain.  

 

If Test1CNF finds that the active 1-CNF chain is satisfied (I will sometimes 

say that the chain is consistent), and if all the 3 – clauses from the original 3-

CNF expression are satisfied, then the original 3-CNF expression is satisfied, 

and we finished, return “expression satisfiable”. 

 

If Test1CNF finds that the active 1-CNF chain is satisfied (I will sometimes 

say that the chain is consistent), but not all the 3 – clauses from the original 3-

CNF expression are satisfied (or not considered yet), then choose a random 

unsatisfied 3 – clause, and choose a random literal from it (from the three 

possible) and add this literal to the active 1-CNF chain. 

 

If Test1CNF finds that the active 1-CNF chain is not satisfied (I will 

sometimes say that the chain is inconsistent), then discard a literal (chosen at 

random) from the active 1-CNF chain. 

 

Repeat cycle. 

 

If a solution has not been found yet, return “expression unsatisfiable”. 

 

In a slightly different version of this algorithm, if Test1CNF finds consistency, then 

we look at all the literals (there are three of them) from an unsatisfied 3 - clause such 

that the 3 – clause can be satisfied while maintaining consistency of the active 1-CNF 

chain (we try to force consistency). The modified version of the DEA1 algorithm can 

be written similarly to the modified version of the DEA2 algorithm (the terminology 

emphasizes this analogy).  

 

Section 4. Godel’s letter to von Newmann. 

 

For general implications, related to efficiently solving NP – complete problems, see 
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[4]. An interesting application is related to the problem of automated theorem proving 

using an efficient algorithm for NP – complete problems. 

 

We know that we can solve the following problem in polynomial time: 

 

Given two well formed formulas α and β, in a given axiomatic system (like ZFC), is β 

a ZFC – proof of α? 

 

Therefore, the following problem is in NP (it can be easily proved): 

 

Given a formula α, and a number n, is there a ZFC – proof of size at most n for α? 

 

Any efficient solution for NP-complete problems would make automated theorem 

proving a reality. We can have an automated system that would tell us (with 

probability as close to 1 as we want) that no solution to a given problem exists, that 

can be written in (for example) less than 10000 pages, or hit upon (find) such a proof.  

 

In a letter in 1956, Godel asked John von Newmann whether there was a general 

method to find proofs of size n, using time that increases only as n or   . If such a 

method existed, Godel argued that this “ would have consequences of the greatest 

magnitude. That is to say, it would clearly indicate that the mental effort of the 

mathematician in the case of yes or no questions could be completely replaced by 

machines. One would indeed have to simply select an n so large that, if the machine 

yields no result, there would then also be no reason to think further about the 

problem. “. 

 

This is not just a problem of optimization, or applied mathematics. I think that this 

problem should be the focus of attention for the core of the mathematicians, a 

problem the solution of which could transform mathematics and fulfill (to some 

extent) Hilbert’s dream, by following an idea that belongs to Godel. 

 

Another interesting path is to consider quantum algorithms, quantum random walks, 

in particular, but we will not go into this issue here. 

 

Conclusions. For all practical purposes, we can assume that P = NP, even if the 

conjecture P  NP might be true, if we exclude randomized algorithms. This article 

can be considered a review article, but the ideas expressed in section 3, the DEA 

algorithm are original though. 

 

Appendix. In this appendix, we will give one example of the DEA2 algorithm 

dynamics for a very simple 3 – CNF expression, and we will present an approximate 

Markov chain model for the DEA2 algorithm (a similar analysis can be made for 

DEA1). 

 

A1. Example. We will give an example of the dynamics of the DEA2 algorithm, in a 

very simple case. We consider the 3 – CNF expression: 

 

                                                 .  

 

We choose the 2-clause         from the first 3-clause of the 3-CNF expression and 
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we add it to the active 2-CNF chain. The active 2-CNF chain will be, at this moment: 

 

         
 

We call the function Test2CNF. The active 2-CNF chain (at this moment) is 

satisfiable (I will also say consistent). Assume that we choose the 2-clause,         

           from the second 3-clause of the 3-CNF expression E, and we add it to 

the active 2-CNF chain C. We have then: 

 

                    
 

We call the function Test2CNF. The active 2-CNF chain (at this moment) is 

satsifiable (consistent). Assume that we choose the 2-clause           from the third 

3-clause of the 3-CNF expression E, and we add it to the active 2-CNF chain C. We 

have then: 

 

                             
 

We call the function Test2CNF. The active 2-CNF chain (at this moment) is 

satisfiable. Assume that we choose the 2-clause           from the fourth  3-clause 

of the 3-CNF expression E, and we add it to the active 2-CNF chain C. We have then: 

 

                                      
 

We call the function Test2CNF. This time the active 2-CNF chain is not satisfiable 

(not consistent). Now we have to discard a 2-clause from the active 2-CNF chain. 

Assume that we discard the 2-clause           , taken from the third 3-clause of the 

3-CNF expression. We have then: 

 

                                 
 

We call the function Test2CNF. The active 2-CNF chain is satisfiable. Assume that 

we choose the 2-clause             from the third 3-clause of the 3-CNF expression 

(because at this moment this is the clause that is not satisfied yet), and we add it to the 

active 2-CNF chain. We have then: 

 

                                       
 

We call the function Test2CNF. The active 2-CNF chain is satisfiable. We also notice 

that all the 3-clauses from the 3-CNF expression E are satisfied. As a consequence, 

the original 3-CNF expression E is satisfiable, and we can finally ask Test2CNF to 

give us a solution in terms of the original variables             , for example. 

 

A2. The Markov chain approximate model (for DEA2). We will call a correct 3 - 

clause, a clause from where a correct 2 - clause has been chosen in the current active 

2-CNF chain. A 3 - clause from which an incorrect 2 - clause has been chosen will be 

called an incorrect clause. We will consider the pairs (i, j), where i is the number of 

correct clauses from which the 2 - clauses have been chosen in the current active 2-

CNF chain, and j is the number of incorrect clauses from which the 2 - clauses have 

been chosen in the current active 2-CNF chain. In this case,     will be the length of 
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the current active 2-CNF chain, and in general we have       , where N is the 

number of clauses in our 3 – CNF expression. We note that when we talk about 

correct and incorrect clauses, the assumption is that a solution does exist, otherwise 

this terminology is not meaningful. 

  

We assume that in the current state of the Markov chain, Test2CNF has found 

consistency, then (following the algorithm) we choose another 2 - clause from an 

unsatisfied 3 - clause, and we add it to the current active 2-CNF chain. We have the 

following transition probabilities for the Markov chain:  

 

 (             )  
 

 
 .  We choose the correct 2- clause from the unsatisfied 3 – 

clause with probability 
 

 
 . 

 

 (             )  
 

 
.  We choose the incorrect 2 - clause from the unsatisfied 3 - 

clause with probability 
 

 
 . 

 

If in the current state of the Markov chain, Test2CNF has found inconsistency, then 

(following the algorithm) we discard a (random) 2 - clause from the current active 2-

CNF chain. We have the following transition probabilities for the Markov chain: 

 

 (             )  
 

   
  We discard a 2 - clause from a correct 3 - clause with 

probability 
 

   
. 

 

 (             )  
 

   
 . We discard a 2- clause from an incorrect 3 - clause with 

probability 
 

   
. 

 

We assume that the Markov chain hits consistency with probability α, and it hits 

inconsistency with probability β, where       . We need to properly define α and 

β (and prove that they exist). This problem is not addressed in the current version of 

this article. At the moment, we can assume that we consider all the runs of the 

algorithm in which we have T calls to the function Test2CNF, and in    of them the 

function finds that the active chain is consistent, and in     of them the function finds 

that the active chain is inconsistent (how probable that is, this question is not 

answered here). The approximate model will be a Markov chain with transition 

probabilities: 

 

 (             )  
  

 
 . 

 (             )  
 

 
 . 

 (             )  
  

   
 . 

 (             )  
  

   
 . 

 

Since we know that                 , that means that the Markov chain 

dynamics takes place on a 2 – dimensional grid inside the triangle OAB, where 

O(0,0),  A(N, 0), and B(0, N). When the state representing our current state moves on 
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the grid inside the triangle OAB (one unit up, down, left or right), we consider the 

projection on the i – axis. The motion of this projection will not be governed by a 

Markov chain, but we can couple it with the dynamics of a Markov chain in such a 

manner that if this Markov chain (a birth and death chain, in fact) is expected to reach 

the point A(N,0) in linear time (linear in N), then the projection mentioned above will 

also be expected to reach A(N,0) in linear time. This birth and death chain will have 

the transition probabilities (we do not need the value of  p(i,i)): 

 

          
  

 
     . 

                                 
  

   
 . 

               . 

 

We note that this birth and death chain will have the transition probability towards 

A(N,0) equal to the corresponding transition probability of the projection mentioned 

above, and the transition probability away from A(N,0) will be greater or equal to the 

corresponding transition probability of the projection. As a consequence, if this chain 

is expected to reach A(N,0) in linear time, then the projection will also reach A(N,0) 

in expected linear time. 

 

Let t(i, i+1) be the random time it takes for the Markov chain to go from i to i+1. An 

analysis based on conditioning on the first transition and iteration leads us to the 

relation: 

 

 (        )     
  

  
 

       

       
     

            

            
   

 

This formula is valid for any birth and death chain. We note that 
  

   
    , and if 

    
  

 
, then  

  

  
   , and the chain will hit A(N, 0) in linear time in N. Starting from 

anywhere inside the triangle OAB (following a distribution that can be easily 

calculated), and staying inside the triangle, the Markov chain will reach the point 

A(N, 0) in expected linear time in N. The condition      
  

 
 , together with the 

equation         will lead us to the conclusion that      
 

 
 is a sufficient 

condition, so that our Markov chain will hit A(N,0) in expected linear time in N. If 

our Markov chain (the approximation considered here) hits inconsistency less than 

40% of the time, then it will find a solution in expected linear time in N, the number 

of clauses in the 3-CNF expression. We note that in the second version of the DEA 

algorithm (considered above), where we avoid inconsistency as much as possible, the 

probability of hitting inconsistency could easily be less than 40%. of the time. Since N 

is at most cubic in n (the number of variables   ), we see that our algorithm is at most 

biquadratic in n (taking into consideration the time needed for each call of 

Test2CNF), the number of variables    (but in most cases much smaller time is 

sufficient). In fact, the expected time to hit a solution (if it exists) has the order of 

magnitude      (up to a constant), where n is the number of    variables and N is the 

number of clauses in the 3 – CNF expression. We can the take A(n) from section 3 of 

the form          , where C is a constant. In the most interesting cases, when 
 

 
  is 

around 4.5, the DEA2 algorithm is quadratic. 
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The power of the DEA algorithm is in the fact that a current active 2-CNF chain is 

connected to a whole class of assignments for the    variables, in other words, we 

work with many    assignments in parallel, at every step of the algorithm. 
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