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Abstract 
 
This paper begins by reviewing the general form of the Glauber-Sudarshan P mapping, a 
cornerstone of coherence theory in quantum optics, which defines a two-way mapping 
between ensembles of states S of any classical Hamiltonian field theory and a subset of 
the allowed density matrices ρ in the corresponding canonical bosonic quantum field 
theory (QFT). It has been proven that Tr(Hρ)=E(S), where E is the classical energy and H 
is the normal form Hamiltonian. The new result of this paper is that ensembles of S of 
definite energy E map into density matrices which are mixes of eigenstates of eigenvalue 
zero of N(H-E,H-E) where N represents the normal product. This raises interesting 
questions and opportunities for future research, including questions about the relation 
between canonical QFT and QFT in the Feynman path formulation.  The Appendix gives 
a new result on Boltzman states, which appear to have a link to the issue of nonclassical 
states and scattering experiments as discussed by Carmichael. 
 

1. Introduction and Summary 
 
This work was motivated by two practical questions: (1) to what extent can simulations 
of classical partial differential equations (PDE), such as those used in nuclear 
phenomenology [1], approximate the correct predictions of energy spectra from the 
corresponding bosonic quantum field theory (QFT) ?; and (2) more generally, how close 
can PDE simulations come to replicating the predictions of QFT? 
 Sections 2 and 3 of this paper will review previous work on the P mapping widely 
used in quantum optics [2-5], and its extension to classical Hamiltonian field theory in 
general. For our purposes here, the key result from that work is the generalized operator 
trace theorem, which, when applied to the function E, yields: 
 
 Tr(Hnρ(S))=E(S)      (1) 
 
where S is the state of the classical system (i.e. a set of values for the fields ϕ(x) and their 
duals π(x) over all points x in R3), where Hn is the usual normal form Hamiltonian, where  
E(s) is the classical Hamiltonian energy of the state S, and where ρ(S) is the density 
matrix which corresponds to S under the P mapping. From this it easily follows that: 
 
 Tr(Hnρ) = <E(S)> ,       (2) 
                                                
1 The views expressed here are those of the author, not those of his employer; however, as work produced 
on government time, it is in the “government public domain.” This allows unlimited reproduction, subject 
to a legal requirement to keep the document together, including this footnote and authorship.  
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in the case where: 
 

ρ = Pr(S)ρ(S)d∞S∫        (3) 
 

and where the angle brackets in (2) refer to the expectation value, for any stochastic 
ensemble of classical states S. 
 The operator trace theorem clearly tells us that any energy level available in 
ensembles of the classical system is also present in the spectrum of energy levels allowed 
in the corresponding QFT, if the energy levels are defined by the normal form 
Hamiltonian Hn. However, the classic text on solitons and instantons by Rajaraman [6] 
states that the lowest energy level available in bosonic QFT which give rise to solitons 
equals the classical mass-energy plus positive correction terms due to stochastic effects; 
that would imply that the classical soliton mass-energy is lower than the quantum 
spectrum, and not contained within in. 
 One possible way to explain this paradox is to note that different versions of QFT 
are being assumed here. In our work, we are relying on the canonical or Copenhagen 
version of QFT [7,8], updated to reflect the widespread use of density matrices ρ rather 
than wave functions ψ in representing stochastic states, as is standard in empirical 
applied quantum electrodynamics (QED) [4,5,9]. We refer to this version as “KQFT,” 
with “K” for Kopenhagen. (We use “K” rather than “C” because “C” for “cavity” or 
“circuit” in CQED is already taken, a standard term in important parts of applied QED.)  
By contrast, Rajaraman’s discussion assumes the Feynman path version of QFT, FQFT.  

Weinberg [10] reviews the history of how some branches of physics moved from 
reliance on KQFT to FQFT, for reasons related to the ease of proving certain 
renormalization results, rather than any kind of decisive empirical test.  It is commonly 
assumed that KQFT and FQFT yield the same predictions, especially for scattering (as in 
[10]), but in KQFT the point of departure in making predictions is always the normal 
form Hamiltonian, Hn. (See section 6.3 of [8], and [11] for a nice example.) Thus in 
FQFT, it is generally assumed that the zero point energy or Casimir terms, which are 
simply deleted when defining Hn, are actually present in nature.  The classic 
achievements of KQFT, in explaining anomalous magnetic moments and the Lamb shift, 
were based on the use of Hn, without the need to assume such zero-point energy terms. 
When zero point energy terms and other such stochastic terms are assumed, it naturally 
increases predicted masses, except when they are taken back away through 
renormalization.  KQFT correctly predicts the usual flat-plate Casimir experiments on the 
basis of Vanderwaals forces; however, there are many other experiments which could be 
discussed, and the choice between KQFT and FQFT in such areas is beyond the scope of 
this paper. 
 This paper was motivated in part by the goal of finding a different explanation for 
the paradox. Could it be that the results for statistical ensembles might be misleading? 
After all, ensemble states could be mixtures of the vacuum state (zero energy) and higher 
energy ground states.  
 The main result of this paper, in section 4, is that we still have a classical-
quantum equivalence for the spectra of states of definite energy, but that there is indeed a 
gap between classical systems and bosonic KQFT which we can quantify.  More 
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precisely, we find that any ensemble of classical states S sharing the same definite energy 
E can be written as: 
 

ρ = Pr(S)ρ(S)d∞S
S∈E
∫ = c∫ α

ψα ψα d
?α  ,   (4) 

 where the dimensionality of α depends on the specific PDE system, and where |ψα> are 
the eigenvectors of eigenvalue zero of the fundamental spectral operator: 
 
 M(E) = N(Hn-E, Hn –E) ,     (5) 
 
where N refers to the normal product. In KQFT, we normally assume that the underlying 
states of definite energy are eigenvectors of Hn, which (because of the nonnegativity of 
Hn) are the same as the eigenvectors of eigenvalue zero of: 
 
  (Hn-E)(Hn-E)      (6) 
 
The difference between equation 5 and equation 6 is an operator: 
 
 Δ(Hn) = N(Hn, Hn) - HnHn      (7) 
   
 To prepare for the results of section 3, section 2 will review some key pieces from 
the vast literature on the Glauber-Sudarshan P mapping, in the case where the classical 
system to be quantized is not a field theory but a simple function of two real scalar 
variables p and q, like the harmonic oscillator.  Glauber received the Nobel prize for this 
important work in this area, which, among other things, played a key role in the 
development of the laser [3]. Here I will rely heavily on two sources: (1) the definitive 
more recent book by Carmichael [4], who provides numerous theorems, connections to 
empirical results, and references to earlier literature; and (2) the key paper of Mehta and 
Sudarshan [2] which proved the operator trace theorem.  Mehta [12] provides a elegant 
brief recap of the history of the P mapping. 
 Section 3 briefly shows how to extend the definitions and the operator trace 
theorem from the case of two scalar variables p and q to the case of two real 
mathematical vector fields ϕ(x) and π(x), as in Hamiltonian field theories.  (Mathematical 
vector fields ϕ can actually consist of an amalgam of relativistic covariant vector and 
tensor fields; thus this applies to a very general class of PDE systems.) It seems likely 
that the results could be extended still further, to show that spatially localized classical 
states S map into density operators which are localized around the center of mass, as in 
the usual quantum mechanical representation of an atom with separation of coordinates; 
however, that is not proved here. 
 It should be stressed that this classical-quantum equivalence in expectation values 
does not imply equivalence in dynamics. As one would expect from the work on Bell’s 
Theorem [9], we have found that the master equations which describe the classical 
dynamics are quite different in the general case from the usual Schrodinger equation [13].  
 Section 4 briefly proves that the fundamental spectral operator given in equation 5 
has the property claimed. Section 5 discusses some open questions for future research 
related to these results. 
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2. The P Mapping for a Simple (ODE) Systems 

 
2.1. General Concepts 
 

The P mapping provides a 1-to-1 mapping between definite states of the classical 
system and a subset of the density matrices for the corresponding classical system; it may 
be viewed either as mapping from classical states to quantum states, or as a mapping 
from a subset of the quantum states to classical states. Equivalently, it provides a 1-to-
mapping between statistical ensembles of classical states  and a (larger) subset of density 
matrices. Carmichael cites prior theorems by Sudarshan showing that any (bosonic) 
density matrix allowed in QFT can be represented as: 
 

ρ  =  ∫ P(α) |α><α*| dα       (8) 
 
where |α> <α*| is the density matrix corresponding to the classical state α under the P 
mapping, and where P is a real function; however, for some density matrices ρ allowed in 
QFT, P(α)<0 for some states α. Carmichael calls such density matrices “nonclassical 
states.”  Here we write the operator trace theorem (stated as equation 1.17 of [2]) as: 
 
 tr(ρGn) = <g(α)>        (9) 
 
where g is some function which can be expressed as a polynomial in α and α*, where ρ is 
the density matrix defined by equation 1, where the classical expected value (< >) is 
calculated based on P(α) as a probability distribution, and where Gn is the operator which 
results from quantizing the function f as a normal product, exactly as in KQFT.  
 
2.2 Basic Equations of the P Mapping in the ODE Case 
 

Carmichael [4] shows that we can get remarkably far in understanding complex 
empirical phenomena like decay in two-level atoms and resonance fluorescence by 
applying the P mapping to simple classical systems like the general harmonic oscillator: 
 
  H(p,q)=(p2/2m)+(1/2)mω2q2 + HI(p,q)    (10) 
 
Carmichael’s detailed discussion of the empirical details shows us that the process of an 
electron dropping down from one energy level to a lower energy level is far more 
complicated than the simplified story given in first year texts on quantum mechanics. 

The classical states of this system are characterized by a complex variable which 
he defines on page 73, following Glauber’s notation: 
 
 α = (mωq + ip)/(2mω)-1/2     (11) 
 
On page 75, he defines the coherent quantum states in terms of the wave function |α>: 
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  a|α> = α |α>      (12) 
  <α| aH = α* <α|     (13) 
where “a” is the usual annihilation operator and where its Hermitian conjugate, aH, is the 
usual creation operator. From these definitions, he deduces (page 6) that the wave 
function |α> obeys (and is also defined by): 
 

  α = e−
1
2 α

2 an

n!
n

n=0

∞

∑      (14) 

and also (on page 78) that it obeys and is defined by: 
 

α = e−
1
2 α

2

eαa
H

0      (15) 
 
Of course, |α><α*| is the density matrix ρ which the P mapping maps the classical state 
α into, and it obeys equation 9. 
 In actuality, the P mapping also works for a broader class of systems than the 
Hamiltonian systems considered in this paper. Carmichael uses the P mapping to map 
from operator master equations (Schrodinger equations modified so as to approximate the 
effects of energy dissipating out into a reservoir) to sets of classical PDE – Fokker-Planck 
equations, which provide exact information about the level of dissipation predicted by the 
master equations. He also uses an extended version of equation 9, based on characteristic 
functions, so as to calculate two-time averages. He relies heavily on the characteristic 
function approach, used by Mehta and Sudarshan to establish the fact that  P(α) is a well-
defined function for all quantum density matrices ρ [2]; however, when we use the 
mapping in the other direction, from classical ensembles to density matrices ρ, it is 
enough to focus on the case of classical ensembles for which Pr(α) is a well-defined 
function. Mehta and Sudarshan use the same relationships, using “z” to represent what 
we (following Glauber) will call “α”. 
 Given any polynomial or analytic function of two variables, p and q, Mehta and 
Sudarshan [2] note that the function may be represented equivalently as a polynomial 
function of α and α*, where α=p+iq. And so, if we write: 
 

g(α,α*) = Aj
k

k, j
∑ α j (α*)k     (16) 

Substituting from equations 12 and 13, equation 16 implies: 
  

g(α,α*) α α = Aj
k

k, j
∑ a j α α (aH )k   (17) 

If we quantize g by quantizing α as the operator a and a* as aH, the raw quantized version 
of g(α,α*) would be: 
 

Gr = Aj
k

k, j
∑ a j (aH )k      (18) 
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From equation 17,  for |α><α| of trace 1 (a consequence of equations 14 and 15), and 
using a well-known trace identity, we can deduce: 

g(α,α*) = Tr(g(α,α*) α α ) = Tr( Aj
k

k, j
∑ (aH )k a j α α  (19) 

Equation 9 then falls out directly by using a basic property of normal products of 
expressions such as equations 16 and 18: 

Gn = Aj
k

k, j
∑ (aH )k a j      (20) 

 
3. Extended P Mapping To General Hamiltonian Field Theories 

 
3.1. Review of the Extension of the P Mapping to Hamiltonian Field Theories  
 
Here we consider the more general situation where we replace p and q by the real 
mathematical vector fields ϕ(x) and π(x) defined over x in R3. A state S of this system is 
simply a set of values for ϕ(x) and π(x) across all x in R3. In place of the Hamiltonian 
shown in equation 9, we assume (as in [13]) a classical Hamiltonian of the form: 
 

H  =H = 1
2 |∇φ j |

2 +mj
2φ j

2( )
j=1

n

∑ + f (φ,π,∇φ)
#

$
%%

&

'
((d

3 x∫     (21) 

    
Mehta and Sudarshan [2] refer to prior work establishing similar relationships for 
multiple modes or state variables, αj, and for continuous state variables, which would 
include state variables indexed by the momentum coordinate p in R3. In our case, we 
replace equation 15 by: 

S = Ze
α j ( p)∫

j
∑ aj

H ( p)d3 p

0 ,       (22) 
where Z is the real scalar which normalizes |S> to length 1. Because ak(p’) commutes 
with all the terms in the exponent of equation 14, except for the one where j=k and p’=p, 
it is easy to see that equation 12 generalizes to: 
 
   ak(p) |S> = αk(p) |S>       (23) 
 
and to its Hermitian conjugate: 
 
  <S| ak

H(p) = αk*(p) <S|      (24) 
 
The Hamiltonian H in equation 21 is a fairly complicated polynomial in the momentum 
representation, in the set of state variables ϕj(p) and πj(p) across all p, involving integrals 
over p (due to Fourier convolution) and appearance of p itself (due to the gradient term); 
however, it is still a polynomial, like equation 16, but with more terms. The logic of 
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equations 16 through 20 still goes through, giving us the generalized operator trace 
theorem: 
 
  Tr(ρGn)=<g(S)>     (25) 
 
Before applying equation 25 to physical systems, we need to decide how to map the state 
variables αj(p) into physical variables of the system, just as Carmichael did for the 
systems he considered. By analogy to equation 11, we have proposed [15\3]: 
 
 αj(p) = θj(p) + iτj(p)      (26) 
 
where: 

∫
⋅−

= ydyepwp d
j

ypi
jj )()()( ϕθ      (27) 

∫
⋅−

= ydye
pw

p d
j

ypi

j
j )(

)(
1)( πτ      (28) 

22)( pmpw jj +=        (29) 

The normal form quantization of H (or P) results from substituting Φj(x) and Πj(x) for 
ϕj(x) and πj(x) in equation 21, and mapping classical multiplication into normal forms, 
where Φj and Πj are defined precisely as in chapter 7 of Weinberg[10]: 
 

)()()( xxx jjj
−+ Φ+Φ=Φ       (30) 

)()()( xxx jjj
−+ Π+Π=Π       (31) 

where: 

( )Hjj xx )()( +− Φ=Φ        (32) 

( )Hjj xx )()( +− Π=Π        (33) 

∫
⋅

+ =Φ pd
pw

pae
cx d

j

j
xpi

j )(

)(
)(       (34) 

( )∫
⋅+ −=Π pdpaepwicx d

j
xpi

jj )()()(     (35) 
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Inserting these definitions into equation 25, and taking normal products, we arrive at the 
special case of equation 25 most relevant to our purposes here: 
 

Tr(ρHn)=<H(S)> ,     (36) 
 

where Hn is the normal form Hamiltonian quantized with the bosonic field operators 
given in Weinberg [10], and H(S) is the classical Hamiltonian. Of course, the same goes 
through for the momentum operator and for functions of energy and momentum 
 

4. The Fundamental Spectral Operator For P-Mapped Classical Ensembles 
 
The main result of this paper was already stated in the introduction. The claim is that for 
any ensembles of states of S of a Hamiltonian field theory, all of which have the same 
definite classical energy level E, that the density matrix ρ for that ensemble (under the P 
mapping) is spanned by eigenvectors of eigenvalue zero of the fundamental spectral 
operator M(E) given in equation 5. 
 This result follows very directly from the previous results given above. Choose 
the function: 
 
  g(S) = (H(S) – E)2,     (37) 
 
where we now use the function H to represent the classical energy function (classical 
Hamiltonian), and E is a nonnegative real number. Clearly the energy level equals E for 
all states in the ensemble if and only if g(S) is zero for all states in the ensemble; by the 
nonnegativity (and lack of multiple zeroes) of g, this is true if and only if the expected 
value of g in the ensemble is zero. By equation 25, this is true if and only if Gn=M(E) 
obeys: 

Tr(M(E)ρ) = 0      (38) 
 

But note that M(E) is a Hermitian operator, nonnegative over all density matrices ρ. Thus 
it has an orthogonal eigenvector/eigenspace decomposition, with all eigenvalues zero or 
positive. Likewise, ρ itself, being Hermitian and positive, has its own decomposition into 
rank 1 states corresponding to its eigenvectors. Because all of the terms in the resulting 
expansion of Tr(M(E)ρ) are zero or positive, equation 38 can only be satisfied if all of the 
eigenvectors of ρ are orthogonal to all of the eigenspaces of M(E), except for the 
eigenspace of eigenvalue zero. (Any component of ρ in the other eigenspaces would yield 
a positive term, invalidating equation 38). Thus ρ is made up of rank one terms, all made 
of vectors in that eigenspace of M(E). 
 Note that we could have chosen any other polynomial or analytic function g, 
which has the property that g(S) = 0 for states of energy E and >0 for states of other 
energy. G(S)2, for example, has the same property. This would yield other operators with 
the same basic property as M(E), but more complicated. Also, in applying this concept, 
one may easily extend it to sets of S restricted to zero total momentum or to some desired 
gauge or rotation angle, if applicable. 
 Also note that we cannot construct in general a new version of the Hamitonian 
operator by simply patching together the zero-eigenvalue eigenspaces of M(E) for 
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different values of E, because these eigenspaces are not in general orthogonal to each 
other. 
 

5. Questions for the Future 
 
Several questions emerge from these results. 
 The first question is: a how could we best apply these new mathematical 
connections in practical areas, such as quantum optics, simulation modeling, or predicting 
the emergent properties of classical nonlinear dynamical systems? That is an important 
question, but it gets into many large and complex areas, beyond the scope of this paper. 
 The second question is – could there be implications for the formulation of QFT 
itself? Given that the underlying difference between KQFT and FQFT seems to involve 
the role of the normal form Hamiltonian H versus the raw Hamiltonian, is it possible that 
predicting spectra based on M(E) rather than equation 6 could be consistent with 
empirical reality? 
 At first, this seems unlikely, but equation 7 is actually very close to part of what 
we actually do in KQFT; see sections 6.3 and 7.1 of Mandl and Shaw [8]. It is basically 
just the usual second order contraction, which is what we use to calculate the self-energy 
of the electron. Section 9.6.1 of Mandl and Shaw reminds us that the first great success of 
QED was in predicting the anomalous magnetic moment of the electron, by Schwinger in 
1948.  The correction which he was applied was in fact based on the second-order 
contraction term, rather than any use of time-independent perturbation theory to revise 
the estimated eigenvalue. For higher-order corrections, Schwinger has noted [14,15] that 
we can get consistent and accurate predictions simply by bootstrapping the use of 
physical mass and second-order connections. For other, more routine calculations of 
atomic and molecular spectra in applied QED, the self-energy corrections are small 
compared to what is used in applications, but would presumably be similar. Even for 
more complicated systems in applied QED, such as predicting energy levels in 
semiconductors, one of the most successful methods has been the Nonequilibrium 
Green’s Function (NGEF) method, which grew out of Schwinger’s approach to self-
consistent propagators. In fact, it would be interesting to see how much of all this could 
be deduced as an exercise in phenomenological modeling, similar to Schwinger’s source 
theory, but with density matrices rather than wave functions as the basis of the 
bootstrapping.  
 To extend this kind of spectral modeling to the analysis of unexplained spectral 
data in the nuclear sector [16] could be very important, but would require discussion of 
which Lagrangian to use, as well as the literature on bosonization, which is far beyond 
the scope of this paper. (To get a feeling for the size of the bosonization literature, one 
may go to Google Scholar, and branch forward from the list of papers which cite [11], 
one of the original seminal papers in that field.) It should be noted that if a Lagrangian is 
chosen which contains topological Higgs terms, it becomes necessary to map the fields 
into a kind of equivalent vacuum-dependent representation before the P mapping, like the 
ϕ0 subtraction used in electroweak theory today, to ensure L2 integrability. Of course, 
because of the classical-quantum equivalence, this approach always results in finite mass-
energies. In a similar vein, Schwinger noted the finite nature of  his self-energy correction 
methods [14,15]. When PDE simulation is used (as in [1]), it is not necessary to have 
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convergent Taylor series or perturbation expressions in order to calculate key spectral 
predictions. 
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Appendix: Thermodynamic Properties of Classical Hamiltonian Systems 
 
This paper has presented a test for an ensemble of classical states S to be an ensemble of 
definite (uniform) energy. For a large class of classical nonlinear dynamical systems, 
ODE or PDE, it is also possible to characterize the invariant equilibrium ensembles in a 
similar manner. More precisely, we show how to extend the Boltzmann distribution (and 
the more general class  of equilibrium ensembles of which it is an example) to the class 
of Hamiltonian systems which we call “statistically incompressible.” 
 For the ODE case, consider the usual Fokker-Planck equation, using “p(x)” to 
represent the density of probability at point x in state space: 
 

€ 

˙ p + (v⋅ ∇p) + p(div v) = 0       (39) 
 
Here, the state space is just the space of possible values for the two vectors ϕ and π in Rn. 
From equation 39, the uniform measure dnϕdnπ (whose gradient is zero) will be an 
invariant measure (have the property that p dot will be zero) if: 
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€ 

"div v"=
∂ ˙ ϕ i
∂ϕi

+
i=1

n

∑ ∂ ˙ π i
∂π ii=1

n

∑      (40) 

We will call a Hamiltonian ODE system “statistically incompressible” if its dynamics 
have this property. Likewise, a Hamiltonian PDE system will be called statistically 
incompressible whenever the measure d∞S = dn∞ϕ(x)dn∞π(x) is invariant under the 
dynamics of the PDE. 
 Given any function g(E,I), where E is energy and I is the set of other conserved 
quantities of the system, it is obvious that g(E,I) d∞S will also be an invariant measure if 
the system is statistically incompressible. If this measure meets the requirements for a 
probability distribution (that it be nonnegative and that its integral equals one), then it 
represents an equilibrium (ergodic) distribution of states S. The generalized Boltzmann 
distribution is a function of this form (g = c exp(-kE-c·I)). 
 In addition to the usual primal representation ρ of any ensemble of states S, as 
given in equation 3, there is also a dual representation F defined by: 

 

€ 

Pr(S) = p(S)d∞S
Tr(Fρ(S)) = p(S)

      (41) 

Thus the operator version of the Boltzmann distribution is not the usual primal version of 
the Boltzmann operator, but the dual representation defined by: 
 
 

€ 

F =Gn (E,I)       (42) 
where g is the usual Boltzmann function (an analytic function). 
 A previous paper [17] showed how the Bell’s Theorem experiment could be 
predicted by either of two local realistic models – using the discrete mathematics of 
Markov Random Fields, which provide a kind of equilibrium statistical analysis across 
space and time, and are allowed under a loophole in the theorem. That paper concluded 
with the question of how to generalize that type of analysis from the discrete case to the 
case of continuous variables and fields. It is hoped that the observations in this appendix 
will be of some help in clarifying and answering that question. To make that connection, 
it is also important to note that dual operators like equation 42 remain valid, even when 
the density of allowed states is constrained by boundary conditions, as in the classic 
Planck black body analysis.  It is possible to construct a Boltzmann approach to the 
probability of the continuous range of possible trajectories through an experiment, such 
that Carmichael’s quantum trajectory approach [18] gives a good approximation to what 
happens when there are only two high-probability paths for a photon entering a polarizer 
at other than its preferred polarization angle, from either the input or output side. 

 The primal and dual P mapping concepts can be extended to stochastic ODE and 
PDE as well, at the cost of some complexity, beyond the scope of this paper; however, 
stochastic factors at the initial, terminal, and intermediate “reservoir” levels appear 
sufficient to track this type of experiment. CQED effects can be modeled as a 
consequence of the boundary condition of the matter which ultimately absorbs a photon, 
in the future, without a need to assume zero-point energy in the intervening space. 

The immediate motivation of this work is to address modeling issues for applied 
QED, as discussed in [17]. Yet some may be concerned that the development of 
coherence theory mathematics applicable to simulations of other field theories, such as 
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the work in [1], might be risky in some ways. Manton [1] argues in chapter 11 that the 
application of coherence theory is the key missing element needed to enable some very 
ambitious goals being pursued in Russia for nuclear technology.  However, I would argue 
that this is not a realistic concern until and unless more realistic PDE models 
(Lagrangians) are available, and that is a major challenge in and of itself. Considering the 
larger picture of national and global security, the need for progress in applied QED and 
other future technologies with substantial barriers to entry outweighs any second-order 
risk which might exist, in my view. Tradeoffs between information restriction and 
national security are discussed in detail at nss.org/itar. 
 


