
SYMMETRY AS TURING MACHINE - APPROACH TO SOLVE

L VS P VS NP

KOBAYASHI, KOJI

1. Abstract

This article describes about that L is not P and P is not NP by using di�erence
of symmetry each problems.

Deterministic Turing Machine (DTM) change con�guration by using transition
functions. This changing keep halting con�guration. That is, DTM classfy these
con�guration into equivalence class. The view of equivalence class, there are di�er-
ent between L and P. L can compute equivalence class that cardinals is polynomial
size, but P can compute exponential size. Therefore, L cannot compute P-Complete
problems and L is not P. And using L is not P, we can prove P is not NP. All P prob-
lem have equivalent reversible function and DTM can reduce from NP-Complete
problem to another NP-Complete problem by using this reversible function. If P
is NP, equivalent Logarithm space reductcion exists. But that means L is P and
contradict L is not P. Therefore, P is not NP.

2. Preparation

In this article, we use description as follows;

De�nition 1. We will use the term �L� as L problem set, �P � as P problem set,
�P − Complete� as P-Complete problem set, �NP − Complete� as NP-Complete
problem set, �FL� as Logarithm space function problem set, �FP � as Polynomial
time function problem set.

�DTM � as Deterministic Turing Machine set. �LDTM � as Turing Machine set
that compute L and FL, �pDTM � as Turing Machine set that compute P and FP .
�RpDTM � as Reversible pDTM .

And we will use words and theorems of References [1, 2, 3] in this paper.

3. Symmetry as Turing Machine

Show the symmetry as DTM. Transition functions of DTM are deterministic,
therefore DTM compute only one next con�guration. Because this transition keep
halting con�guration, these con�guration make equivalence class that equivalence
relation is DTM. But this equivalence class is limited to the tape size. LDTM info-
mation without input tape (working tape, head position, state) is atmost O (log n).
Therefore, LDTM can compute atmost O (nc) cardinals equivalence class.

Theorem 2. LDTM can compute atmost O (nc) cardinals equivalence class. That

is, LDTM can read input that cardinals is atmost O (nc) and write output that

cardinals is atmost O (nc).

1



SYMMETRY AS TURING MACHINE - APPROACH TO SOLVE L VS P VS NP 2

Proof. Number of state that LDTM can be capable is atmost O (nc). Therefore,
LDTM can pick out atmost O (nc) states and cannot pick out more than O (nc)
states. Therefore, this theorem was shown. �

4. L is not P

Prove L 6= P by using LDTM limitation. Mentioned above 2, LDTM can com-
pute atmost O (nc) cardinals equivalence class. But P-Complete problem have
equivalence class that is more than O (nc) cardinals. Therefore LDTM cannot
compute P-Complete problem.

De�nition 3. We will use the term �CIRCUIT −V ALUE� as CIRCUIT-VALUE
problem set. To make easy, all partial circuit in p ∈ CIRCUIT−V ALUE (without
input values) already simpli�ed. Therefore, if circuit input values are not given,
circuit is minimum syntax of p.

CIRCUIT-VALUE syntax have many cardinals equivalence class. TM necessary
to decide some gate input to decide gate output. Therefore CIRCUIT-VALUE syn-
tax have minimum circuit to decide CIRCUIT-VALUE output. Minimum circuit
become representative of cardinals equivalence class, and size of minimum circuit
type amount to O (cn). Therefore CIRCUIT-VALUE syntax have O (cn) size car-
dinals equivalence class.

De�nition 4. We will use the term �Minimum circuit� as p ∈ CIRCUIT−V ALUE
that output does not change if any ∨ gate input add some gate output and any ∧
gate input delete. Therefore, any ∨ gate have only one input and any ∧ gate have
all input.

Theorem 5. DTM must classfy minimum circuit syntax to compute p ∈ CIRCUIT−
V ALUE.

Proof. We prove it using reduction to absurdity. We assume that DTM can compute
p ∈ CIRCUIT − V ALUE without classfying minimum circuit syntax. Therefore
DTM compute cannot classfy some minimum circuit syntax.

Let C is minimum circuit syntax set that DTM cannot classfy. If p, q ∈ C
output are di�erent each other, then DTM cannot classfy p, q output. Therefore,
all p, q ∈ C output necessary to output same value. But ¬p also have same minimum
circuit syntax except output NOT gate. Therefore ¬p ∈ C. That is, DTM cannot
classfy p,¬p and contradict that TM can compute p ∈ CIRCUIT − V ALUE.

Therefore, this theorem was shown than reduction to absurdity. �

Theorem 6. Cardinals equivalence class of minimum circuit syntax amount to

O (cn) size.

Proof. Any minimum circuit syntax can add NOT gate each input. These minimum
circuit structure become another minimum circuit structure each other. Therefore
minimum circuit amount to O (cn) size. �

Theorem 7. L 6= P

Proof. We prove it using reduction to absurdity. We assume that L = P . Therefore,
m ∈ LDTM can compute p ∈ CIRCUIT − V ALUE.

Think about circuit size thatm can compute. Mentioned above 2,m can compute
atmost O (nc) cardinals equivalence class. But mentioned above 56, m must classfy



SYMMETRY AS TURING MACHINE - APPROACH TO SOLVE L VS P VS NP 3

O (cn) cardinals equivalence class to compute p ∈ CIRCUIT−V ALUE. Therefore
m cannot compute p and contradict L = P .

Therefore, this theorem was shown than reduction to absurdity. �

5. P is not NP

Prove P 6= NP by using L 6= P .

Theorem 8. P 6= NP

Proof. We prove it using reduction to absurdity. We assume that P = NP , there-
fore all p, q ∈ NP − Complete have f ∈ LDTM that reduce p to q.

∀p, q ∈ NP − Complete∃f ∈ LDTM (f (p) = q)
If p ∈ NP − Complete and g ∈ RpDTM then
p ≤p g (p)
and
g (p) ≤p g−1 (g (p)) = p ∈ NP → g (p) ∈ NP
Therefore
g (p) ∈ NP − Complete
That is,
∀p ∈ NP − Complete∀g ∈ RpDTM∃f ∈ LDTM (f (p) = g (p))
But mentioned above7, RpDTM 6= LDTM and contradict it.
Therefore, this theorem was shown than reduction to absurdity. �

References

[1] Michael Sipser, (translation) OHTA Kazuo, TANAKA Keisuke, ABE Masayuki, UEDA Hiroki,
FUJIOKA Atsushi, WATANABE Osamu, Introduction to the Theory of COMPUTATION
Second Edition, 2008

[2] OGIHARA Mitsunori, Hierarchies in Complexity Theory, 2006
[3] MORITA Kenichi, Reversible Computing, 2012


