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Abstract

The Color-Flavor locking phenomenon is predicted to occur at ultra-high
densities in Quantum Chromodynamics. In this paper, we show that it does
actually exist in a particular quark model scenario at low energies. This then
leads to a proper understanding of how a constituent quark, in contrast to
a current quark, arises. This shows that increasing flavour from SU(2)F to
SU(3)F is a non-trivial physical extension with its unique physical implica-
tions. As to the SU(3)F symmetry breaking, it predicts that the symmetry
when it first appears, is already intrinsically broken, providing us with masses
ms〉 (mu = md), as the constituent quarks as input for the fundamental rep-
resentation.
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Color-Flavor locking (CFL) is a phenomenon predicted to occur in Quan-
tum Chromodynamics (QCD) at ultra-high densities in hadronic matter.
Herein, colour properties are correlated with the flavour properties in a one-
to-one correspondence between the three colours and the three flavours [1,2].
However, drastic changes, as a consequence of CFL, are predicted to occur;
for example, the gluons become electrically charged and the quark charges
are also shifted.

In this paper, we however show that, remarkably, there is a phenomeno-
logically consistent color-flavor locking occurring at normal densities in a
particular quark model itself. This, however does not require any drastic
changes (like charged gluons, etc) in the structure of QCD. As we shall show
below, interestingly, this color-flavor locking leads also to an explanation
of what the constituent quarks (in contrast to the current quarks) are. It
also predicts an intrinsically broken SU(3)F symmetry as the very starting
symmetry in the quark model.

In the standard quark model
SU(6)SF ⊗SU(3)C ⊃ SU(3)F ⊗SU(2)S ⊗SU(3)C , the nucleonic ground

state is

|NS〉 =
1√
2

(

χρφρ + χλφλ
)

ψ0
00S (1)

where

φλ
p = − 1√

6
(udu+ duu− 2uud) (2)

φρ
p =

1√
2
(udu− duu) (3)

and similarly for the corresonding spin wave functions too.
The colour antisymmetric part is

1√
6
[(BG−GB)R + (GR− RG)B + (RB − BR)G] (4)

The above displays the full three quark exchange symmetry. However,
surprisingly, there exists a truncated and severely curtailed quark model wave
function which gives good and consistent results for one body operators in
the quark model [4,5,6]. We will call it the Truncated Quark Model (TQM).
In this TQM, for example, for proton state is,
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p↑ =
1√
2
(uud)χλ

↑ψ
0 =

[

1√
2
(uu)10d

↑ −
√
2√
3
(uu)11d

↓
]

ψ0 (5)

where ψ0 is the L=0 orbital state and the identical uu quark-pair couples
to isospin 1 and hence S=1. This wave function is symmetric only in the
first two labels while the third one has no particular symmetry with respect
to the other two labels. As mentioned by Close [4], ”I cannot overemphasise
the crucial, hidden role that colour plays here in getting the flavour-spin
correlations right.” However, clearly the fully colour anti-symmetric wave
function above (eqn. (4)) cannot provide the colour anti-symmetry for the
above wave function, which is symmetric only in the first two quark labels.
In fact, for the same TQM, what Lichtenberg [6, p. 236] says about the
colour, is quite different, ”In writing these degrees of freedom we shall omit
the color degrees of freedom .... ”. Hence, it is not at all clear as to how
colour wave function arises in this scenario and what kind of wave function
does it actually provide. This has been one of the puzzling weaknesses of the
TQM wave function. However, clearly we cannot neglect colour in the wave
function and solving this puzzle is one of the purpose of this paper.

Let us now list the wave function of the spin half octet baryons in TQM.
There are six pairs of identical quarks in SU(3)F model, which in this TQM
model are given as follows [4,5,6]

P ∼ (uu)1d;N ∼ (dd)1u; Σ+ ∼ (uu)1s;

Σ− ∼ (dd)1s; Ξ0 ∼ (ss)1u; Ξ− ∼ (ss)1d (6)

The remaining pair is Σ0&Λ0 both with uds quark flavour content. In Σ0

(ud) has I=1 and hence S=1 and so it is (ud)1s. For Λ0 (ud) has I=0 and
hence S=0, and thus it is (ud)0s.

These wave functions do very well for one-body operators like electric
charge, magnetic moment, etc. as discussed in literature [4,5,6]. However,
due to its curtailed symmetry of just two states (which is in conflict with
the full three particle symmetry in the successful SU(6)SF quark model) and
due to the conflict with the totally antisymmetric SU(3)C state, this model
is not discussed much in literature. However, as we have seen, that the TQM
works pretty well and so the question, as to why is it so, remains unanswered.
We provide here a physically and mathematically consistent answer which
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reveals a deeper hidden symmetry in quark model and which also tells us
that the extension from SU(2) symmetry to higher symmetry group SU(3) is
not as trivial as just adding one more state to the corresponding fundamental
vector-state.

For mesons the colour goes as 3C ⊗ 3̄C = 1 + 8. The colour singlet state
is

1√
3

(

R̄R + ḠG+ B̄B
)

(7)

and the octet states are

ḠR, B̄R, R̄G, B̄G, R̄B, ḠB,
1√
2

(

R̄R− ḠG
)

,
1√
6

(

R̄R + ḠG− 2B̄B
)

(8)

Here the singlet is associated with the mesons in SU(3)F and the octet
of this colour representation is discarded as irrelevant. Thus the octet colour
state arises as a completely spurious state.

Note that it is a property of SU(3) that

B̄ ∼ RG−GR; Ḡ ∼ BR− RB; R̄ ∼ GB −BG (9)

That is the anticolour state is represented as antisymmetric product of
the other two colours.

Now in a baryon first we have, 3C ⊗ 3C = 3̄ + 6 and then the above
anticolour trilet, being equivalent to the antisymmetric product of two colours
as given in eqn. (9), is used to obtain, 3C ⊗ 3C ⊗ 3C = 1 + 8 + 8 + 10.

In the baryon case above, one again associates the colour antisymmetric
singlet to go with the SU(6)SF symmetric wave functions. So for the baryons,
are these nonsinglet states again discarded? No, the colour-octet above con-
tibutes to the singlet state of the six quarks as the hidden colour components
for B=2; and the colour-decuptet plays its part in baryon number B=3 and
B=4 nuclei, to explian interesting physical aspects of these nuclei [7]. And
thus these nonsinglet states of the baryons play significant roles in hadronic
physics. So, the statement that the colour-octet in the colour-anticolour
states is irrelevant to physics, should not make us too complacent. There
must be a place where this colour-octet plays a physically significant role.
Below, we show that indeed, it does connect one-to-one with the TQM wave
functions of the octet.
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Let us put the six members of the octet (eqn. (6)) along with six members
of the octet colour states (eqn. (8)) as follows:

P ∼ (uu)1d : R̄G

N ∼ (dd)1u : ḠR

Σ+ ∼ (uu)1s : R̄B

Ξ0 ∼ (ss)1u : B̄R

Σ− ∼ (dd)1s : ḠB

Ξ− ∼ (ss)1d : B̄G

(10)

We are struck by a remarkable correlation between quark and identical-
diquark flavours with colour and anti-colour for the six states as

u↔ R ; (uu) ↔ R̄

d↔ G ; (dd) ↔ Ḡ

s↔ B ; (ss) ↔ B̄

(11)

Note that in proton for example, (uu) state is symmetric in flavour-spin
space and now R̄ ∼ GB − BG ¡(eqn. (9)) provides the corresponding an-
tisymmetry in colour space to make this state totally antisymmetric in the
exchange of the first two quarks, correctly fulfilling the Pauli Exclusion Prin-
ciple requirement of antisymmetry on the exchange of identical fermions.

This color-flavor and anticolor - identifical diquark locking is remarkable.
What is it trying to tell us?

Note that as one goes from SU(2)I with two flavours (u,d) to 3 flavours
(u,d,s), one naively just uses the full group SU(3)F . Note that in this process
we are missing something crucial. We know that there are three SU(2) sub-
groups in SU(3). So as one goes from SU(2) to SU(3) the above TQM wave
function suggests that the full group symmetry should be:

SU(2)I → (SU(2)I ⊗ U(1) + SU(2)U ⊗ U(1) + SU(2)V ⊗ U(1))⊗ SU(3)C
(12)

That is (u,d) SU(2)I is extended to SU(2)I ⊗U(1)s by adding an s-quark
and similarly for the extensions (d, s) → (d, s)u and (u, s) → (u, s) d. Let us
assume that all the three subgroups are equivalent to each other.

The above six states in the TQM wave function in eqn. (6) and (10)
map this pattern of extension from SU(2) to three SU(2) x U(1) ’s. Here,
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we suggest that the extension from SU(2) to SU(3) is not a one-step process
but goes through this intermediate step, as indicated above. And amazingly,
all this ia arising due to a complete color-flavor locking.

Now, we see the significance of why in TQM model, the states are eigen-
states of one-body operators. Take the total magnetic moment operators as
a sum of one-body operators acting on quarks in position 1,2,3 respectively
for proton as

µp = µu1 + µu2 + µd3 (13)

We shall disuss its values below. Here, let us note that each quark acts
independently of the others. Similar situation for the evaluation of electric
charges etc. Clearly the mass of the corresponding quarks arise from the
coresponding magnetic moments. That is masses do not arise as eigenstaes
of a broken or unbroken Hamiltonian in this formalism. Note that for each
of these baryons the colour part being normalized as 〈R̄G|R̄G〉 = 1 , it filters
out.

Now we see why these six states are eigenstates of one-body operators.
These correlated states in the TQM are made up of more fundamental current
quarks which give out three effective constituent quarks (renormalised quarks
are they are locked up to colour in the above states) as colour-independent
entities. Right away we see that these three independent quarks may be
identified with the three constituent quarks of SU(3)F quark model. So this
intermediate state for the extension of SU(2) to SU(3), is what, through color-
flavor locking, anticolor-identical diquark locking, produces states which are
equivalent to three independent quarks. Upto this level of exact symmetry
in the groups, the six states are identical with the masses mu = md = ms,
that is that they generate identical constituent quark masses.

So remarkably we find that the purpose of the TQM is to provide three
independent quark state wave functions, which act as inputs in the funda-
mental representations of the larger SU(3)F group. This is clearly providing
a completely different picture of the constituent quarks from the presently
held canonical view of it being made up of a sea of quark-antiquark and
gluons.

So far we have considered six states of the TQM in the 1/2 octet model.
What are Σ0 and Λ0 for this exact group as discussd after eqn. (6)? As each
SU(2) group is equally basic in the above structure, these states would be
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Σ0 = (ud+ du) s+ (ds+ sd)u+ (su+ us) d (14)

and

Ξ0 = (ud− du) s + (ds− sd)u+ (su− us) d (15)

Now note that for Σ0 as the state (ud)1s ( is actually a broken sym-
metry structure as we discuss below ) the corresponding colour state is
1√
2

(

R̄R− ḠG
)

and 1√
6

(

R̄R + ḠG− 2B̄B
)

goes with ( the symmetry broken

) Ξ0 as given by (ud)0s.
Hence the colour state, corresponding to the above unbroken states of Σ0

and Ξ0 as give above in eqns. (14) and (15) are respectively,

1√
2

(

R̄R− ḠG
)

+
1√
2

(

ḠG− B̄B
)

+
1√
2

(

B̄B − R̄R
)

= 0 (16)

and

1√
6

(

R̄R + ḠG− 2B̄B
)

+
1√
6

(

R̄R + B̄B − 2ḠG
)

+

1√
6

(

ḠG + B̄B − 2R̄R
)

= 0 (17)

So the product of the spin flavour times colour factor for these states is
zero. Hence, for the case of exact symmetry of the three SU(2)XU(1) groups
as given in eqn.(12), these states do not exist. Only the six states with their
color-flavor locking exist and these then provide the constituent quarks as
inputs for the SU(3) flavour quarks with equal masses for the three flavours
of quarks.

Next let the symmetry of the above group be broken. This is dictated by
physical reasons wherein it is known that SU(2)I of (u,d) state is well-known
to be a good symmetry but in SU(2)xU(1) the s-quark breaks the symmetry
so that the corresponding masses as arsisng in the magnetic moment for the
s-quark is different from that of the u- and the d-quarks, Let this broken
group be represented ( with an extra set of braces ) as below:

SU(2)I → ({SU(2)I ⊗ U(1)} + SU(2)U ⊗ U(1) + SU(2)V ⊗ U(1))⊗SU(3)C
(18)
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Now note that for the symmetry broken Σ0 as the state (ud)1s, the colour

state is 1√
2

(

R̄R− ḠG
)

and 1√
6

(

R̄R + ḠG− 2B̄B
)

goes with ( the symmetry

broken ) Ξ0 as given by (ud)0s.
The magnetic moments in standard notation are as follows:

Baryons TQM − broken experiment

p
(4µu−µd)

3
= 2.793 2.793

n
(4µd−µu)

3
= −1.862 −1.913

Λ µs = −0.614 −0.614

Σ+ (4µu−µs)
3

= 2.687 2.46

Σ0 (2µu+2µd−µs)
3

= 0.825 −−
Σ− (4µd−µs)

3
= −1.042 −1.16

Ξ0 (4µs−µu)
3

= −1.439 −1.25

Ξ− (4µs−µd)
3

= −0.508 −0.65

(19)

Note that for the TQM group there are no Σ0 and Λ0 states. These
exist only in the broken TQM with isospin given the physically demanded
priviledged status. From the table one sees that these magnetic moments
of the baryon octet, as should be, are the same as obtained in the SU(6)FS

model. We take proton, neutron and Λ magnetic moments as inputs to fit the
other magnetic moments - and these work quite well. These three states are
also used to obtain the u-, d- and s-quark masses For magnetic moments of
these states, it is clear thatms〉 (mu = md). So the evaluation of all one-body
operators with these wave functions shows that we have three independent
quark states with constituent quark masses ms〉 (mu = md) as an input for
the fundamental represenation for the quarks in SU(3)F group.

This is against the conventional picture where one demands that SU(3)F
is a good exact starting symmetry which thereafter is broken through, some
perturbation terms in the Hamiltonian introduced say, through the second
diagonal generator Y. The new picture given above is quite distinct from
this.
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So the complete group structure of how an intrinsically broken SU(3)F
arises with these constituent quarks is as follows:

SU(2)I → (SU(2)I ⊗ U(1)S + SU(2)U ⊗ U(1) + SU(2)V ⊗ U(1))⊗ SU(3)C

→ ((SU(2)I ⊗ U(1)S) + SU(2)U ⊗ U(1) + SU(2)V ⊗ U(1))⊗ SU(3)C

→ SU(3)F (20)

With SU(6)SF ⊗ SU(3)C ⊃ SU(3)F ⊗ SU(2) ⊗ SU(3)C to provide the
correct symmetric spin-flavour states in the quark model and also to get the
colour antisymmetric state.

Hence, here we have given a new interpretation of the TQM wave func-
tion as the cause of providing the structure which leads through the one-
body operators to creation of three independent constituent quarks with
ms〉 (mu = md) for the SU(3)F group, which then is used in SU(6)SF ⊗
SU(3)C quark model.

So, we learn that the TQM wave function is not that of SU(3)F but
that of the broken group above. It is this that determines that SU(2)I is
special with respect to the other two SU(2) groups. So this gives spin 1/2
octet states and then gives the correct constituent quarks to go as input in
SU(3)F . Earlier, one jumped right away in a single step from the group
SU(2F ) to the group SU(3)F . As shown here, this is too abrupt a step, and
that there is an intermediate stage which takes us gently from the smaller
group to the larger group, and that it is essential to be taken into account.

One knows that SU(3)F symmetry is broken. The classic question has
been as to how this breaking occurs. In the more familiar explanation, con-
ventionally, at first the symmetry is actually known to be exact and thereafter
broken through a perturbation as

Hstrong = HSU(3) + ǫHmedium−strong (21)

This breaks the symmetry. However, as pointed out by Ryder [8, p 180],
”According to yet another school of thought, SU(3) is intrinsically broken,
that, there is not a symmetric state of affairs followed by a perturbation
which breaks the symmetry, but rather the symmetry when it first appears
is already broken.” The present paper shows that this intrinsically broken
SU(3) scenario is actually the reality!
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Note that the masses which arise from this unique sub-group structure
are ms〉 (mu = md) This then acts as input to SU(3)F ⊗SU(3)C group. Now
as 3C ⊗ 3C ⊗ 3C = 1 + 8 + 8 + 10 the decuptet is a pure SU(3)F result
with the above input of the constituent quarks. Indeed, it turns out that the
decuptet is well known to be satisfied by the mass formula M = M0 + bY

where Y is proportional to the second digonal generator of SU(3)F . This is
clearly equivalnt to the above masses for the s-quark and the (u,d)-quarks as
input from the TQM model as shown here. Indeed, this should be taken as
a smoking-gun evidence in support of the idea presented in this paper.

But why then does the octet member not show this mass structure ? It is
well known that this does not give the correct masses for the octet. Now we
notice that the reason has to do with the fact that, unlike the decuplet, which
is a pure state of the SU(3)F state, arising from the new constituent quarks,
the octet of the TQM consists of seven members which are symmetric in the
first two quark indices and the eighth member which is antisymmetric in the
same. But the octet of SU(3)F as being a part of SU(6)SF group is a mixture
of 8MS+8MA, giving the wave function in eqn. (1) of the quark model. Thus
there has to be a further symmetry breaking for the octet members. So
specific SU(3)F symmetry breaking terms are required.

We look at some group theory to understand what we have achieved here.
In SU(3) assuming symmetry breaking of the spin 1/2 baryon octet as given
by Okubo [9]

M(8) = m0Tr(B̄B) +
1

2
m1({B̄, B}λ8)−

1

2
m2Tr([B̄, B]λ8) (22)

This gives the well known Gell-Mann-Okubo mass formula

m8(I, Y ) = m0 + aY + b[I(I + 1)− 1

4
Y 2] (23)

which works very well for the spin 1/2 baryon octet in SU(3).
For the case of the 3/2 decuptet the above mass formula reduces to a

much simpler form

m10(I, Y ) = m0
′

+ a
′

Y (24)

And this works very well for the decuptet. Note that this right away jus-
tifies our above assertion that the symmtery-broken TQM provide the three
quarks which go as the fundamental representation in the fully symmetric
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decuptet. The above SU(3) mass fomula works for the decuptet because it
matches the unmixed decuptet, indicating its pureness as being made of three
unbroken constituent quark entities.

In fact Okubo has shown [9] that the above complex equation (eqns. (22)
and (23)) reduces to the simpler form above (eqn. (24)) for all Irreducible
Representations given as triangular diagrams like the decuptet. These are
3, 6, 10, 15, 21 etc. which are totally symmetric states of 1-, 2- 3-, 4-, 5-
etc. quarks respectively. So for the 5-quarks states, as being made up of
the fundamental 3-quark representation, the state of dimension 21 is given
by the Young diagram of the 5-quarks symmetric product representation;

. Clearly all these triangular states retain the pure 3-quarks
constituent entities as inputs as ummixed states ( including the decuptet
above ). However, these constituent quarks as inputs are not enough for the
octet in SU(3) as it is made through specific octet symmetry breaking unique
to the group SU(3).

Thus these consideratins show that as one goes from the smaller SU(2)
flavour group to the bigger SU(3) flavour group, it is not a trivial extension
from 2 to 3. But that there is an hidden intermediate symmetry structure,
discussed as TQM, which lets us go from 2 to 3 with an intrinsically broken
SU(3)F symmetry with inputs of three constituent quarks. Mass consider-
attion from the baryon magnetic moments based on broken TQM model,
which also works well for all the triangular represntations of SU(3) like the
decuptet, support this new model. Difference in masses with respect to the
octet masses like the Gell-Mann-Okubo mass formula for SU(3), are along
the expected lines of the new broken TQM. Color-flavor locking is a unique
property of the TQM which allows the new constituent quark structure to
be build up.

11



References

1. M. Alford, K. Rajagopal and F. Wilczek, Phys. Lett. B 422 (1998)
247; Nucl. Phys. B 537 (1999) 443.

2. M. Alford, K. Rajagopal, T. Schaeffer and A. Schmitt, Rev. Mod.
Phys. 80 (2008) 1455.

3. W. Greiner and B. Mueller, ”Quantum Mechanics - Symmetries”,
Springer Verlag, Berlin, 1994.

4. F. E. Close, in ”Quarks and Nuclear Physics”, Ed. D. Fries and
B. Zeitnitz, Springer Tracts in Modern Physics, Vol. 100 (1982), Springer
Verlag, New York, p. 57-80.

5. R. E. Alvarez-Estrada, F. Fernandez, J. L. Sanchez-Gomez and V.
Vento, ”Models of Hadron Structure based on Quantum Chromodynamics”,
Springer Verlag, Berlin, 1986.

6. D. Lichtenberg, ”Unitary Symmetry and Elementary Particles”, Aca-
demic Press, New York, 1978.

7. A. Abbas, Phys. Lett. B 167 (1986) 150; Prog. Part. Nucl. Phys. 20
(1988) 181.

8. L. Ryder, ”Elementary Particles and Symmetries” Gordon and Breach
Science Publishers, New York, 1975.

9. S. Okubo, Prog. Theo. Phys. 27 (1962) 949

12


