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Abstract

We study Schwarzschild’s metrical model of an incompressible (liquid) sphere
of constant density and note the tremendous internal pressures described by the
model when applied to a stellar body like the sun. We also study the relativistic
radial motion of a photon and a massive particle in the associated gravitational
field, with due regard to energy conservation. We note the similarities and the
differences between this case and the case of a Schwarzschild singular source
with special regard to repulsive effects and penetrability.

1 Introduction

In our study of the relativistic motion of particles in the gravity field of a spherically
symmetric Schwarzschild metric[1], we have found that depending on the energy of the
particle, there is a repulsive character of the Schwarzschild source, and that motion
would cease at the Schwarzschild surface. The latter may be viewed as a reflecting
boundary for massive as well as massless (photonic) particles. Whereas a Schwarzschild
source may be regarded as an extreme limit of physical gravitational sources, it would
be interesting to examine the relativistic motion of particles in the field of a source
with some extended mass distribution. Besides his metric solution describing a very
compact (a particle) source[2], Schwarzschild had given a metric describing a sphere of
constant density (incompressible liquid)[3]. Our purpose in this article is to examine
this metric describing a liquid sphere and its possible relevance to astrophysical bodies.
Corresponding to an interesting proposal by Robitaille regarding a possible condensed
state of the solar constitution based on liquid hydrogen[4], there has been a revival of
Schwarzschild’s metric for a liquid sphere. We shall verify and use the form of the
metric presented by the recent work of Borissova and Rabounski[5],[6].

As we shall see, the Schwarzschild metric solution for a sphere of constant density is
a discontinuous function, for it is an idealized system obtained by equating the metric
at the surface of a sphere of constant density (essentially a de Sitter space metric) to
the metric of empty space outside (the Schwarzschild metric for a central point). In a
separate article[7] we propose and examine a corresponding modification that describes a
continuous transition from a central spherical concentration of matter to an empty space
at large distance. It seems to us that such a modification to the Schwarzschild metric
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solution would be a more realistic counterpart to the idealistic discontinuous metric.
An astrophysical system like a star would better be described by a continuous transition
from a higher-density incompressible core to a lower density gaseous atmosphere.

In this article, after introducing the Schwarzschild metric for an incompressible sphere,
we shall examine its properties, and study the motion of a radial photon and a massive
test particle in the associated gravitational field, making contrast with the correspond-
ing motion in the field of a singular Schwarzschild source[1].

2 General Formalism

Let us consider a general spherical metric whose line element is desccribed by the line
element

ds2 = A(r)c2dt2 −B−1(r)dr2 − r2(dθ2 + sin2 θ dφ2) (1)

Here A(r) and B(r) are two functions of the radial coordinate r. In Schwarzschild’s
metric for a central point source[2], both functions A(r) and B(r) are equal to the form
(1 − s/r) where s = 2GM/c2 is the Schwarzschild’s radius (or the Hilbert radius as
some authors like to call it). Hence we should remember that in any new metric which
is supposed to replace the above for an extended spherical source, the functions A(r)
and B(r) must have the form (1− s/r) as their limit for radial distances that are large
compared to the effective size of the spherical source.

Now corresponding to the above metric, we can compute the Ricci tensor Rµν , the
Ricci scalar R = gµνRµν , then derive the non-vanishing components of the energy-
momentum-stress tensor T νµ using Einstein’s equations:

Rν
µ −

1

2
δνµR = −8πG

c4
T νµ (2)

The energy density ρc2 of a gravitational source is given by the time component T 0
0 ,

while other components of T νµ give pressure, momentum, and stress quantities associated

with the material source. For the mass density ρ, we have1

ρ = − c2

8πG

1

r2
(−1 +B + rB′) (3)

where the prime denotes differentiation with respect to the radial coordinate r. For
three components of pressure, we obtain

P1 =
c4

8πG

1

r2

A(−1 +B) + rA′B

A
(4)

P3 = P2 =
c4

32πG

1

r

(−rB(A′)2 + 2A2B′ + A(rA′B′ + 2B(A′ + rA′′)))

A2
(5)

1We shall present some time soon an article, “Metrico: A Mathematica Package for General Relativity”, describing
the programming involved in the writing of a symbolic manipulation package (that, among other things, could take an
arbitrary metric, compute all connections and tensor components rather quickly), giving definitions and useful formulae
for many practical situations.
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Notice that, in general, we have three different components of pressure. In the above
case, we have P3 = P2 due to spherical symmetry. In the very special case of an ideal
fluid, the three components of pressure are equal. In general, we can define the mean
pressure as P = (P1 + P2 + P3)/3.

With the above formalism we shall be able to analyze the properties of the spherical
metrics that are the subject of this article, and others that are forthcoming. On the
other hand, let us give some general formalism regarding the motion of a particle in the
field of the general spherical metric given above.

The Lagrangian for a relativistic particle of mass m that corresponds to our general
spherical metric is given by

L = −mc2

√
A(r)−B−1(r)

v2

c2
− r2

ω2

c2
(6)

Here v and ω are the radial and the angular velocities, respectively, and we have

v = ṙ ω2 = θ̇2 + sin2(θ) φ̇2

with the dot representing differentiation with respect to time.

We proceed following the same elementary mechanical analysis used to handle particle
motion in the field of a Schwarzschild source[1]. The above system is independent of the
time coordinate, hence it is conservative of energy. However, it depends explicitly on
the radial coordinate r and the angle θ, whose associated momenta are not conserved,
while the angular momentum associated with φ is conserved. The radial and angular
momenta are given by

pr =
∂L
∂v

=
mv

B
√
A− v2+r2ω2B

c2B

(7)

pω =
∂L
∂ω

=
mr2ω√

A− v2+r2ω2B
c2B

(8)

The conserved energy is given by the Hamiltonian:

ε = prv + pωω − L =
mc2A√

A− v2+r2ω2B
c2B

(9)

Notice that the minimum value of ε is given by mc2
√
A corresponding to v = ω = 0.

This minimum value is smaller that mc2 for all r, provided that the function A(r)
approximates to the Schwarzschild counterpart only for very large radial distance.

Solving for the velocity, we have the general relation

v2 + r2ω2B = c2AB

{
1−

(
mc2

ε

)2

A

}
(10)
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When dealing strictly with radial motion (ω = 0), we have for the radial velocity

v2 = c2AB

{
1−

(
mc2

ε

)2

A

}
(11)

The radial acceleration a = dv/dt is given by (dv/dr)v = (1/2)dv2/dr, or

a =
c2

2

{(
1− 2

(
mc2

ε

)2
)
BA′ + A

(
1−

(
mc2

ε

)2

A

)
B′

}
(12)

where the prime denotes differentiation with respect to the radial coordinate r.

For strictly orbital motion (v = 0), we have

r2ω2 = c2A

{
1−

(
mc2

ε

)2

A

}
(13)

For a massless particle like the photon with rest mass m = 0, we have the respective
radial and angular speeds

v = c
√
AB rω = c

√
A (14)

Notice that the radial and the orbital photonic speeds would differ at any radial position,
in general, except for the limit r → ∞, where the speed is c. For photonic radial
acceleration, we have the symmetrical expression

a =
dv

dt
=
c2

2
(A′B + AB′) =

c2

2

d

dr
(AB) (15)

In the following sections, after introducing the Schwarzschild model for a liquid sphere
we shall remark on the astrophysical properties of such model, with reference to a stellar
body like the sun. We shall consider the radial motion of a particle in the field of the
associated metric, utilizing the above formalism, and giving due comments.

3 The Schwarzschild Model of a Liquid Sphere

For the Schwarzschild model of a liquid (incompressible) sphere, we have the associated
spherical metric with the functions[5],[6]

A(r) = 1
4

(
3
√

1− s
a
−
√

1− sr2

a3

)2

B(r) =
(

1− sr2

a3

) r ≤ a (16)

This is strictly for the metric inside the sphere of radius a, and where s = 2GM/c2 is
the Schwarzschild radius associated with the sphere of mass M . However, outside the
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sphere, we have the Schwarzschild metric for empty space, with A(r) =
(
1− s

r

)
B(r) =

(
1− s

r

) r ≥ a (17)

Notice that the above interior and exterior parts of the metric would match at the
boundary r = a.

Now using the formalism of the preceding section, we proceed to compute the density
and the pressure components of the energy-momentum-stress tensor. Other components
are vanishing.

The mass density ρ given in the preceding section in terms of A(r) and B(r) would
take on the following constant value inside the sphere

ρ =
3c2

8πG

s

a3
r ≤ a (18)

while it is zero outside. Now with s = 2GM/c2, we obtain

ρ =
3M

4πa3
(19)

This is just the usual mass density for a hard sphere of mass M and radius a. Taking
M = 1.98892 × 1030 kilograms as the solar mass, and a = 6.96 × 108 m, the solar
radius, we obtain ρ = 1408.32 kg/m3 or 1.40832 gm/cm3 as the average solar density.
Notice that this value is to be taken to be constant throughout the solar body in a liquid
spherical model of the sun[4].

Turning to pressure, we utilize the formalism of the preceding section which gives the
values of P1, P2, and P3 in terms of the functions A(r) and B(r), and verify that the
three pressure components are equal (ideal fluid) inside the sphere, with the common
value

P =
3c4

8πG

( s
a3

)
√

1− s
a
−
√

1− sr2

a3

−3
√

1− s
a

+
√

1− sr2

a3

 r ≤ a (20)

Moreover, it is clear that the pressure outside the sphere is zero.

Now using s = 2GM/c2, then using the values c = 2.99792458×108 m/sec for the speed
of light, G = 6.67259× 10−11 for the Newtonian constant in MKS units, together with
the values of solar mass and radius given earlier, and dividing by 105 to get the value
of pressure in atmosphere, we obtain the numeric expression for the pressure inside the
sphere as a function of radial distance r:

1.26573× 1015(0.999998−
√

1− 8.75937× 10−24r2)

−2.99999 +
√

1− 8.75937× 10−24r2
(21)

This expression gives zero for the value of the pressure when r is equal to the solar
radius. However, for r = 0, at the center of the sun, the value of pressure comes out
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equal to 1.34269×109 atmosphere. The following is a plot of solar pressure as a function
of radial distance, if the sun is considered to be a Schwarzschild liquid sphere of constant
density:

With these tremendous values of pressures (hundreds of millions to billions of atmo-
spheres) in most of the central part of the solar body, the question is, would the liquid
hydrogen model proposed by Robitaille be able to sustain these pressures?[4]

Let us turn now for a consideration of the relativistic radial motion of a particle in
the field of a Schwarzschild liquid sphere. Our presentation should be compared with
the one given for the motion in the field of the singular Schwarzschild metric of central
point source.[1]

3.1 Motion of a Photon

We shall begin with the radial motion of a massless photon. Whereas the radial speed
squared of the photon is given by v2(r) = c2A(r)B(r), we have inside and outside the
sphere, respectively:

v2(r) =


c2

4

(
3
√

1− s
a
−
√

1− sr2

a3

)2 (
1− sr2

a3

)
r ≤ a

(
1− s

r

)2
c2 r ≥ a

(22)

It is clear, in order to have real speed inside, we must have s ≤ a and sr2 ≤ a3. This
is satisfied inside the sphere2 as long as s ≤ a. The following is the photon’s radial
acceleration:

a(r) =


rsc2

4a6

{
9a2s+ 2r2s+ a3

(
−11 + 9

√
1− s

a

√
1− sr2

a3

)}
r ≤ a

(r−s)sc2
r3

r ≥ a

(23)

For the case a > s, these are schematic plots of v2(r) and a(r), with the scales corre-
sponding to, c = 1, s = 1 and a = 10:

2It should be clear that the singularity in the interior part of the metric (the vanishing of B(r) and the blowing up of
the radial part) when sr2 = a3 is of no consequence in the present Schwarzschild model since it lies outside the spherical
surface. However, the observation[5],[6] that the value of r = a3/s corresponding to the sun does occur at the position
of the asteroid belt is interesting.
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We can see from the plots how an incoming photon’s speed is decreasing (positive accel-
eration or repulsion) outside the sphere, and how the motion changes discontinuously
inside the sphere, with the photon’s speed increasing (negative acceleration or attrac-

tion) to reach a speed of (3
√

1− s/a− 1)c/2. For a solar liquid sphere, the maximum
speed of the photon reached at the center is 0.999997c.

Turning to the case a = s, when the radius of the sphere is equal to its Schwarzschild
radius, we have for the photon speed squared:

v2(r) =


c2

4

(
1− r2

s2

)2

r ≤ s

(
1− s

r

)2
c2 r ≥ s

(24)

For the photon’s acceleration, we have

a(r) =


r(r2−s2)c2

2s4
r ≤ s

(r−s)sc2
r3

r ≥ s

(25)

Notice that both the speed and the acceleration of the photon are zero at the spher-
ical surface. This situation is exactly the same as for the case of a point-particle
Schwarzschild source[1]. However, whereas there couldn’t be a penetration of the photon
in the singular case of a point-particle Schwarzschild source (since the metric is valid
only for r > s), in the present case of an extended Schwarzschild sphere penetration
is allowed. Notice that for r → 0 the speed of the photon becomes c/2, while the
acceleration goes back to 0. These are the corresponding schematic plots:

It is clear that the curves for the a = s case becomes much smoother.
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3.2 Motion of a Massive Particle

From our general formalism with metric functions A(r) and B(r), we have for the radial
speed squared of a particle, of mass m and energy ε, the expression:

v2 = AB

{
1−

(
mc2

ε

)2

A

}
c2 (26)

and for the radial acceleration:

a =
c2

2

{(
1− 2

(
mc2

ε

)2
)
BA′ + A

(
1−

(
mc2

ε

)2
)
B′

}
(27)

Now using the metric functions of the Schwarzschild model of a liquid sphere,

{
A(r) = 1

4

(
3
√

1− s/a−
√

1− sr2/a
)2

B(r) = (1− sr2/a3)
r ≤ a

{
A(r) = (1− s/r)
B(r) = (1− s/r) r ≥ a

(28)

and choosing a unit value of mc2, we shall present schematic plots corresponding to
three values of ε, {0.5, 1, 1.5}.
The followings are the schematic plots for particle speed squared v2(r) and acceleration
a(r) that correspond to ε = 0.5, with scales chosen such as c = 1, s = 1 and a = 10:

Hence we see how an incoming massive particle with energy ε = 0.5mc2 has an in-
creasing speed outside the sphere (negative acceleration or attraction), then there is a
decrease in the rate of speed increase after penetrating the surface of the sphere. The
negative acceleration (or the attraction) vanishes for r → 0.

The followings are the schematic plots for particle speed squared v2(r) and acceleration
a(r) that correspond to ε = 1, with scales chosen such as c = 1, s = 1 and a = 10:
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And, the followings are the schematic plots for particle speed squared v2(r) and accel-
eration a(r) that correspond to ε = 1.5, with scales chosen such as c = 1, s = 1 and
a = 10:

Notice that the case for which ε = 1.5mc2 shows that such an incoming massive particle
has a decreasing speed outside the sphere (positive acceleration or repulsion) then, as
it penetrates the surface of the sphere, its inward speed starts increasing (negative
acceleration or attraction). The maximum value reached at r = 0 is less than c, and
can easily be obtained from the given formula.

4 Discussion

Our foregoing study of Schwarzschild’s metrical model of a constant-density liquid
sphere shows that, taken as an idealistic liquid model of a star, could only be possible if
the underlying liquid could sustain the tremendous pressures (hundreds of millions to
billions of atmospheres) that govern most of the central parts of the spherical body. A
more realistic system would have to provide a continuous decrease of density as we go
away from the center towards the external gaseous layers and beyond. We shall return
to more realistic models in other articles. In particular, we shall present a continuous
counterpart of Schwarzschild’s metrical model which interpolates smoothly between the
internal and the external parts.[7]

On the other hand, our study of the relativistic motion of a photon or a massive
particle shows some similarities, and some differences, from the motion in the field of
the singular Schwarzschild metric of a central point. The similarities pertain to the
presence of a repulsive effect of the source in the face of an approaching particle, which
effect also depends on the energy of the incoming particle. In general, a photon or
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a highly energetic massive particle are faced with repulsion. This relativistic repulsive
effect seems to be a general property of gravitational sources which must be exploited
in several astrophysical situations.

Of course, the main difference between the relativistic motion of a photon or a mas-
sive particle in the field of a Schwarzschild liquid sphere, and that in the field of a
Schwarzschild singular source, concerns the impenetrability of the latter at the singular
surface and the penetrability of the liquid sphere. This picture will be examined further
in our forthcoming studies of extended bodies with continuous profiles.
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