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ABSTRACT

In order to test the expansion of the universe and its geometry, we carry out

an Alcock & Paczyński cosmological test, that is, an evaluation of the ratio of

observed angular size to radial/redshift size. The main advantage of this test is

that it does not depend on the evolution of the galaxies, but only on the geom-

etry of the universe. However, the redshift distortions produced by the peculiar

velocities of the gravitational infall do also have an influence, which should be

separated from the cosmological effect. We derive the anisotropic correlation

function of sources in three surveys within the Sloan Digital Sky Survey (SDSS):

galaxies from SDSS-III/Baryon Oscillation Spectroscopy Survey–Data Release 10

(BOSS-DR10), and QSOs from SDSS-II and SDSS-III/BOSS-DR10. From these,

we are able to disentangle the dynamic and geometric distortions and thus derive

the ratio of observed angular size to radial/redshift size at different redshifts.

We also add some other values available in the literature. Then, we use the data

to evaluate which cosmological model fits them. We used six different models:

concordance ΛCDM, Einstein-de Sitter, open–Friedman Cosmology without dark

energy, flat quasi-steady state cosmology, a static universe with a linear Hubble

law, and a static universe with tired–light redshift. Only two of the six mod-

els above fit the data of the Alcock & Paczyński test: concordance ΛCDM and

static universe with tired–light redshift; whereas the rest of them are excluded at

a > 95% confidence level. If we assume that ΛCDM is the correct one, the best

fit with a free Ωm is produced for Ωm = 0.24+0.10
−0.07.

Subject headings: cosmology: observations — large-scale structure of universe
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1. Introduction

There are several ways to test the geometry of a cosmological model and its expansion,

i.e., that redshifts of the galaxies are cosmological and not due to an alternative mechanism

(Narlikar 1989; López-Corredoira 2003, Section 2.1; López-Corredoira 2006). However,

almost all of the cosmological tests are entangled with the evolution of galaxies and/or

other effects. Hubble diagrams (LaViolette 1986; Schade et al. 1997; Marosi 2013), Tolman

surface–brightness tests (Lubin & Sandage 2001; Andrews 2006; Lerner 2006), angular

size tests (Kapahi 1987; Kellerman 1993; López-Corredoira 2010) are all affected by the

evolution of galaxies at high redshifts. So far, there are no standard rods in physical

objects. The ultra-compact radio sources which were claimed in the past to be free of

evolutionary effects are now thought to present some evolution as well (López-Corredoira

2010; Pashchenko & Vitrishchak 2011). López-Corredoira (2010) thinks that the huge size

evolution necessary to fit an angular size test with an expanding universe is not understood,

but it still depends on our understanding of the galaxies rather than on pure cosmological

approaches. Baryonic acoustic oscillations (BAOs) in the cosmic microwave background

radiation (CMBR) or in the large scale structure are usually thought to be standard rods

to measure the cosmological expansion (e.g., Rassat & Refregier 2012); however their

features in the power spectrum are not a direct observable quantity free of assumptions (one

must assume at least that BAO peaks represent a faint imprint of the sound waves in the

clustering of galaxies and matter today excited by the initial inflationary perturbations, i.e.

the assumption that the scenario of standard cosmology is correct) and these peaks could be

generated with other cosmological assumptions different from the standard interpretation

of acoustic peaks (López-Corredoira & Gabrielli 2013).

Time dilation tests in Type Ia supernovae (SNIa) look like one of the most successful

tests in favor of the expansion of the universe (Goldhaber et al. 2001; Blondin et al. 2008),
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but they do not serve to test the geometry of the universe, and there are still some problems

in the interpretation. The fact that SNe Ia light curves are narrower when redder (Nobili &

Goobar 2008) is an inconvenience for a clean test free of selection effects. Other selection

effects and the possible compatibility of the results with a wider range of cosmological

models, including static ones, were also pointed out by López-Corredoira (2003, Section

2 and references therein), Brynjolfsson (2004b); Leaning (2006); Crawford (2009b, 2011);

Holushko (2012), and LaViolette (2012, Section 7.8). Moreover, neither gamma-ray bursts

(Crawford 2009a) nor QSOs (Hawkins 2010) present time dilation, which is puzzling.

There are, of course, the CMBR anisotropies as a way to test cosmological models;

they are, perhaps, the most important support for the standard model. However, one

should find an independent confirmation, because it is possible to generate/modify CMBR

anisotropies by mechanisms different than the standard cosmology (Narlikar et al. 2007;

Angus & Diaferio 2011; López-Corredoira & Gabrielli 2013; López-Corredoira 2013) and/or

contamination (López-Corredoira 2007).

The microwave background temperature measured from rotational excitation of some

molecules as a function of redshift (Molaro et al. 2002; Noterdaeme et al. 2011) is another

possible test and was quite successful in proving the expansion: results from Noterdaeme et

al. (2011) with the exact expected dependence of T = T0(1+z) are impressive. Nonetheless,

there are other results which disagree with that dependence (Krelowski et al. 2012; Sato et

al. 2013). It might be due to a dependence on collisional excitation (Molaro et al. 2002) or

bias due to unresolved structure (Sato et al. 2013).

The temperature of the intergalactic medium as a function of redshift might also be

useful to constrain more directly the geometry of the universe. At present, it is typically

inferred to be 20,000 K; there is no evidence of evolution with redshift (Zaldarriaga et al.

2001), which is puzzling in an expanding universe.
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Here, we propose an Alcock & Paczyński (1979) cosmological test: an evaluation of the

ratio of observed angular size to radial/redshift size (see detailed explanation in Section 2).

The main advantage of this test is that it does not depend on the evolution of the galaxies,

but only on the geometry of the universe. However, the redshift distortions (Kaiser 1987;

Hamilton 1998) do also have an influence. Although there already have been many attempts

to carry out this test (see references in Section 2.2), here we adapt the method (Sections 2

and 3) and focus on the application as a test for any cosmological model, whereas other

authors assume the standard cosmology and just fit some of their parameters. We apply

it to three spectroscopic surveys with a total of ∼ 106 galaxies up to redshift 0.8 and

∼ 105 QSOs at higher redshifts (Sections 4 and 5). As will be discussed in Section 6, this

test will give us information about which cosmological model fits better. Hence, this is a

cosmological test free of entanglement with evolution, for checking both the geometry and

the expansion of the universe. Certainly, this exercise is not going to solve the question

once and for all, but the method is a possible way to do it with the increasing possibility of

future huge spectroscopic surveys.

2. Method of the test

The key point of the test is based on the fact that the two-point correlation function

in a distribution of galaxies in the real space must have spherical symmetry, that is, it only

depends on the distance between the sources and not on any of the two angles which define

the relative position between the two sources. This means that the fall of the two-point

correlation function as a function of the distance must be the same either along the line of

sight (r‖) or perpendicular to it (r⊥). The distance of two sources along the line of sight

is given by the difference of redshift, ∆z, and depends on the cosmological model. The

distance of two sources in the direction perpendicular to the line of sight is given by the
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angular separation, ∆θ, and also depends on the cosmological model; this is precisely what

gives meaning to the angular-size tests.

2.1. Dependence on the Cosmological Model

The comoving distance between two sources at redshift z separated by a relatively

small ∆z and ∆θ (radians) in the redshift-space is (see Appendix §A)

s(∆z, z∆θ) ≈ c

H0

x(z)
√

(∆z)2 + y2(z) (z∆θ)2, (1)

where c is the speed of light, H0 is the Hubble constant, and x(z) and y(z) are functions

which depend on the cosmological model. For the standard concordance model (with the

equation of state for the dark energy ωΛ = −1):

y(z) =
1

z

∫ z

0

dx

√

Ωm(1 + z)3 + ΩΛ

Ωm(1 + x)3 + ΩΛ

, (2)

x(z) =
1

√

Ωm(1 + z)3 + ΩΛ

. (3)

See Appendix A for their dependence in other cosmological models; they are plotted in

Figure 1.

All models have in common that y(0) = 1, but there are already some differences for

low z there are some differences; in Appendix A, we give the limits of z → 0 for y(z). For

high z, the differences are even higher. The possibility of deriving y(z) free of selection

effects, evolution, redshift distortion, etc., would tell us which theoretical model is correct.

Furthermore, note that even assuming the standard model as correct, the derivation

of y(z) would allow us to determine Ωm and ΩΛ. For low z in the concordance model

(Equation (A7)): limz→0 y(z) ≈ 1 + 3
4
Ωmz, so a high–precision measurement of y(z) in the

local universe could give us a direct measurement of Ωm (and consequently ΩΛ, assuming

Ωm + ΩΛ = 1). This measurement of y(z) is possible, as we will see next.
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Fig. 1.— Values of the function y(z) for the six cosmological models given in Appendix §A

with the parameters specified in that section.
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2.2. Two-point Correlation Function

As said, the two-point correlation function of a distribution of galaxies (ξ) should

only depend on the comoving distance, r, in the real space for a given redshift, i.e.,

ξ = ξ(r; z). For the redshift-space (s), there is no spherical symmetry because we also

have the redshift-space distortions in the field ξ produced by the peculiar velocities of the

gravitational infall. In the linear regime of fluctuations, assuming ξ(r; z) = A(z)r−γ(z) (this

is an acceptable approximation for scales . 100 h−1Mpc, e.g., Ross et al. 2007; Sylos Labini

et al. 2009; see also Figure 7) with distortion parameter β(z),

ξ(∆z, z∆θ; z) = ξ(r; z)f [µ, β(z), γ(z)], (4)

where µ is the cosine of the angle between s =
√

s2⊥ + s2‖ and s‖ = c
H0

x(z)∆z;

s⊥ = c
H0

x(z)y(z)z∆θ; and the function f is (Matsubara & Suto 1996):

f(µ, β, γ) = 1 +
2(1− γµ2)

3− γ
β +

3− 6γµ2 + γ(2 + γ)µ4

(3− γ)(5− γ)
β2. (5)

Hence, in polar coordinates R =
√

(∆z)2 + (z∆θ)2, α = cos−1
(

∆z
R

)

:

ξ(R, α; z) = K(z)R−γ(z)(cos2 α + y2(z) sin2 α)−γ(z)/2 (6)

×f [µ, β(z), γ(z)],

µ =
1

√

1 + y2(z) tan2 α
,

where K(z) stands for certain amplitude.

Note that we do not use ξ(s⊥, s‖), like most of the references that talk about the

anisotropic two-point correlation function, because we are not assuming any cosmology a

priori. The advantage of the expression in Equation (6) is that it relates an observable

function totally free of any modeling to the cosmology implicit in the values of y(z), and

the redshift-space distortions implicit in β(z). If we wanted to calculate ξ(s⊥, s‖), we
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would have to obtain s⊥ and s‖ using a given cosmological model and change/rescale this

calculation every time we wanted to test another model.

In Figure 2, the effect of the redshift distortion is illustrated. If we had no redshift

distortions (β = 0 ⇒ f = 1), ξ(∆z, z∆θ; z) would not depend on µ and, for a fixed z, when

we plotted ξ in the plane of z∆θ, ∆z, the isocontours would be ellipses with axial ratios

y(z) of the second/first axes (Figure 2c). For the general case, we must consider redshift

distortions. The parameter β(z) takes into account, as said, the large-scale effects of

linear z-space distortions (Hamilton 1998). Usually, in a standard scenario, it is related to

cosmological information as β(z) ≈ Ωm(z)0.6

b(z)
(Kaiser 1987), where b(z) is the bias parameter,

but here, in general and for any cosmological scenario, β will be simply a parameter

from which we will not extract any further information. We must be aware that Kaiser’s

formalism was developed for the standard cosmology including expansion; however, this

remains valid for any model, provided that the meaning of β is changed. In general, it is

valid when the gravitational infall is given such that ∇~v = −βδ, where ~v is the velocity

field and δ the matter overdensity (in the linear regime); this yields even for a static

universe. The continuity and Euler equation remain the same thing in all models, but the

Poisson equation changes with the gravitational model as well as the evolution of the linear

growth of overdensities, thus giving rise to different equivalences of β with the cosmological

parameters.

The small-scale random motion of the galaxies should also be included in an analysis

with small bin size: we should convolve Equation (6) with a Gaussian distribution of ∆z

(e.g., Ross et al. 2007, Section 4.2) to get the correct ξ(∆z, z∆θ; z); however, we will neglect

this correction since the dispersion of velocities is 〈ωz〉1/2 ≈ 300 km s−1 (Ross et al. 2007),

equivalent to ∆z ≈ 0.001, which is much smaller than our bin sizes. The low values of ∆θ

in which the features known as the “fingers of God” (Jackson 1972) are observed are not



– 10 –

explored here.

Obtaining y(z) for different values of z and comparing it with theoretical predictions of

different cosmological models (Figure 1), perhaps allowing for some variation of Ωm instead

of a fixed value, is theoretically a good way to constrain cosmology. Nonetheless, a difficulty

arises from the quasi-degeneracy between the variations of y(z) and β(z), i.e. between

geometric and dynamic distortions, respectively. The range of possible cosmological models

compatible with the data for some free β is too large (e.g., Ross et al. 2007), thus making

it difficult to disentangle geometric and dynamic distortions. There are some methods to

obtain β(z) from ξ (e.g., Hamilton 1992, 1998; Tocchini-Valentini et al. 2012) or from 〈|µ|〉

in a sample of galaxies (Patiri et al. 2012), but they depend on y(z). Nonetheless, there are

ways to attack the problem. Some approaches to our problem try to fit β for the different

cosmological models [that is, fixing y(z)] and adopt as valid cosmological the one which

gives better fit to the function ξ (e.g., Marulli et al. 2012).

Here we carry out something similar: a weighted fit, but as a function of ∆z and z∆θ,

instead of s‖ and s⊥, and, in order to solve better the quasi-degeneracy of β and y, we

set a constraint for β to follow ξ(s, µ = 1) = K(z)R−γ(z)f(µ = 1, β, γ)—an amount which

is independent of y. We exclude from the fit the pixel (1,1), because it contains higher

nonlinear effects of the correlation and errors from binning. In practice, instead of taking

strictly µ = 1 (equivalent to z∆θ = 0), we take z∆θ = 0.00125, i.e., the first column (for

the galaxies’ samples). The effect of random velocities or the “finger of God” is negligible

in the calculation of this last quantity for our bin sizes of ∆(∆z) = 0.0025 (for the galaxies’

samples): numerical calculations give errors of ∼ 3% in ξ(s, µ = 1) with respect to the

inclusion of velocity dispersions in ∆z with a Gaussian distribution of σ ∼ 0.001, which is

negligible in comparison with other sources of errors. If we obtained β < 0, we would set

β = 0 and recalculate the error bar to get 68% probability in the range β ≥ 0 within 1σ.
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Fig. 2.— Function log10 ξ(∆z, z∆θ) for a model with γ = 2 and y = 1.1 for three different

values of the redshift distortion: (a) β = 0.3, (b) β = 0.15, (c) β = 0. The amplitudes are

arbitrary; the contour step is 0.2 dex. Pixels are binned at 0.004× 0.004.
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The error bars of γ, y and β are given by the values which produce a χ2 < Min[χ2]+3.5 (the

value of 3.5 defines the region with a 68% confidence level (CL) in a three-free-parameter

fit; Avni 1976). Note that the error bars of β and y should include both the transmitted

errors for a fixed value of γ and the variations of those values due to the variation of γ

within the range of its error bar; we will do so throughout this paper.

Tests have been carried out with Monte Carlo simulations and we could see that we

recover approximately the introduced parameters. For instance, in Figure 3, we show

the recovered values of yinit. versus the introduced values of the fit yfit in a Monte Carlo

simulation. The conditions are γinit. = 1.8, different values of βinit., and noise with relative

rms equal to ∆ξ
ξ
(s) = 0.02√

s/0.0025

1+ξ
ξ

with (∆z)max = (z∆θ)max = 0.02 over an area subdivided

into 8x8 bins of size 0.0025. As can be observed, we recover roughly the value of y plus

some noise.

Many authors have already realized on the advantages of using the anisotropic

correlation function to measure the ratio of observed angular size to radial/redshift size and

applied it as a possible way to constrain cosmological models. It was analyzed in Ballinger

et al. (1996), Marulli et al. (2012), Phillips (1994) for quasar pairs, Ryden (1995) for

voids, Kim & Croft (2007) for clusters, and Nusser (2005) for radio emission in the epoch

of reionization, among others. It was applied to real data of several surveys with galaxies

(Blake et al. 2011), luminous red galaxies (Ross et al. 2007; Okumura et al. 2008; Chuang

& Wang 2012; Reid et al. 2012), Lyman-break galaxies (Da Ângela et al. 2005b), QSOs

(Hoyle et al. 2002; Outram et al. 2004; Da Ângela et al. 2005a; Ivashchenko et al. 2010),

galaxy pairs (Marinoni & Buzzi 2010), cross-correlation of QSOs and luminous red galaxies

(Mountrichas et al. 2009a), cross-correlation of galaxies and cluster of galaxies (Mountrichas

et al. 2009b), and voids (Sutter et al. 2012), among others. Most of these authors analyzed

the correlation on small scales (. 50 h1Mpc) and very few of them (Okumura et al. 2008;
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ξ
(s) = 0.02√

s/0.0025

1+ξ
ξ
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Chuang & Wang 2012) use larger scales.

3. Calculation of the anisotropic two-point correlation function

Let us suppose we have a survey completely covering some area with some homogeneous

criterion. The method to calculate the anisotropic two-point correlation function is as

follows. We generate another mock survey in the same area with a random (Poisson)

distribution of galaxies and with the same distribution of redshifts as the data. Then we use

a generalization of the Landy & Szalay (1993) algorithm to get the anisotropic two-point

correlation function,

ξ(∆z, z∆θ; z) = 1 +
DD(∆z, z∆θ; z)

fRRRR(∆z, z∆θ; z)
(7)

−fDRDR(∆z, z∆θ; z)

fRRRR(∆z, z∆θ; z)
− fRDRD(∆z, z∆θ; z)

fRRRR(∆z, z∆θ; z)
,

where DD, RR, DR and RD are the number of data–data, random–random, data–

random and random–data pairs, and fXY denotes their normalization to data–data, i.e.,

fXYXY =
ND,1(ND−1)

NX,1(NY −1)
XY ; ND and NR are the total number of sources in the data and

in the random sample; ND,1 and NR,1 are the total number of sources in the data and in

the random sample which contribute as first object in the pair for a given z (within some

interval of redshifts). Notice that ND,1 < ND and NR,1 < NR because we remove as first

object of the pair the sources which are within a lower angle θmax(z) distance from a border

of the survey . Consequently, DR is slightly different from RD: the parent galaxies (the first

character D or R) are limited to a zone away from the borders of the selected area, whereas

the second character includes all the galaxies of the catalog within a given distance from

the parent source. In our case, we take a number of random points equal to the number of

sources in the data. However, the result of the algorithm is independent of that number,
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provided that it is at least as large as the number of data points (Sylos Labini et al. 2009)

and it is high enough to avoid the production of further noise due to sampling errors. The

relative error of (1 + ξ) is equal to the inverse of the root square of the number of pairs

(Betancort-Rijo 1991; Ross et al. 2007) but, since we manage a huge number of pairs both

in the real data and in the random sample, this error is small in comparison to other errors.

This number must not be very high in order to have a reasonable computation time to

calculate the number of pairs. Other estimators of the two-point correlation function give

very similar results even at large scales (e.g., Landy & Szalay 1993; Porciani & Norberg

2006; Ross et al. 2007; Sylos Labini et al. 2009).

The error of ξ(∆z, z∆θ; z) is evaluated through a field-to-field method (Ross et al.

2007, Section 2.4):

σξ =

√

√

√

√

1

Nf − 1

Nf
∑

i=1

DRi

DR
[ξi − ξ]2, (8)

where Nf is the total number of subsamples (fields), and the index i indicates the statistics

within the subsample i. In our case, we take by default Nf = 10, dividing the covered

region of the sky into 10 subregions.

Although Landy & Szalay (1993) claim that the error given by their estimator should

be nearly Poissonian, the Poissonian error significantly underestimates the total error at

large distances (Ross et al. 2007, Section 2.4). The jackknife or bootstrap methods provide

errors of the same order (Ross et al. 2007, Section 2.4); however, if there were important

large-scale variations of the correlation, the jackknife or bootstrap algorithms would

underestimate the total rms measured in the field-to-field algorithm (López-Corredoira et

al. 2010). For point distributions, there is a component of the total error that is caused

by the finiteness of the number of points (Betancort-Rijo 1991) and is closely related to

that given by the resampling techniques such as jackknife or bootstrap. The field-to-field

fluctuations also include intrinsic fluctuations in the large-scale structure of galaxies. This
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technique of field-to-field is equivalent to carrying out several independent realizations, one

for each of the subsamples in which is divided the whole, equivalent to analyzing the rms in

multiple mock catalogs generated randomly, with the advantage that here we can be pretty

sure that the generated subsamples obey perfectly the statistical distribution of the real sky

since they are part of the whole real sky, whereas mock catalogs may depend on how the

algorithm generates the samples.

One may wonder whether the correlations between the different subsamples can

change the rms of Equation (8) with respect to the real one, i.e., whether the terms of the

covariance matrix are significant. The answer is that this effect is negligible provided that

4
π3∆θ ≪ 1 (see Appendix B), which is true in our case.

Therefore, the field-to-field algorithm seems an approximate method to take all the

errors into account in a simple and direct way.

3.1. Application to samples with mean density depending on redshift

Using all available galaxies in a catalog would be better in order to gain higher

signal-to-noise in the statistics, provided that the criterion of selection of sources does

not vary with the position. In principle, this is possible for cosmological purposes, since

cosmological parameters are totally independent of the evolution of galaxies or their

clustering. The function y(z) will only depend on the cosmological model. Also, y(z) does

not depend on the kind of sources examined or the wavelength; we can even mix different

types for different z without k-corrections, so the selection effects (Malmquist bias and

others) will not have any influence on the result. In a limiting-magnitude survey covering

some area, we will have more luminous sources at higher redshifts, different observed

“at-rest” wavelengths, etc., but it does not matter in the measurement of the geometry of
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the universe. Nonetheless, one must take into account the effect of a variable 〈ρ〉(z) in the

calculation of the two-point correlation function.

If the maximum comoving radius, s, were very small, and the galaxies within a sphere of

radius smax were similar in their properties, ξ might be calculated as usual in a homogeneous

space. But in our case, we must consider some effect of variation for larger s due to the

variability of 〈ρ〉(z) within the considered effects, mainly because of the Malmquist bias.

This variability of the mean density produces a contribution to the two-point correlation

function, which must be subtracted in order to see only the contribution from the clustering

of galaxies. This correction is

ξcorrected(∆z, z∆θ; z) = −1 +
1 + ξ(∆z, z∆θ; z)

1 + ξ0(∆z, z∆θ; z)
, (9)

where ξ is the measured correlation, and ξ0 is the correlation given by a random (i.e.,

uncorrelated, locally Poisson) distribution of sources within a field 〈ρ〉(z). In Appendix C,

we demonstrate that, neglecting terms of (∆z)n with n ≥ 4,

ξ0(∆z, z∆θ; z) ≈ 1

2

ρ′′(z)

ρ(z)
(∆z)2. (10)

This correction will be applied to our calculations.

4. Application of the method to the data

4.1. Spectroscopic survey of galaxies from SDSS-III/BOSS

The Sloan Digital Sky Survey III (SDSS-III)/Baryon Oscillation Spectroscopic Survey

(BOSS; Eisenstein et al. 2011; Ahn et al. 2012; Bolton et al. 2012; Smee et al. 2013;

Dawson et al. 2013) will target, when finished, 1.5 million galaxies in ten thousand square

degrees, i < 19.9, selected in color–magnitude space to be high-luminosity systems at
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large distances. The selection criteria are the union of two cuts designed to select targets

in two different redshift intervals. Cut I, aimed at the interval 0.2 < z < 0.4, is defined

by r < 13.6 + c||/0.3, |c⊥| < 0.2, and 16 < r < 19.5. Cut II, aimed at redshift z > 0.4,

is defined by d⊥ > 0.55, i < 19.86 + 1.6 × (d⊥ − 0.8), and 17.5 < i < 19.9, where the

colors c||, c⊥, and d⊥ are defined to track a stellar population passively evolving with

redshift: c|| = 0.7 × (g − r) + 1.2 × (r − i − 0.18), c⊥ = (r − i) − (g − r)/4 − 0.18, and

d⊥ = (r − i) − (g − r)/8. These selection criteria produce a roughly constant comoving

space density 3 × 10−4 h3Mpc−3 to z = 0.6 with a slight peak at z ≈ 0.55 followed by a

declining space density to z ≈ 0.8. The average accuracy in the redshift determination of

these sources is ∆z ≈ 0.00013 (Dawson et al. 2013). The survey has started in the fall

of 2009 and is planned to be finished in approximately 2014 July. At present, we use the

BOSS Data Release 10 version 5 to do statistical analyses of large-scale structure (Anderson

et al. 2012) with uniform coverage. Some masks were applied to avoid regions with some

saturated sources or low completeness (Anderson et al. 2012). This subsample contains

830,089 galaxies.

In this sample, we use the galaxies within 0.13 ≤ z ≤ 0.77 (793,573 galaxies). Given

the considerations in Section 3.1, we do not need a homogeneous sample with respect to

the variation in z. Some Malmquist bias is expected to be introduced, even if the sources

were selected to be kept almost constant for some range of redshifts, but our procedure

can use samples with variable 〈ρ〉(z). Nonetheless, in order to assure homogeneity in the

angular scale and avoid border effects, we select as first object in pairs which contribute

to the two-point correlation function only those of them whose circles of angular radii

θmax = 0.02/z radians are totally covered; indeed, for more security, we require them to be

totally covered within a distance of θmax + 0◦.3 in the SDSS sample. Thus, the number of

parent galaxies (first one of the galaxies in a pair for the correlation calculation) is 456,451.

These are divided into three redshift bins, as is described in Table 1.
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We also take into account that the minimum separation between fibers is sep= 62′′ =

3.0 × 10−4 radians, so we must add 1
2
sep z to the value of the mean z∆θ for the lowest θ

bin, which is negligible in our scales.

Previous analyses of the anisotropic correlation function with previous releases of

BOSS data were also carried out by White et al. (2011) and Reid et al. (2012), although

with different scales, methods and purposes from the present paper.
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Table 1: Values of y, β, and γ Obtained from Our Data. First three rows correspond to galaxies from BOSS, the

following two rows correspond to QSOs from SDSS-II, and the last two rows correspond to QSOs from BOSS. χ2
red.

corresponds to the reduced chi-square of the fit in the 8x8 pixels excluding the pixel (1,1).

Redshift range (∆z)max = (z∆θ)max # parent sources 〈z〉 χ2
red. γ β y

[0.15− 0.35) 0.02 50725 0.289 0.44 1.50± 0.07 0.25± 0.21 1.12± 0.27

[0.35− 0.55) 0.02 240745 0.476 10.1 1.98± 0.07 0.17± 0.10 1.26± 0.23

[0.55− 0.75) 0.02 177150 0.615 2.93 2.06± 0.06 0.13± 0.10 1.14± 0.20

[0.75− 1.75) 0.08 23972 1.298 0.72 0.54± 0.12 0+0.46
−0 1.40± 1.03

[1.75− 2.75) 0.08 12169 2.056 0.75 0.60± 0.14 0+0.34
−0 5.80± 3.72

[2.00− 2.75) 0.08 20936 2.436 0.91 0.62± 0.12 0+0.60
−0 1.88± 1.13

[2.75− 3.50) 0.08 10305 3.056 0.42 0.50± 0.12 0+0.49
−0 7.06± 9.80
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4.2. Spectroscopic surveys of QSOs from SDSS-II and SDSS-III/BOSS

We also use two catalogs of QSOs, both from the SDSS-III/BOSS and SDSS-II,

respectively. The first one is deeper but more constrained in area and redshift range, so the

application to SDSS-II QSOs is interesting too.

The SDSS-II quasar catalog (DR7 quasar catalog; Schneider et al. 2010) contains

105,783 spectroscopically confirmed quasars. The catalog consists of the SDSS1 objects

that have luminosities larger than Mi = −22.0 (in a cosmology with H0 = 70 km s−1Mpc−1,

Ωm = 0.3, and ΩΛ = 0.7), and have at least one emission line with FWHM larger than 1000

km s−1 or have interesting/complex absorption features; they are fainter than i > 15.0. The

catalog covers an area of 9380 deg2. The quasar redshifts range from 0.065 to 5.46, with a

median value of 1.49, and typical quoted redshift errors of ≈ 0.004. The catalog was created

by inspecting all spectra that were either targeted as quasar candidates or classified as a

quasar by the spectroscopic pipelines, so it provides the most reliable classifications and

redshifts of SDSS quasars. We select the sources with the flag “UNIFORM TARGET=1”,

which constitutes a statistical sample appropriate for clustering studies: 59,514 sources.

We only use the galaxies within 0.67 ≤ z ≤ 2.83. From these, we select the parent sources

whose surrounding area is totally covered within a radius of θmax = 5.2 × 10−4 + 0.08/z

radians; thus the number of parent QSOs is 36,141. These are divided into two redshift

bins, as is described in Table 1. We also take into account that the minimum separation

between fibers is sep= 55′′ = 2.7 × 10−4 radians, so we must add 1
2
sep z to the value of

the mean z∆θ for the lowest θ bin, which is negligible in our scales. Previous analyses

of the anisotropic correlation function with previous releases of SDSS-II QSO data were

also carried out by Ivashchenko et al. (2010), although with different scales, methods, and

1Details on the general characteristics of the SDSS survey, its telescope, camera, and

others, can be found in Gunn et al. (1998, 2006) and York et al. (2000).
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purposes of the present paper.

The SDSS-III/BOSS quasar catalog (Pâris et al. 2012) includes all BOSS objects that

were targeted as quasar candidates during the survey, are spectrocospically confirmed as

quasars via visual inspection, have luminosities Mi[z = 2] < −20.5 (in a ΛCDM cosmology

with H0 = 70 km s−1Mpc−1, Ωm=0.3, and ΩΛ= 0.7), and either display at least one

emission line with a FWHM larger than 500 km s−1 or, if not, have interesting/complex

absorption features. Their redshifts were checked by a visual inspection, which provides a

reliable and secure redshift estimate for each quasar, with a minimum error of ≈ 0.0017.

The average error in the redshift determination of the sources is ≈ 0.003(1 + z) (White et

al. 2012). Around 10% of QSOs were included in the spectroscopic catalog of SDSS-II and

90% are new, so we can consider its results to be almost independent from SDSS-II results.

The number of quasars with z ≥ 2.15 is much higher than in SDSS-II, so this survey has

the advantage of allowing a better exploration of high-redshift large-scale structure. At

present, we use the version DR10Q alpha 3 (Pâris et al. 2013). We select the point-like

objects with SPECPRIMARY=1 that belong to the uniform QSO CORE MAIN sample,

thus providing a statistical sample appropriate for clustering studies (White et al. 2012).

The total number of QSOs is 80,380. We use only the sources within 1.92 ≤ z ≤ 3.58.

From these, we use as parent sources those QSOs that are totally covered within a radius

θmax = 5.2×10−4+0.08/z radians and have a pipeline redshift equal to the visual inspection

redshift within 3-σ; thus the number of parent QSOs is 31,241. These are divided into

two redshift bins, as described in Table 1. Again, we take into account that the minimum

separation between fibers is sep=62”, as explained previously.
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4.3. Two-point correlation functions and parameters obtained from them

The application of the Landy & Szalay algorithm to our SDSS-III/BOSS galaxies

gives the anisotropic two-point correlation function that is shown in Figure 4 for different

redshift ranges of width 0.2 for (∆z)max = (z∆θ)max = 0.02; this is equivalent to 45.8 and

52.9 h−1Mpc along the line-of-sight and perpendicular directions, respectively, at z = 0.5

(assuming a standard concordance model with Ωm = 0.3). For the QSOs of SDSS-II or

BOSS, whose two-point correlation functions are plotted in Figures 5 and 6, we take a larger

scale because there are very few QSOs with small distances and also the redshift errors are

larger. Here we use bins in redshift of width 0.75 and (∆z)max = (z∆θ)max = 0.08, which

is equivalent to 80.8 and 145.0 h−1Mpc along the line-of-sight and perpendicular directions

respectively at z = 2.0 (assuming a standard concordance model with Ωm = 0.3). The

values of the reduced chi-Square of the fit, χ2
red., given in Table 1, correspond to the 8x8

pixel analysis excluding the pixel (1,1); i.e., in 63 pixels and with three degrees of freedom.

In Figure 7, we plot the average isotropic two-point correlation functions, ξ0(s) ≡
∫ 1

0
dµ ξ(s, µ), assuming the standard concordance model (model 1 of Appendix A) and the

values of y given by Table 1. As can be observed in this log–log plot, the functions are well

represented by straight lines within the error bars, which means that the assumption of a

power law for the two-point correlation function is approximately correct. The minimum

scale used for the fits is the pixel size, which is in all cases 1
8
(∆z)max. We exclude the

data in the fifth and the seventh rows of Table 1 because their y values are very large;

consequently there is a very small range of distances between the minimum s that satisfies

this condition and the maximum s. The average deviation from a power-law fit is ≈ 5%

for the three plots of galaxies, and ≈ 8% for the QSOs. However, the error bars are very

small for the galaxy samples (smaller than 0.01 dex in some bins), so we can detect in them

a significant departure from a power law. The respective χ2
red for the five weighted linear
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fits in the log–log of ξ0(s) given in Figure 7 are 3.6, 14.5, and 7.4 for the three sets with

galaxies and 0.84 and 0.40 for the two sets with QSOs. Certainly, the first three fits for the

galaxies are much worse whereas plots of the quasars (the last two) have an acceptable fit

with a power-law. Nonetheless, this must not confuse the reader: while the log–log fits of

the galaxies present smaller deviations (∼ 5%), they produce very high χ2
red values when

combined with the ∼ 1% error bars. Some slight deviations from a power-law behavior are

indeed expected (e.g., Zehavi et al. 2004, although for smaller scales) but their effects are

small in comparison with other sources of error in our analysis.

Reid et al. (2012) published the correlation function for BOSS galaxies at z = 0.57

with similar values of the amplitude to those we obtained in Figure 4/down (with average

z = 0.615). Reid et al. (2012) gave an amplitude of s2ξ0(s) ≈ 110 for s = 25 h−1 Mpc

and s2ξ0(s) ≈ 90 for s = 40 h−1 Mpc, whereas we obtain (for the standard cosmology)

s2ξ0(s) ≈ 100 for s = 25 h−1 Mpc and s2ξ0(s) ≈ 88 for s = 40 h−1 Mpc.

When we apply the method described in Section 2.2 to these correlation functions, we

get the values of γ, β, and y that are listed in Table 1 and plotted in Figure 8. The values

of γ are lower for QSOs because they are observed at larger scales. The values of β we

obtained for the first two bins with BOSS/galaxies are roughly compatible with previous

values in the literature (β ≈ 0.3), whereas the third bin (β(z = 0.615) = 0.13 ± 0.10)

gives a significantly smaller value than, e.g., β(low z) = 0.52 ± 0.26 (Hamilton 1998),

β(z = 0.55) = 0.40 ± 0.05 (Ross et al. 2007), and β(z = 0.57) = 0.34 ± 0.03 (Reid et al.

2012). If this were confirmed, it could mean that there is a conspicuous increase of the bias

with z for z > 0.5, while Ωm(z) does not change too much (in the interpretation of the

standard cosmology). But it is also possible that this result is a ∼ 2σ statistical negative

fluctuation and the value of β(z = 0.615) ≈ 0.3 is most likely the appropriate one.
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5. Fits of the cosmological models

We have obtained y(z) in the previous section (Table 1). In Table 2, we add the

values of y(z) obtained directly or indirectly from the previous literature. That is, either

the authors of these references have derived y(z), or they have calculated Ωm(z) assuming

the standard model and we calculate its equivalent y(z) through Equation (2). We have

used only the literature in which we know there is an explicit calculation of y(z) or Ωm(z)

without making any a priori assumption on the redshift distortions and in which only

the Alcock–Paczyński method was used to derive them, without any further information

obtained through other sources of cosmological data. For instance, we have not used the

very accurate measurement of Ωm(z) by Okumura et al. (2008), because it was derived

by marginalizing the dependence with σ8 and the bias b. As another example, we have

taken the value of Ωm from Ross et al. (2007) described their Section 4.3, which was

derived only with the Alcock–Paczyński method, and not from their Section 4.4, where they

introduce further constraints from assumptions in the clustering evolution on the standard

model. From Da Ângela et al. (2005b), we take their result without constraints from

linear evolution of density fluctuation. Note that, in general, our error bars (Table 1) are

significantly higher than those from the literature (Table 2); the reason is possibly a more

conservative account in our calculations of the quasi-degeneracy between β and y.

In total, we have the value of y(z) for 18 different redshifts. We assume that the data

are independent; this is not exactly correct because there may be some correlation among

the different catalogs for which the values of y(z) were derived, and there would be a factor

in the covariance matrix which makes the error bars of each pixel not totally independent.

We neglect this factor because the correlation among catalogs is expected to be small given

that each survey is carried out with different selection strategies. Anyway, we do not have

access to all the catalogs of the different authors in Table 2 to test it. Therefore, our values
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Table 2: Values of y Obtained Directly or Indirectly from Ωm (Marked with (*); sSee Expla-

nation in Text) from Different References, Ordered with Increasing Redshifts.

Reference Sources 〈z〉 y

Sutter et al. (2012) Voids 0.05 0.99± 0.05

Sutter et al. (2012) Voids 0.15 1.06± 0.07

Blake et al. (2011) Galaxies 0.22 1.27± 0.18

Sutter et al. (2012) Voids 0.28 1.04± 0.15

Blake et al. (2011) Galaxies 0.41 1.07± 0.17

Ross et al. (2007) Lum. red gals. 0.55 (*) 1.07± 0.12

Blake et al. (2011) Galaxies 0.60 1.13± 0.10

Blake et al. (2011) Galaxies 0.78 1.24± 0.15

Marinoni & Buzzi (2010) Galaxy pairs 0.95 (*) 1.30± 0.40

Outram et al. (2004) QSOs 1.40 (*) 1.50± 0.28

Da Ângela et al. (2005b) Lyman break gals. 3.00 (*) 2.26± 0.40
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for the degrees of freedom will be slightly overestimated, but we accept them as having a

correct order of magnitude.

With these data, we can now calculate the probability of a cosmological model to

fit them among the models given in Appendix A. This is carried out by calculating the

reduced χ2,

χ2
red =

1

N − ν

N
∑

i=1

(

y(zi)− yti
σ[y(zi)]

)2

, (11)

where ν is the number of free parameters, and N is the total number of data points; hence,

the number of freedom degrees is N − ν. In our case, N = 18. In models 2, 5, and 6, there

are no free parameters. In models 1, 3, and 4, we calculate the χ2
red for both the parameters

given in Appendix A (ν = 0) and the following free parameters: Ωm for models 1 and 3; Ωm

and ωΛ for model 1; Ωm and ΩΛ (with the constraint of ΩΛ ≤ 0 in order to keep a universe

with an oscillatory expansion) for model 4. Error bars for free parameters are calculated

according to the Avni (1976) recipe. The results are in Table 3. In this table we also include

the probability that the model is compatible with the data by chance, P = Pχ2 × Pbin,

where Pχ2 is the probability given by the χ2 test, and Pbin is the binomial probability of

having the same as or fewer than the observed m points with y ≤ ymodel, i.e.,

Pbin = 1− 2−N





N−m∗−1
∑

i=m∗+1





N

i







 , (12)

m∗ ≡ Minimum(m,N −m).

The introduction of the probability Pbin is carried out because the χ2 test minimizes the

square differences but it does not take into account the sign of these differences, which

should be accounted for in a calculation of the probability. For instance, the model of

“static, linear Hubble law” with ymodel(z) = 1 ∀ z is within the error bars of most of the

points, but there is only one point (m = 1) with y ≤ ymodel, which is quite unlikely, and this

is reflected by the factor Pbin.
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Table 3: Results of the χ2 Test, Best-fit Free parameters (If Any), and Associated Probability

of the models (See text), Using the N = 18 points of Figure 9

Model ν χ2
red,min Free parameters m Probability

(1.); Ωm = 0.3, ωΛ = −1 0 0.27 — 11 0.48

(1.); ωΛ = −1; Ωm free 1 0.26 Ωm = 0.24+0.10
−0.07 8 0.81

(1.); Ωm, ωΛ free 2 0.27 Ωm = 0.18+0.32
−0.16, ωΛ = −1.2+0.7

−1.3 7 0.48

(2.) 0 1.68 — 15 2.7× 10−4

(3.); Ωm = 0.3 0 1.00 — 15 0.0034

(3.); Ωm free 1 0.73 Ωm = 0+0.05
−0 14 0.024

(4.); Ωm = 1.27, ΩΛ = −0.09 0 1.36 — 14 0.0044

(4.); Ωm, ΩΛ ≤ 0 free 2 1.27 Ωm = 1.22+0.12
−0.08, ΩΛ = 0+0

−0.08 13 0.020

(5.) 0 1.46 — 1 1.4× 10−5

(6.) 0 0.49 — 12 0.23
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Table 4: Results of the χ2 Test, Best-fit Free Parameters (If Any), and Associated Probability

of the Models (See Text) with Only the N = 7 Points Derived in This Paper

Model ν χ2
red,min Free parameters m Probability

(1.); Ωm = 0.3, ωΛ = −1 0 0.25 — 3 0.97

(1.); ωΛ = −1; Ωm free 1 0.29 Ωm = 0.34+0.42
−0.24 3 0.94

(1.); Ωm, ωΛ free 2 0.35 Ωm = 0.31+0.69
−0.30, ωΛ = −1.1+∞

−∞ 3 0.88

(2.) 0 0.53 — 5 0.37

(3.); Ωm = 0.3 0 0.37 — 5 0.42

(3.); Ωm free 1 0.32 Ωm = 0+0.63
−0 4 0.91

(4.); Ωm = 1.27, ΩΛ = −0.09 0 0.46 — 5 0.39

(4.); Ωm, ΩΛ ≤ 0 free 2 0.56 Ωm = 1.26+1.22
−0.48, ΩΛ = 0+0

−0.88 4 0.73

(5.) 0 0.68 — 0 0.011

(6.) 0 0.28 — 3 0.96
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Table 5: Results of the χ2 Test, Best-fit Free Parameter (If Any), and Associated Probability

of the Models (See Text) with Only the N = 11 Points Obtained from the Literature.

Model ν χ2
red,min Free parameters m Probability

(1.); Ωm = 0.3, ωΛ = −1 0 0.27 — 8 0.22

(1.); ωΛ = −1; Ωm free 1 0.29 Ωm = 0.23+0.10
−0.08 5 0.990

(1.); Ωm, ωΛ free 2 0.26 Ωm = 0.16+0.35
−0.14, ωΛ = −1.22+0.74

−1.48 5 0.985

(2.) 0 2.41 — 10 6.3× 10−5

(3.); Ωm = 0.3 0 1.41 — 10 0.0019

(3.); Ωm free 1 0.93 Ωm = 0+0.06
−0 10 0.0059

(4.); Ωm = 1.27, ΩΛ = −0.09 0 2.06 — 9 0.0013

(4.); Ωm, ΩΛ ≤ 0 free 2 1.63 Ωm = 1.20+0.15
−0.05, ΩΛ = 0+0

−0.11 9 0.0026

(5.) 0 1.96 — 1 3.3× 10−4

(6.) 0 0.63 — 9 0.052
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We observe in Table 3 that some χ2
red are much lower than unity for N = 18, more than

would be expected statistically. This indicates two things: (1) the previously mentioned

fact that the 18 points are not totally independent, and (2) the well-known fact that the

scientific community tends to publish results with a dispersion much lower than expected

statistically from the error bars, which means that either the error bars were overestimated,

or there is a bias in the publication of results towards the preferred value (Croft & Dailey

2011). We also find some probabilities which are lower than 0.05 (excluded at a 95% CL)

or even lower than 0.01 (excluded at a 99% CL). In Figure 9, we plot all the values of y(z),

including our values and those ones from the literature, as well as the different cosmological

models. In Tables 4 and 5, we also show the same analysis with the subsamples of data

from our N = 7 points (Table 1) and separately the analysis derived from the N = 11

points from the literature (Table 2). We see that the probabilities are very low for some

cases in the subsamples of 11 points or the whole sample of 18 points; the subsample of 7

points is not conclusive but it shows the same trends in the probabilities, which indicates

that the exclusion of some cosmological models is robust.

6. Discussion and conclusions

The application of the Alcock–Paczyński test using the anisotropic two-point

correlation function was shown here to be a useful tool for discriminating among different

cosmological models without any a priori assumptions. We have seen that the major caveat

is the disentanglement with the redshift distortions produced by the peculiar velocities

of gravitational infall, but it is still possible to separate both effects. The error bars are

large for the determination of the ratio of observed angular size to radial/redshift size,

y(z); however, with large collections of data from many surveys, it is possible to get some

constraints in cosmological models.
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We have applied our method to three surveys within SDSS: galaxies from SDSS-

III/BOSS, and QSOs from both SDSS-II and SDSS-III/BOSS. We have not used the survey

of galaxies from SDSS-II because most of their galaxies are at z . 0.3, and the condition of

completeness within a radius θmax = 0.02/z would reduce enormously the sample of parent

galaxies, producing a result much poorer than with BOSS galaxies. The alternative of

exploring smaller distances in the correlation would alleviate this constraint of completeness

areas; however, it would introduce the problem of the “fingers of God”, which we have not

taken into account here because they are expected to produce a negligible effect at the

scales we were using.

Furthermore, we have used some estimations of y(z) given directly or indirectly by

the literature, leading to the results in Table 3 or in Figure 9. We observe that there are

four cosmological models excluded within > 95% CL: Einstein–de Sitter, open–Friedman

cosmology without dark energy, flat quasi-steady-state cosmology (QSSC), and a static

Universe with a linear Hubble law. Two models fit the data with a higher probability:

concordance cosmology, and static Universe with tired light redshift.

For the standard concordance model (Ω = Ωm + ΩΛ = 1), we have set constraints on

Ωm to produce a better fit to the data; they are: Ωm = 0.24+0.10
−0.07, which is in agreement

with values derived from other independent methods. Note, however, that, since we have

not used any a priori assumptions, neither about the redshift distortion model nor other

constraints including other data, the error bars here are larger than those derived from

other methods—e.g., a recent analysis of CMBR data with Planck gives Ωm = 0.315± 0.017

(Planck collaboration 2013). If we also allow a free value for the equation of state of

the dark energy, ωΛ, instead of a fixed value of -1, we get as a best fit: Ωm = 0.18+0.32
−0.16,

ωΛ = −1.2+0.7
−1.3. Certainly, our method here is not the best one to explore the possible

values of the cosmological parameters once the cosmology is established; this could be much
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improved with further constraints, as Ross et al. (2007) and Okumura et al. (2008) did,

but this was not our goal in this paper. We have focused on a method to test cosmological

models without any a priori assumption.

The QSSC model is excluded at a > 95% CL, but the fit is better (excluded with a

probability of 98.0% instead of 99.56%) with parameters Ωm = 1.22+0.12
−0.08 and ΩΛ = 0+0

−0.08,

which lead to Ωc = 1 − Ωm − ΩΛ = −0.22+0.11
−0.12. This is compatible with the previously

established value for the C-field density of Ωc = −0.18 (Banerjee & Narlikar 1999, with

the angular redshift test) or Ωc = −0.27 (Banerjee et al. 2000, with SNe data). The main

problem with these fitted values is that they lead to the maximum redshift of an observable

galaxy at z ≈ 4.5, and we know there are galaxies beyond that. Anyway, a flat QSSC

appears to have a very low probability to be a valid model according to only the present

analysis. All these considerations are for a flat QSSC universe; if we allowed curvature

(K 6= 0), a wider range of probabilities could be obtained.

The static models are not totally excluded from the present analysis. The one with

a linear Hubble law is excluded, but not the one with tired-light hypothesis to explain

the redshift. This tired-light model is also supported by some other tests, such as the

angular size test (López-Corredoira 2010; LaViolette 2012, §7.4) or differential galaxy

number counts versus magnitude (LaViolette 2012, §7.7). Fitting the Hubble diagram as

(1 + z) = exp
(

k × DL

(1+z)r

)

, with DL being the luminosity distance, is not good with SNe

data using a “simple” tired light assumption (where r = 1/2; the factor (1 + z)1/2 stems

from the fact that the luminosity is proportional to D2
L and is inversely proportional to

(1 + z) due to the redshift without expansion, i.e., without time dilation). However, the fit

is acceptable using a “plasma” tired light redshift (r = 3/2; López-Corredoira 2010), and

it is quite good with gamma-ray bursts even up to z = 8 with a tired-light model of type

r = 1 (Marosi 2013).
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Future spectroscopic surveys with significantly more sources, coverage, and depth,

will be able to improve the present results. In particular, at high redshift we still have

few spectroscopic QSOs, so the error bars are large (see how noisy the correlations are

in Figs. 5, 6). One exception is the point from Da Ângela et al. (2005b) at z = 3.0:

Ωm = 0.35+0.65
−0.22 −→ y = 2.26± 0.40 (Note, however, that, looking at Figure 5 of Da Ângela

et al. (2005b), one could say that Ωm > 1 is quite likely within 1σ, and consequently the

error bars might be somewhat larger). As it can be observed in Figure 1, accurate values

of y at z & 2.5 will be able to discern between the two successful cosmological models in

this paper: ΛCDM (concordance) and static model with tired-light redshift. Also, very

accurate measurements of y at low z would be able to test which one is the correct, since

limz→0 y(z) ≈ 1 + 3
4
Ωmz for the concordance model, whereas limz→0 y(z) ≈ 1 + 1

2
z for the

tired-light one. It is also worth noting that the most important contribution stems from

the already available data from previous analyses of the anisotropic correlation function,

combining the results of six references. The contribution of the data (N = 7) analyzed in

this paper does not change significantly the confidence levels of exclusion of the different

cosmological models because we get higher error bars. Note, however, that we cannot

guarantee that the results of those six references with somewhat lower error bars are

correct. In principle, from the experience developing this paper, the conclusion that comes

up is that the quasi-degeneracy between the values of β and y for the fit of ξ(∆z, z∆θ; z)

is a severe problem which produces huge error bars of y and, consequently, the Alcock &

Paczyński method only becomes powerful when we join the results from different surveys.
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Fig. 4.— Left: log10 ξ(∆z, z∆θ) for the galaxies of SDSS-III/BOSS at different redshift

ranges. Right: best fit of log10 ξ(∆z, z∆θ) with the parameters given in Table 1. Solid lines

stand for null or positive values, whereas dotted lines stand for negative values; the step of

each contour is 0.2 dex. The pixel binning is 0.0025× 0.0025.
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Zehavi, I., Weinberg, D. H., Zheng, Z., et al. 2004, ApJ, 608, 16

A. Values of the functions x(z) and y(z) for different cosmological models

The comoving distance between two sources separated by a relatively small ∆z and ∆θ

(radians) in the redshift space is

s =

√

[

d[dcom(z)]

dz
∆z

]2

+ [(1 + z)mdA(z) ∆θ]2 (A1)

=
c

H0
x(z)

√

(∆z)2 + y2(z) (z∆θ)2,

where dA and dcom are our angular and comoving distances, respectively, from the first

source, m = 1 with expansion or 0 without expansion, and

x(z) ≡ H0

c

d[dcom(z)]

dz
, (A2)

y(z) ≡ H0

c

(1 + z)mdA(z)

z x(z)
, (A3)

with H0 as the Hubble constant, and c as the speed of light.

Here we give these dependences for some cosmological models.

1. Standard concordance model: m = 1,

dcom(z) = (1 + z)dA(z) = (A4)

c

H0

∫ z

0

dx
√

Ωm(1 + x)3 + ΩΛ(1 + x)3(1+ωΛ)
,

where Ωm and ΩΛ are, respectively, the density of matter and dark energy and ωΛ is

the dimensionless number associated with the equation of state of the dark energy.

This manuscript was prepared with the AAS LATEX macros v5.2.
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We assume that these parameters do not vary with z and that the universe is flat,

i.e., Ωm + ΩΛ = 1. Hence,

x(z) =
1

√

Ωm(1 + z)3 + ΩΛ(1 + z)3(1+ωΛ)
, (A5)

y(z) =
1

z

∫ z

0

dx

√

Ωm(1 + z)3 + ΩΛ(1 + z)3(1+ωΛ)

Ωm(1 + x)3 + ΩΛ(1 + x)3(1+ωΛ)
. (A6)

For very low z,

lim
z→0

y(z) ≈ 1 +
1

4
[3Ωm + 3(1 + ωΛ)ΩΛ]z. (A7)

For the standard model, we adopt the values of Ωm = 0.3, ΩΛ = 1 − Ωm = 0.7, and

ωΛ = −1.

2. Einstein–de Sitter model (Equation (A4) with ΩΛ = 0, Ωm = 1, and ωΛ = −1):

m = 1,

dcom(z) = (1 + z)dA(z) =
2c

H0

[

1− 1√
1 + z

]

, (A8)

x(z) =
1

(1 + z)3/2
, (A9)

y(z) =
2

z

[

(1 + z)3/2 − (1 + z)
]

. (A10)

For very low z,

lim
z→0

y(z) ≈ 1 +
3

4
z. (A11)

Although this is not the standard model nowadays, there are some researchers who

still consider it more appropriate than the concordance model (e.g., Vauclair et al.

2003; Blanchard 2006; Andrews 2006). Regarding the compatibility with Type Ia SNe

data, see discussion in López-Corredoira (2010, §5.3).
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3. Friedmann model of negative curvature with Ωm = 0.3 and ΩΛ = 0, which implies a

curvature term ΩK = 1− Ωm = 0.7 (Baryshev & Teerikorpi 2012, §7.4.1): m = 1,

dcom(z) =
c

H0

∫ z

0

dx
√

Ωm(1 + x)3 + ΩK(1 + x)2
, (A12)

dA(z) =
c

(1 + z)H0

√
ΩK

(A13)

× sinh

(

√

ΩK

∫ z

0

dx
√

Ωm(1 + x)3 + ΩK(1 + x)2

)

,

x(z) =
1

√

Ωm(1 + z)3 + ΩK(1 + z)2
, (A14)

y(z) =

√

Ωm(1 + z)3 + ΩK(1 + z)2

z
√
ΩK

(A15)

× sinh

[

√

ΩK

∫ z

0

dx
√

Ωm(1 + x)3 + ΩK(1 + x)2

]

.

For very low z,

lim
z→0

y(z) ≈ 1 +
1

4
(3Ωm + 2ΩK)z. (A16)

This model might be considered for the case where we accept that Ωm ≈ 0.3, but we

do not want to include any Λ term.

4. Quasi-steady state cosmology (QSSC), Ωm = 1.27, 0 ≥ ΩΛ = −0.09, and

Ωc = 1− Ωm − ΩΛ = −0.18 (C-field density; Banerjee & Narlikar 1999): m = 1,

dcom(z) = (1 + z)dA(z) =
c

H0(1 + z)
(A17)

×
∫ z

0

dx
√

Ωc(1 + x)4 + Ωm(1 + x)3 + ΩΛ

,

x(z) =
1

√

Ωc(1 + z)4 + Ωm(1 + z)3 + ΩΛ

, (A18)

y(z) =
1

z

∫ z

0

dx

√

Ωc(1 + z)4 + Ωm(1 + z)3 + ΩΛ

Ωc(1 + x)4 + Ωm(1 + x)3 + ΩΛ
. (A19)
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For very low z,

lim
z→0

y(z) ≈ 1 +
1

4
(4Ωc + 3Ωm)z. (A20)

This cosmology is not the standard model, but it can also fit many data on some

cosmological tests (Banerjee & Narlikar 1999; Banerjee et al. 2000; Narlikar et al.

2002; Vishwakarma 2002). The expansion with an oscillatory term gives a dependence

of the luminosity and angular distance similar to the standard model, adding the

effect of matter creation (C-field) with slight changes depending on the parameters.

The parameters of this cosmology are not as well constrained as those in the standard

model. Here, I use the best fit for a flat (K = 0) cosmology given by Banerjee &

Narlikar (1999): Ωm = 1.27, ΩΛ = −0.09, and Ωc = −0.18, which corresponds to

η = 0.887 (amplitude of the oscillation relative to 1), x0 = 0.797 (ratio between the

actual size of the universe and the average size in the present oscillation), and the

maximum allowed redshift of a galaxy zmax = 6.05 (Note, however, that the maximum

observed redshift has risen above 8 nowadays according to some authors, e.g., Lehnert

et al. 2010). Other preferred sets of parameters give results that are close. The values

most used are K = 0, ΩΛ = −0.36, η = 0.811, and zmax = 5 (Banerjee et al. 2000;

Narlikar et al. 2002; Vishwakarma 2002; Narlikar et al. 2007), which imply Ωm = 1.63

and Ωc = −0.27, but I avoid them because they do not allow galaxies to be fitted with

z > 5. Parameters with a curvature different from zero (K 6= 0) also give results that

are very close in the angular size test (Banerjee & Narlikar 1999).

5. Static Euclidean model with linear Hubble law for all redshifts: m = 0,

dcom(z) = dA(z) =
c

H0
z, (A21)

x(z) = 1, (A22)

y(z) = 1. (A23)
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These simple relations indicate that redshift is always proportional to angular

distance, i.e., a Hubble law. We assume in this scenario that the universe is static.

The caveat is to explain the mechanism as different from the expansion or the Doppler

effect, which gives rise to the redshift. This cosmological model is not a solution that

has been explored theoretically or mathematically. However, from a phenomenological

point of view, we can consider this relationship between distance and redshift as an

ad hoc extrapolation from the observed dependence on the low-redshift universe.

6. Tired-light static Euclidean model: m = 0,

dcom(z) = dA(z) =
c

H0
ln(1 + z), (A24)

x(z) =
1

(1 + z)
, (A25)

y(z) = ln(1 + z)

[

1 +
1

z

]

. (A26)

For very low z,

lim
z→0

y(z) ≈ 1 +
1

2
z. (A27)

This is again a possible ad hoc phenomenological representation which stems from

considering that the photons lose energy along their paths due to some interaction,

and the relative loss of energy is proportional to the length of that path (e.g.

LaViolette 1986; Brynjolfsson 2004a, Section 5.8; Ashmore 2011; LaViolette 2012,

Section 7.3), i.e., dE
dr

= −H0

c
E.
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α
x

∆θ

L

H

Fig. 10.— Graphical representation of two adjacent rectangular regions for which we want

to calculate the probability of having pairs of objects separated by an angular distance ∆θ

with one of them in each region.

B. Common pairs in two adjacent subsamples for the calculation of the

Two-point correlation function

Given two rectangular adjacent regions where we want to calculate the two-point

correlation function of parent objects embedded in each region within an angular distance

∆θ, we want to calculate the number of common pairs in both subsamples. Both regions

have a width, L, and height, H , and they are in contact through the vertical divisory line, as

shown in Figure 10. Given any parent source in the left box at any height with completely
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covered circle, the probability that the second object of the pair within an angular distance

∆θ is in the right box is:

P =
1

L

∫ ∆θ

0

dx f(x), (B1)

where f(x) is the fraction of the circle in the right box, according to Figure 10:

f(x) =
α

π
, (B2)

cosα =
x

∆θ
.

Hence,

P =
1

πL

∫ ∆θ

0

dx cos−1
( x

∆θ

)

=
∆θ

πL
. (B3)

Therefore, the number of common pairs separated by an angular distance ∆θ is ∆θ
πL

.

This gives us the degree of dependence of the calculation of the two-point correlation

function in both adjacent subsamples.

If we took the horizontal direction as the right ascension and the vertical direction

as the declination (as will be done in this paper), and the whole sky is divided into Nf

subsamples, each pair of adjacent subsamples would have an average ∆R.A = 2π
Nf

. The

subregions would not be rectangular but slices of constant R.A. width; this can be translated

into an average 〈L〉 = (∆R.A.)π
4
(π/4 stems from

∫ π/2
0

dδ cos2 δ
∫ π/2
0

dδ cos δ
). Thus, the average number

of common pairs in adjacent regions would be

P ∼ 2Nf∆θ

π3
. (B4)

For ∆θ < L, there are only common pairs among the adjacent subsamples, not with

the regions that are not in contact; therefore if we select two random subsamples, the

probability of a pair to have a common pair in both subsamples is P multiplied by a factor

2
Nf−1

(2 is the number of adjacent regions, and Nf − 1 are the total number of subsamples

except the first selected one). We neglect the pairs near the polar caps, which are very few
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in comparison with the rest of the pairs; in the application of the present paper, there are

no SDSS galaxies near the polar cap so their contribution is almost null. Therefore, the

degree of correlation among subsamples (which would generate some terms in the covariance

matrix) is roughly (we approximate Nf − 1 ≈ Nf for high values of Nf )

P ∼ 4

π3
∆θ, (B5)

an amount which is much lower than the one for low ∆θ; it can be considered negligible

(P . 0.05) for ∆θ . 20◦.

C. Two-point correlation function of a random distribution with mean density

variable with redshift

From the definition, a Poisson distribution of sources with constant mean density in

the space gives a null two-point correlation function. But if there is some variation of the

mean density with redshift, even locally preserving the random/Poisson distribution of

sources, it will give a non-null contribution:

ξ0(∆z, z∆θ; z) =
1

2

∑

m=−1,1

[〈ρ(z)ρ(z +m∆z)〉
〈ρ(z)〉2 − 1

]

. (C1)

Using a Taylor series,

ρ(z +m∆z) = ρ(z) (C2)

×
[

1 +m
ρ′(z)

ρ(z)
(∆z) +

m2

2

ρ′′(z)

ρ(z)
(∆z)2 +O[(m∆z)3]

]

,

we get

ξ0(∆z, z∆θ; z) =
1

2

ρ′′(z)

ρ(z)
(∆z)2 +O[(∆z)4] (C3)

For the isotropic case,

ξ0(r; z) =
1

2

∫ π

0

dθ sin θ

[〈ρ(z)ρ(z + r cos θ)〉
〈ρ(z)〉2 − 1

]

. (C4)
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Substituting ρ(z + r cos θ) with a Taylor series like above,

ξ0(r; z) =
1

6

ρ′′(z)

ρ(z)
r2 +O[r4]. (C5)


