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Here we analyze the single photon and electron interference experiments. According to Maxwell
equations, the interferences using a Mach-Zehnder or 2-slit Interferometers can be described by a
localized optical or electron wave in one path and non-observable vector and scalar potentials in the
other path. We show we can calculate the single photon and electron interferences without quantum-
superposition states assuming that the states are expressed as the localized optical or electron beam
and the non-observable potentials. From the analysis results, the non-observable potentials can be
identified as an indefinite metric vector with zero probability amplitude. The results insist there
is no concept of quantum-superposition states, which leads to an improved understanding of the
uncertainty principle and resolution of paradox of reduction of the wave packet, elimination of zero-
point energy on average and derivation of spontaneous symmetry breaking without complexity. The
results insist Quantum theory is a kind of statistical physics.

I. INTRODUCTION

Basic concept of the quantum theory is the quantum-
superposition states. Arbitrary states of a system can be
described by pure states which are superposition of eigen-
states of the system. Calculation results by the concept
agree well with experiment. Without the concept, single
photon or electron interference could not be explained.
In addition to the interference, entangle states also could
not be explained.
However the concept leads to the paradox of the reduc-

tion of the wave packet typified by ”Schrödinger’s cat”
and ”Einstein, Podolsky and Rosen (EPR)”. [1, 2]
Although there were a lot of arguments about the para-

doxes, recent paper related to the quantum interferences
convince us of the validity of the concept. For exam-
ple, quantum mechanical superpositions by some exper-
iments have been reviewed. [3] The atom interference
by using Bose-Einstein condensates (BECs) has been re-
ported experimentally and theoretically. [4, 5] The co-
herence length of an electron or electron-electron inter-
ference by using the Aharonov-Bohm oscillations in an
electronic MZI has been discussed theoretically. [6, 7] A
plasmonic modulator utilizing an interference of coher-
ent electron waves through the Aharonov-Bohm effect
has been studied by the author. [8] The entangle states
have been widely discussed experimentally and theoret-
ically. [9–14] The photon interference by using nested
MZIs and vibrate mirrors has been measured and an-
alyzed. [15, 16] The double-slit electron diffraction has
been experimentally demonstrated. [17] According to our
analysis, BECs corresponds to mixed states with coher-
ence rather than pure states. The paper related to the en-
tangle state, interferences by nested MZIs and Aharonov-
Bohmeffect [6–8, 13–16] can not solve the paradoxes.
However, BECs, condensate and bosonization systems
correspond to mixed states with or without coherence
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rather than pure states, and no paper can solve the para-
doxes.

In this paper, we offer a new insight of the single pho-
ton and electron interference that can solve the para-
doxes. According to the new insight, there is no concept
of quantum-superposition and pure states whose proba-
bilities are fundamental sense in nature. Only the con-
cept of mixed states whose probabilities are statistical
sense is valid in nature. The new insight gives us novel
and important results, i,e., improved understanding of
the uncertainty principle non-related to measurements,
elimination of zero-point energy on average without ar-
tificial subtraction, derivation of spontaneous symmetry
breaking without complexity and knowledge that Quan-
tum theory is a kind of statistical physics.

In addition, new insight can conclude that the concept
of entangle state is also not valid in nature though there
have been reported the validity of the concept of entangle
states. [9–14] We will discuss the entangle state by using
the new insight in other letter. [18]

In section II, we show easy example of Gaussian pho-
ton beam to explain that single photon can be described
by substantial (localized) photon and non-observable po-
tentials. In addition, more general description by using
gauge invariance is offered. In section IV, we also show
easy explanation that we should recognize the existence
of the potentials in two-slit electron interference exper-
iment. In section III and V, we show the calculation
of the interferences by using states represent the sub-
stantial photon or electron and the non-observable po-
tentials, which does not require quantum-superposition
states. In section VI, we discuss the paradoxes related to
quantum-superposition states, zero-point energy, sponta-
neous symmetry breaking and general treatment of single
particle interferences. In section VII, we summarize the
findings of this work.

Aharonov and Bohm had pointed out the non-
observable potentials can effect the electron wave inter-
ferences and the effect had been experimentally identified
by Tonomura et. al. [19–21]

The findings has pointed out the non-observable po-
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FIG. 1. Schematic view of MZI. BS:Beam Splitter.

tentials, which can be identified as gauge fields, generate
not only Aharonov-Bohm effect but also single photon,
electron or an arbitrary particle field interferences and
fluctuation of the universe as will be described later in
this paper.

The discussions in this paper are very simple to the
same level as an introductory of quantum theory, because
the quantum theory has a misunderstanding in such a
fundamental concept and nature of nature will be simple.

II. CLASSICAL ELECTROMAGNETIC FIELD
OF MZI - POTENTIALS AND PHOTON

Figure 1 shows schematic view of the Mach-Zehnder
Interferometer (MZI) and coordinate system.

First we examine the input beam. Assume that an x-
polarized optical beam propagates in z-direction with an-
gular frequency ω and propagation constant β, the elec-
tric field E of the optical beam is well localized in the free
space, e.g., the cross section profile of the electric field is
expressed as Gaussian distribution.

Then, the electric field of the optical beam in the input
can be expressed as follows.

E = ex · CE · exp
(
−x

2 + y2

w2
0

)
· cos (ωt− βz) (1)

Where, ex is unit vector parallel to the x-axis. CE is
an arbitrary constant of which squared is proportional to
the field intensity. w0 is the radius of the optical beam.
E and B are expressed by vector and scalar potentials as
follows.

E = − ∂

∂t
A−∇ϕ

B = ∇×A (2)

From (1) and (2), A is expressed by introducing a vector

function C as follows.

A = − 1

ω
ex · CE · exp

(
−x

2 + y2

w2
0

)
· sin (ωt− βz) +C

∂

∂t
C = −∇ϕ (3)

By taking C as an irrotational vector function ∇×C = 0
in order for B to localize in the space, for example, C and
ϕ can be expressed by introducing an arbitrary scalar
function λ as C = ∇λ and ∇

(
∂
∂tλ+ ϕ

)
= 0 respectively.

Then B is expressed as follows

B = ∇×A

=
β

ω
ey · CE · exp

(
−x

2 + y2

w2
0

)
· cos (ωt− βz)

− 2y

ω ·w2
0

ez ·CE ·exp
(
−x

2 + y2

w2
0

)
·sin (ωt− βz) (4)

Therefore, E andB are localized in the free space in the
input. In contrast, the vector and scaler potentials, which
can not be observed alone, are not necessarily localized.

Note that, the Gaussian beam radius will be spatially
expanded due to the free space propagation. However,
the radius of the propagated beam w (z) will be ap-
proximately 10.5mm when the beam with the initial ra-
dius w0 = 10mm propagates z = 100m in free space.

This value can be calculated by w (z) = w0

√
1 +

(
λz
πw2

0

)2

when the wavelength λ = 1µm is applied. Then the spa-
tially expansion of the beam will be negligible small when
the paths of the MZI are less than several tens meters.

The above localized form (1) is one example, other
forms can be employed as follows.

Let examine the following Maxwell equations.

(
∆− 1

c2
∂2

∂t2

)
A−∇

(
∇ ·A+

1

c2
∂ϕ

∂t

)
= −µ0i(

∆− 1

c2
∂2

∂t2

)
ϕ+

∂

∂t

(
∇ ·A+

1

c2
∂ϕ

∂t

)
= − ρ

ε0
(5)

where µ0 is the permeability and ρ is the electric charge
density.

Here, we divide the potentials A, ϕ into localized Al,
ϕl and non-observable Ano, ϕno. Then the equations (5)
can be divided into following equations(

∆− 1

c2
∂2

∂t2

)
Al −∇

(
∇ ·Al +

1

c2
∂ϕl
∂t

)
= −µ0i(

∆− 1

c2
∂2

∂t2

)
ϕl +

∂

∂t

(
∇ ·Al +

1

c2
∂ϕl
∂t

)
= − ρ

ε0
(6)

and(
∆− 1

c2
∂2

∂t2

)
Ano −∇

(
∇ ·Ano +

1

c2
∂ϕno
∂t

)
= 0(

∆− 1

c2
∂2

∂t2

)
ϕno +

∂

∂t

(
∇ ·Ano +

1

c2
∂ϕno
∂t

)
= 0(7)
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When i = 0 and ρ = 0, the equations (6) can express
the localized electromagnetic fields in free space as de-
scribed in the above.
In contrast, the equations (7) are independent of (6).

Note that even if we study a wave packet like optical
beam instead of continuous one in z-axis as (1), non-
observable potentials (7) are independent of the beam
configuration. In addition, even if there are no optical
beam, the non-observable potentials (7) exist. Therefore
the non-observable potentials can eternally populate the
whole of space as waves defined by Maxwell equations,
which propagate at the speed of light. If the Lorentz
condition is applied to (7), the non-observable potentials
can exist in whole space as harmonic oscillators.
(7) expresses the gauge invariance of the localized

electro magnetic field or electron flows and the non-
observable potentials are well-known gauge field intro-
duced by gauge transformation of the second kind.

III. INTERFERENCE OF SINGLE PHOTON

If Maxwell equations are deemed to be classical wave
equations whose electro-magnetic fields obey the super-
position principle, then we can express the electric field
of the interference by the superposition fields (superpo-
sition of divided fields of the input) Eout =

1
2E1 +

1
2E2.

However, we can express the electric field of the
interference without superposition by using the non-
observable potentials as follows.

Eout = − ∂

∂t
Al −∇ϕl −

∂

∂t
Anl −∇ϕnl

= E1 −
∂

∂t
Anl −∇ϕnl (8)

If the non-observable potentials configure the following
electric field, the interference by one side MZI path can
be produced in cooperation with a photon field passes
through path 1.

− ∂

∂t
Anl −∇ϕnl =

1

2
E2 −

1

2
E1 (9)

where subscripts 1 and 2 stand for the MZI path 1 and
2 respectively.
The above discussion is based on classical description.

However, applying the superposition principle to particle
image, e.g., inseparable single photon, leads to quantum
paradoxes. Then we translate the above classical descrip-
tion using the non-observable potentials to quantum de-
scription without paradoxes.
In a quantum mechanical description, the photon in-

terference is calculated by introducing the electric field
operator Ê = 1√

2
â1 exp (iθ)+

1√
2
â2 and the number state

|n⟩ as follows. [22] Where â1or2 is the electric field oper-
ator in path 1 or 2 respectively, θ is the phase difference.

⟨Î⟩ ∝ 1

2
⟨n|â†1â1|n⟩+

1

2
⟨n|â†2â2|n⟩+cos θ⟨n|â†1â2|n⟩ (10)

Where ⟨Î⟩ is expectation value of the field intensity which

is proportional to photon number. â1or2 and â†1or2 are

defined as â = â1+â2√
2

and â† =
â†
1+â†

2√
2

by using the electric

field operators â and â† at the input with ⟨n|â†1â1|n⟩ =
⟨n|â†2â2|n⟩ = ⟨n|â†1â2|n⟩ = 1

2n. When photon number is
one ( n = 1 ), i.e., single photon, the above expectation

value is calculated to be ⟨Î⟩ ∝ 1
4+

1
4+

1
2 cos θ =

1
2+

1
2 cos θ.

In this traditional treatment, the electric field operators
are obtained from quantization of (5) by using Coulomb
gauge under assumption of i = 0 and ρ = 0.

However we can make a different description by us-
ing the concept of the above non-observable potentials
as follows.

Photon number will be proportional to CE squared
in equation (3). In contrast, the non-observable poten-
tials C and ϕ or (7) are not necessarily proportional to
photon number. When there are a large number of pho-
tons, it is reasonable to suppose that half of photons pass
through path 1 and the rest pass through path 2 by law
of large numbers because the probability of ”which path
does each photon select” should be 1

2 . This concept corre-
sponds to mixed state instead of quantum-superposition
state whose probabilities are statistical and fundamental
sense respectively.

However when there are only a few photons, which
correspond to the localized vector potential expressed as
first term of equation (3) is comparable with the non-
observable potentials expressed as the rest terms or (7),
we should consider greater probability that only the lo-
calized vector potential which represent a photon selects
and passes through path 1 and the non-observable po-
tentials pass through path 2. This description can also
be applied to (6) and (7).

According to this description, the operator Ê =

â1 exp (iθ)+â2 with ⟨1|â†1â1|1⟩ = 1 and ⟨1|â†2â2|1⟩ ̸= 1 in-

stead of Ê = 1√
2
â1 exp (iθ) +

1√
2
â2 should be introduced

because the photon passes through only path 1. Note
that â1 is the electric field operator in path 1 obtained
from the traditional quantization as mentioned above us-
ing (6) instead of (5). In contrast, â2 is a purely-formal
operator in path 2 obtained from the traditional quanti-
zation using (7) instead of (5), which is not the electric
field operator but provides some quantity related to the
non-observable potentials in path 2.

Therefore the expectation value of output 1 (π2 phase
difference will correspond to output 2) can be expressed
as follows.

⟨Î⟩ ∝ ⟨1|â†1â1|1⟩+ ⟨1|â†2â2|1⟩
+eiθ⟨1|â†1â2|1⟩+ e−iθ⟨1|â†2â1|1⟩

= 1 + ⟨1|â†2â2|1⟩
+eiθ⟨1|â†1â2|1⟩+ e−iθ⟨1|â†2â1|1⟩ (11)

If ⟨1|â†2â2|1⟩ = −1
2 and ⟨1|â†1â2|1⟩ = ⟨1|â†2â1|1⟩∗ =

± 1
4e

iϕ, the same interference ⟨Î⟩ ∝ 1
2 ± 1

2 cos (θ + ϕ) can
be observed. Where ∗ means complex conjugate.
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The above calculation is based on Heisenberg pic-
ture. We can calculate the same interference based on
Schrödinger picture. In Schrödinger picture, the inter-
ference can be calculated by using the output 1 (or 2: π

2
phase difference) state |1⟩+|ζ⟩ and the electric field oper-

ator Ê = â at the output 1 (or 2). Because the operator
is fixed in Schrödinger picture, the operator is obtained
from the traditional quantization using (5). Where |1⟩
and |ζ⟩ represent the states of a photon passes through
path 1 and non-observable potentials passes through path
2 respectively. Because nothing is observed in path 2, we
should recognize ⟨ζ|ζ⟩ = 0.
In this picture, the expectation value can be expressed

as follows.

⟨Î⟩ ∝
(
eiθ⟨1|+ ⟨ζ|

)
â†â

(
e−iθ|1⟩+ |ζ⟩

)
= 1 + ⟨ζ|â†â|ζ⟩+ eiθ⟨1|ζ⟩+ e−iθ⟨ζ|1⟩ (12)

Where â†â|1⟩ = |1⟩ and ⟨1|â†â = ⟨1| are used.
If ⟨ζ|â†â|ζ⟩ = −1

2 and ⟨1|ζ⟩ = ⟨ζ|1⟩∗ = ±1
4e

iϕ, the

same interference ⟨Î⟩ ∝ 1
2±

1
2 cos (θ + ϕ) can be observed.

From this expression, we can recognize that |ζ⟩ has the
phase difference for the interference without substantial
photons.
Note that ϕ is determined by the phase difference of the

MZI paths. When there is no phase difference between
the MZI paths, ϕ is determined from the normalization
of probability, i.e., (⟨1|+ ⟨ζ|) (|1⟩+ |ζ⟩) = ⟨1|1⟩+ ⟨1|ζ⟩+
⟨ζ|1⟩+ ⟨ζ|ζ⟩ = 1+ ⟨1|ζ⟩+ ⟨ζ|1⟩+ ⟨ζ|ζ⟩ = 1, and ⟨ζ|ζ⟩ = 0
then ⟨1|ζ⟩ = −⟨ζ|1⟩. Therefore ϕ = π

2 + Nπ. Where N
is integer.
In the above mathematical formula for the interference

by Schrödinger picture, there is no mathematical solu-
tion in usual Hilbert space. Therefore the non-observable
potentials, which can not be observed alone, must be re-
garded as a vector in indefinite metric Hilbert space. The
same kind of unobservable vector has been introduced as
”ghost” in quantum field theory. [23–26] We also call |ζ⟩
”ghost” in this report though this ”ghost” has a differ-
ent definition. The traditional ”ghost” was introduced
mathematically as an auxiliary field for consistent with
relativistic covariance of the theory and had no effect
on physical phenomena. However, the above ”ghost” is
a physical field which causes the interferences or is es-
sential for the interferences instead of the mathematical
auxiliary field.
From the equation (11) and (12), the non-observable

potentials pass through path 2 produce the single pho-
ton interference as if the photon passes through the both
paths in cooperation with a photon field passes through
path 1.
The photon number should be proportional to CE

squared as can be seen in equation (3). However non-
observable potentials C and ϕ or (7), which express
”ghost”, are not proportional to it as mentioned above.
Therefore, the interference effect will be drop off when
there are a large number of photons. This will be the rea-
son why quantum effects are hardly observed in macro-
scopic scale.

FIG. 2. Schematic view of a typical setup for the 2-slits (2-
pinholes) single electron interference experiment.

Note that the superposition principle may be used as
a nice mathematical tool to simplify analyses in mixed
states. However when we use the superposition prin-
ciple in single photon case and fail to understand the
mechanism of the single photon interference as described
above, we may plunge into deniable engineering applica-
tions based on reduction of wave packet.

IV. POTENTIALS AND ELECTRON

In this section, we first consider two pinholes elec-
tron wave interference in classical manner. Figure 2
shows schematic view of a typical setup for the 2-slits (2-
pinholes) single electron interference experiment. [17, 27]

The propagating electron can be identified as an elec-
tron beam whose space current density is j = Nqv, where
N is the number of electron per unit volume, q is the
electron charge and v is the electron velocity. When the
radius of the electron beam is w0, the current I can be
expressed as I = πw2

0j. According to Biot-Savart Law,
the propagation generates magnetic fields and potentials
around the propagation path.

Assume that the electron propagates parallel to z-axis
at a constant velocity. Then, the vector potentials around
the propagation path are expressed as [27, 28]

Ax = Ay = 0

Az =
I

2πε0c2
ln

1

r
(13)

where r =
√
x2 + y2, ε0 is the permittivity and c is the

speed of light.
Therefore the vector potential clearly passes through

not only the pinhole the electron passes through but also
the opposite pinhole.

Even if we apart from this easy consideration, the elec-
tron motion definitely generates potentials. Therefore,
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when we consider the electron motion, we must take the
potentials.
In next section, we consider the two pinholes interfer-

ence in quantum mechanical manner with consideration
for the potentials.

V. INTERFERENCE OF SINGLE ELECTRON

In a quantum mechanical description, the 2-slits (pin-
holes) single electron interference is typically explained
by the probability (density) of finding the electron on
the screen. [27]

P12 = |ϕ1 + ϕ2|2 (14)

Where ϕ1 = ⟨x|1⟩⟨1|s⟩ and ϕ2 = ⟨x|2⟩⟨2|s⟩, which are
composed of probability amplitudes
⟨1or2|s⟩: ”⟨electron arrives at pinhole 1 or 2|electron

leaves s (electron source)⟩” and
⟨x|1or2⟩: ”⟨electron arrives at screen x|electron leaves

pinhole 1 or 2⟩”.
When either pinhole 1 or 2 is closed, the each and total

probabilities are calculated to be P1 = |ϕ1|2, P2 = |ϕ2|2
and P = P1 + P2 ̸= P12. Therefore we must admit the
electron passes through both pinholes at the same time
despite an electron can not be split off, which forces us
to introduces a concept of quantum-superposition states
.
However we can examine the states of the localized

electron propagation and non-observable potentials in-
stead of the quantum-superposition state as mentioned
above.
In such a case, the electron wave functions should be

expressed as follows.

ψ′
1 = ψ1 · exp

[
i
q

ℏ

∫
s→Pinhole1→screen

(ϕnldt−Anl · dx)
]

ψ′
2 = ψ2 · exp

[
i
q

ℏ

∫
s→Pinhole2→screen

(ϕnldt−Anl · dx)
]

(15)

where, ψ′
1 and ψ′

2 are the electron wave functions on
the screen passing through pinhole 1 and 2 with the
non-observable potentials respectively. ψ1 and ψ2 are
the electron wave functions heading to pinhole 1 and
2 at the electron source without the effects of the non-
observable potentials. ϕno and Ano include not only the
non-observable potentials expressed as (7) but also the
non-observable part of the potentials generated by local-
ized potentials such as (3) and (13).
Then the probability of finding the electron on the

screen by using these wave functions can be described
as follows,

P12 ∝ |ψ′|2 = |ψ′
1 + ψ′

2|2

= |ψ1|2 + |ψ2|2

−2Re

(
exp

[
i
q

ℏ

∮
s→1→screen→2→s

(ϕnldt−Anl · dx)
]
ψ∗
1ψ2

)
(16)

where 1 and 2 of the integration path denote pinhole
1 and 2 respectively. This description is identical to
Aharonov-Bohm effect. [19]

In case of single electron interference, we can find the
electron at pinhole 1 without fail but not at pinhole 2, i.e.,
|ψ1|2 = 1 and |ψ2|2 = 0. Although the exact expression
should be

∫
|ψ1or2|2dV = 1 or 0 instead of the probability

densities, we continue analysis with |ψ1|2 = 1 and |ψ2|2 =
0 for simplification.

When we introduce a phase difference θ between ψ1

and ψ2, P12 expresses the interference as follows,

P12 ∝ 1− 2Re (exp i [γ + θ]ψ∗
1ψ2) (17)

where γ =
q

ℏ

∮
s→1→screen→2→s

(ϕnldt−Anl · dx).

Note that when θ is fixed, the interference can be ob-
served on the screen as a function of γ, i.e., position on
the screen. When γ is fixed, the interference can be ob-
served on a fixed position of the screen as a function of
θ.

However, the wave function ψ2 as a probability density
must satisfy incoherent expressions, i.e., ψ∗

1ψ2 ̸= 0 and
|ψ2|2 = 0.

Then, here we introduce the following states in order
to clarify the exact probability representation.

”an electron passes through pinhole 1 with the non-
observable potentials” as eiγ1 |ψ1⟩ with P1 = ⟨ψ1|ψ1⟩ =∫
|ψ1|2dV = 1
and
”no electron passes through pinhole 2 with the non-

observable potentials” as eiγ2 |ψ2⟩ with P2 = ⟨ψ2|ψ2⟩ =∫
|ψ2|2dV = 0.
In these states, γ1, γ2 and γ = γ1 − γ2 correspond to

the phase terms of (15) and (16).
After the example of single photon interference as de-

scribed above, [22] we introduce the charge operator Q ≡∫
d3xj0(x) defined by a conserved current jµ = (q, i), i.e.,

∂µjµ = ∂q
∂t + ∇ · i = 0. The charge operator satisfies

Q|ψ1⟩ = q|ψ1⟩, which means the electron state incoming
from pinhole 1 is the eigenstate of Q. [29, 30]

The interference can be calculated using the charge
operator as follows.

⟨I⟩ =(
ei(θ−γ1)⟨ψ1|+ e−iγ2⟨ψ2|

)
Q

(
e−i(θ−γ1)|ψ1⟩+ eiγ2 |ψ2⟩

)
= q + ⟨ψ2|Q|ψ2⟩

+qei(θ−γ)⟨ψ1|ψ2⟩+ qe−i(θ−γ)⟨ψ2|ψ1⟩ (18)

where ⟨I⟩ is the expectation value of charge inten-
sity. If ⟨ψ2|Q|ψ2⟩ = −1

2q and ⟨ψ1|ψ2⟩ = ⟨ψ2|ψ1⟩∗ =

± 1
4e

iδ, then the single electron interference ⟨I⟩ =

q
{

1
2 + 1

2 cos (θ − γ + δ)
}
can be obtained.

The above discussion suggests that the non-observable
potentials produce phase shift of the electron wave func-
tions or electron states and will correspond to gauge fields
introduced by gauge transformation of the second kind
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as can be seen from (15). Hence, we can recognize the
state ”no electron passes through pinhole 2 with the non-
observable potentials” has the phase difference for the
interference without electron charges.

In the above expression for |ψ2⟩, there is no mathe-
matical solution in usual Hilbert space. Therefore the
state of ”no electron passes through pinhole 2 with the
non-observable potentials” must also be regarded as a
vector with zero probability amplitude in indefinite met-
ric Hilbert space and we can express the quantum state
of the interference without quantum-superposition state.

Note that the calculation using the superposition state
of (16) is valid in case of mixed state whose probability
is statistical sense. The superposition states are conve-
nient for application to interference phenomena, however
the states do not reflect the right mechanism of nature,
which means there are great possibility the quantum ap-
plication using wave packet reduction of single photon
and electron interference will be unavailable.

VI. DISCUSSION

A. uncertainty principle and the reduction of the
wave packet

By the existence of the non-observable potentials,
Heisenberg’s uncertainty principle can be explained in-
dependently of measurements. In addition, the para-
dox of the reduction of the wave packet typified by
”Schrödinger’s cat” and ”Einstein, Podolsky and Rosen
(EPR)” [1, 2] can be solved, because the origins of both
are quantum-superposition state.

Former results insist the states of path 1 and 2 or pin-
hole 1 and 2 by Schrödinger picture are defined when the
system is prepared expressed as a substantial single pho-
ton or electron and the non-observable potentials respec-
tively and each state does not split off such as quantum-
superposition state, which means there is no reduction of
the wave packet.

”When the system is prepared” corresponds to imme-
diately after the branching point of the optical MZI or
the pinholes. Which path or pinhole does the photon
or electron select is unpredictable but after the selec-
tion, the state is fixed instead of quantum-superposition
state. The concept of these states is identical with
mixed states rather than pure states formed by quantum-
superposition, which suggests there is no concept of
quantum-superposition state.

As for Heisenberg’s uncertainty principle, we can
clearly recognize it as trade-offs derived from Fourier
transform non-related to measurement, which correspond
to the canonical commutation relation.

B. zero-point energy

If we calculate the equation (12) under vacuum instead
of single photon, ⟨ζ|â†â|ζ⟩ = − 1

2 can eliminate zero-point
energy on average as follows.

(⟨0|+ ⟨ζ|)
(
â†â+

1

2

)
(|0⟩+ |ζ⟩)

=
1

2
+

1

2
(⟨0|ζ⟩+ ⟨ζ|0⟩+ ⟨ζ|ζ⟩)

+⟨0|â†â|ζ⟩+ ⟨ζ|â†â|0⟩+ ⟨ζ|â†â|ζ⟩

=
1

2
+ ⟨ζ|â†â|ζ⟩+ 1

2
(⟨0|ζ⟩+ ⟨ζ|0⟩)

=
1

2
− 1

2
+

1

2
(⟨0|ζ⟩+ ⟨ζ|0⟩)

=
1

2
(⟨0|ζ⟩+ ⟨ζ|0⟩) ∝ cos θ (19)

where â|0⟩ =
(
⟨0|â†

)†
= 0, ⟨0|ζ⟩ = ⟨ζ|0⟩∗ and ⟨ζ|ζ⟩ = 0

are used.
Then averaged energy of all phases θ, which is the

phase difference between |0⟩ and |ζ⟩, becomes 0, i.e.,
cos θ = 0, where the over-bar means average.

Although the above calculation can eliminate zero-
point energy on average, the energy has been measured
through Casimir effect. [31–35] The above new insight
explains there are no energy on average in vacuum. There
is only fluctuation around 0 energy due to the phase dif-
ference, The attractive force from this kind of fluctuation
is identical with the basic concept of Van der Waals force
which will be the origin of Casimir effect. [36]

Therefore the above calculation will not be inconsistent
with Casimir effect.

C. spontaneous symmetry breaking

Traditional treatment of the spontaneous symmetry
breaking, which explores the possibility of Q|0⟩ ̸= 0 or
generally ”|0⟩ is not an eigenstate of Q”, needs an in-
tricate discussion using Goldstone boson or Higgs boson.
[30, 37] Where |0⟩ is vacuum state.

However, the non-observable potentials eternally pop-
ulate the whole of space as mentioned above and there
are no electron at pinhole 2. Therefore the state of pin-
hole 2, eiγ2 |ψ2⟩, can be identified as vacuum instead of
|0⟩. From the relation ⟨ψ2|ψ2⟩ = 0 as described above, if
eiγ2 |ψ2⟩ is an eigenstate of Q, i.e., Qeiγ2 |ψ2⟩ = αeiγ2 |ψ2⟩,
then ⟨ψ2|e−iγ2Qeiγ2 |ψ2⟩ = α⟨ψ2|ψ2⟩ = 0 ̸= −1

2q, where

α is an eigenvalue. Hence the vacuum eiγ2 |ψ2⟩ is not an
eigenstate of Q, which expresses the spontaneous sym-
metry breaking.

The above discussion that the new vacuum is filled
with potentials (gauge fields) whose state exists under
original ground state is identical with the spontaneous
symmetry breaking using the analogy of superconductiv-
ity when we replace Q with energy level reported by Y.
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Nambu and G. Jona-Lasinio. [38, 39] In addition, the
spontaneous symmetry breaking by gauge fields leads to
mass acquire of gauge fields (Higgs mechanism). [40]
Therefore the above discussion will not be inconsis-

tent with traditional treatment of spontaneous symmetry
breaking and the mass acquire mechanism.

D. general treatment of single particle
interferences

From (12) and (18), the single particle interferences
can be expressed as following manner.

⟨I⟩ = (⟨ϕ|+ ⟨ζ|)F (|ϕ⟩+ |ζ⟩)
= f + ⟨ζ|F|ζ⟩+ f⟨ϕ|ζ⟩+ f⟨ζ|ϕ⟩ (20)

Then ⟨ζ|F|ζ⟩ = −1
2f and ⟨ϕ|ζ⟩ = ⟨ζ|ϕ⟩∗ = ±1

4e
iθ can

generate single particle interferences of F, i.e., ⟨I⟩ =
f
{

1
2 + 1

2 cos θ
}
. Where F is an arbitrary observable op-

erator, |ϕ⟩ is a state expressing single particle field, f
is the expectation value of F under state |ϕ⟩ and |ζ⟩ is
an indefinite metric vector expressing non-observable po-
tentials. In case of Maxwell equations as described in
this paper, |ζ⟩ is identified as commutative gauge fields
(Abelian gauge fields). When we study multicomponent
state |ϕ⟩, |ζ⟩ will be identified as non-commutative gauge
fields (non-Abelian gauge fields). [41–43] However the
above general treatment can be applied in both cases.
When F is not introduced in (20), the existence prob-

ability of the single particle, i.e.,

(⟨ϕ|+ ⟨ζ|) (|ϕ⟩+ |ζ⟩) = 1 + ⟨ϕ|ζ⟩+ ⟨ζ|ϕ⟩

= 1 +
1

2
cos θ (21)

is fluctuated though the average is 1. These kinds of self
fluctuation of a particle will be consistent with neutrino
oscillation. [44, 45]

VII. SUMMARY

There are some unresolved paradoxes in quantum the-
ory.
If we take advantage of the indefinite metric vectors as

described in this report, the paradoxes can be removed.
In addition, it can explain the uncertainty principle inde-
pendently of measurements, eliminate zero-point energy

on average and cause spontaneous symmetry breaking
without complexity.

We should consistently introduce indefinite metric vec-
tors because Maxwell equations are wave equations in
Minkowski space. When we introduce state vectors in
Minkowski space, indefinite metric vectors are absolutely
required. The required vector should be recognized not
only as an auxiliary field but also as a real physical field
which is the root cause of single photon and electron in-
terferences.

The results insist the vacuum space is filled with the
non-observable potentials which can eternally exist as
waves and correspond to gauge fields introduced by gauge
transformation of the second kind.

This idea provides exactly the same calculation and ex-
perimental results by using quantum-superposition state
because the phase difference between the photon or elec-
tron and the non-observable potentials provide the inter-
ferences as if the quantum-superposition state exists. In
addition, the concept is based on an analogy from the
expression of substantial localize electromagnetic fields
or an electron and the non-observable potentials instead
of curious quantum-superposition state that forces us to
imagine a photon or an electron passes through the both
paths or pinholes despite a photon or an electron can not
be split off.

Furthermore, this idea will not be inconsistent with
traditional treatment of Casimir effect, spontaneous sym-
metry breaking, the mass acquire mechanism and can be
applied to non-Abelian gauge fields.

The superposition states are valid in case of mixed
states whose probabilities are statistical sense. However,
quantum-superposition state is not valid in case of pure
state whose probability is fundamental sense, though the
superposition principle may be used as a nice mathe-
matical tool to simplify analyses. Therefore, there is no
concept of quantum-superposition state in nature, which
insists fulfillment of engineering applications based on
reduction of wave packet is pessimistic conclusion and
Quantum theory is a kind of statistical physics.

M. Arndt and K. Hornberger have reviewed some test-
ing of quantum mechanical superpositions, [3] we hope
the results will be tested by those technologies.
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