THE CONVENIENT NUMERICAL BASE FOR LENGTH AND TIME

BRIEF INTRODUCTION

If A and B are two points in the space, the following two statements i) the points A, B are distinct in the space ii) the points A, B are coincident in the space can not be simultaneously true. a) Let's assume to istante t₀, the points A and B distinct in the space. Then, the time necessary to make A and B overlap must be $\Delta t \neq 0$. In fact if the time necessary to make A and B overlap was $\Delta t = 0$, we can also assert that at time t₀, the points A and B are coincident, since it is not necessary time to make A and B overlap and i), ii) are simultaneously true in spite of the initial assumption a).

BEGINNING

Let's the points O, O', M coincident with the origin $x_0 = 0$ of IRS(O xyt) at time $t_0 = 0$ (according to the clock of O and O') and let O', M, in motion in the IRS(O xyt) along the axis x > 0 at constant speed, such that $|v_{0'}| < |v_M|$. According to the clock of O, we assume that the coordinate t_x in the t-axis, is the time needed for M to cover any distance $x-x_0$ along the x-axis; let's call it, time interval t_x .

1) Let $x_{0'}$ be the coordinate of M to time $t_{0'}$, according to the clock of O; 2) Let x_{M} be the coordinate of point M to time t_{M} , according to the clock of O, when the coordinate of O' is $x_{0'}$.

Whether, to a <u>generic</u> point x > 0 of the x-axis, we assign from the origin O a spatial distance of 10m, If I comunicate by phone that distance to my friend, for my friend 10m may represent any distance, because it is not defined the numerical base; for example: (10)123 m = 123m, (10)12 m = 12m.

This distance becomes quantifiable if my friend know its numerical base b (b > 1 and integer).

Then, if at time t_M according to the clock of O, we assign to the point M a spatial distance of 10m from the origin O, we define $x_M = (10)_{t_M}m$ and let's assume the time interval t_M , as the numerical base of the spatial distance from the origin O, of any point of x-axis.

Likewise, in the t-axis we define $tM = (10)_{XM} m$. See picture 1.

*We choose the unit of measurement in such a way that t_M and x_M are integer and positive numbers: $t_M > 1$, $x_M > 1$.

t-axis

If x_M is the coordinate of M at time t_M according to the clock of O, let M(On) be the value of the time interval $\Delta t_n = t_M - t_n$, from the point M to point On, then we have the two equalities: m) M(O)asset = $(10)_{x_M}ds = (t_M)asset$ n) M(O')asset = $(10 - t_0)_{x_M}ds = (t'_M)asset$ conversely, if let's assume the time interval $t_M - t_n$ as the base of the spatial distance of the point M from the origin O, we have: m') M(O)asset = $(10)_{t_M}m = (x_M)asset$ n') M(O')asset = $(10 + x_0)_{t_M} - t_0$ 'm = $(x'_M)asset$ see point 1)

with (X_M) asset = (X'_M) asset.

x-axis

p) M(O)asse x = $(10)t_Mm = (X_M)asse x$ q) M(O')asse x = $(10 - Xo')t_Mm = (X'_M)asse x$, and conversely p') M(O)asse x = $(10)x_Mds = (t_M)asse x$ q') M(O')asse x = $(10 + to')x_M - x_0'ds = (t'_M)asse x$ with $(t_M)asse x = (t'_M)asse x$

As a variation of the distance x_M of point M corresponds to a variation of time interval t_M , then for the representation (10) t_M m and (10) x_M ds of the points, the following proportion must be apply:

$$\frac{(X_M)_{asse x}}{(t_M)_{asse t}} : \frac{(t_M)_{asse x}}{(X_M)_{asse t}} = \frac{(X'_M)_{asse x}}{(t'_M)_{asse t}} : \frac{(t'_M)_{asse x}}{(X'_M)_{asse t}}$$
1.1)

then,

$$(t'_{M})_{asse x'} (t'_{M})_{asse t'} = (t_{M})_{asse x} (t_{M})_{asse t} \qquad \frac{(X'_{M})_{asse x} (X'_{M})_{asse t}}{(X_{M})_{asse x} (X_{M})_{asse t}} \qquad 1.2$$

i.e being

Let's find the time of O' with respect to time of O.

If we replace the (x'_{M}) asse x, (x'_{M}) asse t coordinates, with the (x'_{M}) asse x = $(10 - xo')t_{M}m$, (x'_{M}) asse t = $(10 + xo')t_{M}$ - to'm coordinates, we write the formula 1.3) as

$$t'_{M} = t_{M} \sqrt{\frac{((10 - X_{O'})_{t_{M}} m)((10 + X_{O'})_{t_{M} - t_{O'}} m)}{X_{M}^{2}}}$$
 1.4)

To perform mathematical operations in 1.4), we must assign for each number, the same numerical base, i.e. we must express $(x'_{M})_{asset}$ in the base t_{M} .

When we talked about spatial distance, we realized that a spatial distance of 10m becomes quantifiable when we know its numerical base; if we argue that the numerical base of space, is the time it takes the point M to move from one point to another, as we define to' = $(10)_{x_0}$ ds (see point 1), then a variation of time implies a variation of the spatial distance.

Then, if let's x_M in the base $t_M - t_0$ ', to obtain x_M in the base t_M , we must add up to $t_M - t_0$ ' the time interval to' and therefore, as $t_0' = (10)_{x_0'}$ ds, we must add to the spatial distance x_M the spatial distance x_0 '.

So (x'_{M}) asset = (x_{M}) asset becomes $x_{M} + x_{0}$ in the base t_{M} , i.e. $(10 + x_{0})$ t_Mds. Then the formula 1.4) becomes

$$t'_{M} = t_{M} \sqrt{\frac{(X_{M} - X_{O'})(X_{M} + X_{O'})}{X_{M}^{2}}} = t_{M} \sqrt{\frac{(X_{M}^{2} - X_{O'}^{2})}{X_{M}^{2}}}$$
$$t'_{M} = t_{M} \sqrt{1 - \frac{X_{O}^{2}}{X_{M}^{2}}}$$
1.5)

 t'_{M} is the time marked by the clock of O', when the clock of O marks t_{M} . Likewise from 1.1) we define:

$$X'_{M} = X_{M} \sqrt{1 - \frac{t_{O'}^{2}}{t_{M}^{2}}}$$
 1.6)

i.e. in the reference frame of O', x'_{M} is the distance covered by M, from the origin O to point x_{M} .

Therefore for the point O', the distance covered in 2) don't is xo', but

$$X'_{O'} = X_{O'} \sqrt{1 - \frac{t_{O'}^2}{t_M^2}}$$

CONCLUSION

1) The formula 1.1),

which can also be written as $v_M : 1/v_M = v'_M : 1/v'_M$, imply $v_M = v'_M$. Therefore, let's given a point M in motion along the x-axis in the IRS(O xyt), that cover a distance x_M in time t_M according to the clock of O, if t_M is the numerical base of space (in this case of points in x-axis), i.e. $x_M = (10)t_Mm$ or conversely $t_M = (10)x_Mds$, the speed of M is constant in all IRS.

The same example should also apply to the y-axes.

The speed of M is constant because the point M, with respect to other points in motion, possesses the following property: the time t_M necessary to M for cover any distance x_M is the numerical base of x_M , such that $x_M = (10)t_Mm$.

2) According to the clock of O, at time t_M , the spatial distance covered by points O' and M in the IRS(O xyt), is respectively xo' and x_M . Therefore, with $x_M/t_M = v_M = c$, the 1.5) represents Einstein's time dilation formula and we can assert that the speed of point M is the speed of light. Likewise, substituting ds with m inside the square root, the 1.6) is Einstein's length contraction formula.

3) As b > 1, in agreement with the theory of relativity, the assumption $|v_0'| \ge |v_M|$ is an absurd case. In fact, for *n*'), $|v_0'| \ge |v_M| \Rightarrow b \le o$.

So, take the time as a numerical base of space, <u>the speed of light is an</u> <u>insuperable limit</u>.

* in the case of negative coordinates we write $(-1)x_M = (10)t_M(-1)m$ instead of $x_M = (10)t_Mm$.

Giampaolo Piscedda

e-mail: giampaolo.piscedda@yahoo.it