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ABSTRACT

In the first paper on hyperverse theory, the rate of radial expansion of the
hyperverse was shown to be two times the speed of light, meaning every point
in the universe is advancing into the fourth dimension at 2c. We experience this
rapid radial expansion as time; it gives us the one-way arrow of time, the sense
of the fleeting nature of a moment, and is universal throughout the cosmos. The
vortices comprising the surface of the hyperverse, all of which have the same
energy and tangential velocity, are the building blocks of both space and mat-
ter. Relative motion decreases centripetal velocity and consequently, perceived
frequency. The difference between the observer’s and the observed’s apparent
frequencies accounts for the difference in perceived clock tick rates. The time
dilation function of special relativity is derived from the ratio of the centripetal
velocities. Time is two part process, created by hyperverse radial expansion and
the energy and spin characteristics of the quanta of space.

Subject headings: centripetal velocity; hyperverse; radial expansion; theory of
time;

Introduction

"What is time?" is one of the most fundamental questions we have about existence,
something nearly everyone must wonder about at some point in their lives. Time is so
integral to existence that one cannot imagine life without it. The word ’time" is the most
commonly used noun in the English language [1]; the second is ’year’and the fifth is ’day’.
Despite our moment to moment living with time, no reasonable theory for what time is
appears to exist, helping to explain a trend in physics claiming time in not real [2].

Time must have something to do with the expansion of space, as many cosmologists
think that both space and time started with the Big Bang [3]. Besides wondering what time
is, other questions can be asked.
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Is time quantized, existing in discrete units?

Is there an ’arrow of time’, as it is called, pointing one way? Many physicists try to
explain time as a result of entropy, as it is basically the only quantity in physics requiring a
one way direction for time [4]. The cosmological arrow of time is said to be the "direction
towards which the universe becomes bigger" [5].

Relativity says time moves at different rates, depending on the relative velocity of the
observer and observed. How can time move more slowly for one person than another?

Despite the dominance of time in our lives, time is a huge mystery, maybe the most
perplexing of all aspects of our existence. Here, with a primary insight about the structure
of the universe, we will present a model of time based on the expansion of space.

Tassano [6] presented a model of the universe as the 3D surface volume of a four di-
mensional sphere. When we calculate the radius of a 4D sphere with a volume equal to the
observable universe, we find that the 4D sphere is expanding radially at twice the speed of
light. Current data on the size of the observable universe allows us to calculate the rate
of circumferential expansion of the hyperverse, and importantly, this number matches the
Hubble constant. These calculations support the idea that the universe is the surface of
an expanding four dimensional sphere. Additionally [6] indicates the Hubble constant is a
measure of the increase in energy of the universe; space exists, the hyperverse has a surface,
and it is energy.

In this paper we will start the discussion of the structure of the surface of the hypersphere
and propose that it consists of a matrix of miniature 4-D hyperspheres, 4D vortices, similar
to the whole, but much smaller. The spin of these vortices is what creates energy. The
third paper in the series [7], discusses the nature of expansion and allows us to calculate the
actual size and energies of the surface vortices. [8] will help make the connection between the
quanta of space and the nature of matter. And [9], which gives a model of the structure of
elementary particles, supports the concept that matter is composed of the quanta of space.

1. Frames and Cells

The 2c radial expansion gives a distinct and precise relationship between light speed
and the radial expansion rate. It says that the speed of light is one-half the radial expansion
speed. The hyperverse radius moves radially two units of distance for every one unit of
distance light moves along the surface. This gives us two radial steps per each translational
step for light. We can develop a model based on this observation, and we will refer to it as
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a ’frame and cell’model.

The units of space will be viewed here as ’cells’. From a 4D perspective, these cells are
all the same distance from the hyperverse center. The cells will be shown to be quanta in
[3], but it is suffi cient here to refer to them as cells. It is hypothesized that the cells are, like
the hyperverse itself, hollow, four dimensional, spinning vortices, but much smaller, as they
comprise the surface of the hyperverse.

The radial expansion is viewed as occurring in steps, called frame advances. The idea is
similar to motion picture frames, still shots, which, when run together produces motion. In
this model, no motion is allowed between frame advances. The frame advance is the radial
advance of a cell. The frame advances can be compared to the tick of the hyperverse clock,
with one tick per frame advance.

The radial velocity is 2c, and using the frame-cell model, we can conclude that light
advances radially two frames while moving laterally, within the surface volume, one cell.
This is a clean and logical way of modeling light speed and time.

2. Some Energy Aspects of a Cell

We will claim that energy is derived from spin, and that every cell has the same energy
value. As supported below, the sum of the potential energy (PE) and linear kinetic energy
(KELinear) of a cell equals mc2, where m is the mass of the cell:

KELinear + PE = mc2 (1)

We will use the word "Linear" instead of "Translational" to reserve the "T" subscript
for "Tangential".

Linear kinetic energy is given by the standard formula:

KELinear =
1

2
mv2L (2)

We will use the convention that vL and vT are given as a percentage of the speed of
light. For example, vL = 0.5c.

Since vortices, or cells, all spin, they possess rotational kinetic energy:
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KErotational =
1

2
Iω2 (3)

where I is the moment of inertia and ω, omega, is the angular velocity.

The rotational kinetic energy is the potential energy; they are the same:

PE = KErotational =
1

2
Iω2 (4)

2.1. The Square Root of the Net Potential Energy Equals the Special
Relativity Time Function

The Lorentz factor, 1√
(1−v2L)

, is the time dilation factor used in special relativity equa-

tions. Its inverse is
√
(1− v2L), which we will refer to as the special relativity time function.

Rearranging (1) and substituting (2) for KELinear, potential energy can be stated as:

PE = mc2 − 1
2
mv2L (5)

We will define ’net potential energy’as what is left of the potential energy after sub-
tracting the linear kinetic energy from it:

PEnet = PE −KElinear (6)

Substituting (5) into (6) gives net potential energy:

PEnet =

(
mc2 − 1

2
mv2L

)
− 1
2
mv2L (7)

which reduces to:

PEnet =
(
mc2 −mv2L

)
(8)

Taking the square root of the net potential energy gives us the special relativity time
function, which reveals the energy nature of the time dilation equation:



—5 —

√
PEnet =

√
(mc2 −mv2L) (9)

If we define c = 1 and m = 1, we get the standard function, which, unlike the above
equation, is devoid of a clear connection to energy:

√
(mc2 −mv2L)⇒

√
(1− v2L) (10)
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Figure 1. The relationship between linear kinetic energy (A), potential energy (B), net
potential energy (D), and the square root of the net potential energy (E). Position (C)

marks the location where velocity is equal to the speed of light.

2.2. Tangential Velocity

In equation (3), the rotational kinetic energy of the cell was given asKErotational = 1
2
Iω2.

The moment of inertia, I, is defined as for a point particle:

I = mr2 (11)
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where m is the mass of the spinning object and r is its radius.

Omega squared, ω2, is defined as:

ω2 =
v2T
r2

(12)

where vT is the tangential velocity, the rim speed of a spinning object. Rotational kinetic
energy can thus be presented as:

KErotational =
1

2
Iω2 =

1

2

(
mr2

) v2T
r2
=
1

2
mv2T (13)

Additionally, we can express the total energy of a unit of space as the sum of the linear
and potential energies:

mc2 =
1

2
mv2L +

1

2
mv2T (14)

If the unit has no linear velocity, then all energy, mc2, is expressed as rotational kinetic
energy, or spin:

mc2 =
1

2
mv2T (15)

By solving equation (15) for vT , we find that the tangential velocity of a vortex, one
without any apparent linear kinetic energy, is the square root of two multiplied by the speed
of light:

vT =
√
2c (16)

To determine the general equation for tangential velocity, we rearrange (14), substitute√
2c for vT , cancel the mass, and solve:

vT =
√
2c2 − v2L (17)

If the linear velocity is zero, the tangential velocity is equal to
√
2c. If the linear velocity

equaled the speed of light, the tangential velocity would also be the speed of light. Thus
the tangential velocity will vary from a maximum of

√
2c to c as the object’s linear velocity

varies from rest to the speed of light.
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3. Explaining Relativity

3.1. The Energy of Time

As mentioned above, we can produce the special relativity time function by taking the
square root of the difference between the rotational kinetic energy and the linear kinetic
energy.

To explore this more, we created a ’velocity square’to better visualize the energies. The
next images show a velocity square for an object traveling at 0.5c relative to the observer.
In the left hand image, the 1-2-3-4 square represents the square of vL for a linear velocity of
0.5c. The corresponding tangential velocity square has the corners 1-5-6-7.

Velocity Velocity
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Figures 2A and 2B. Velocity squares. Figure 2A, left, shows the square created for the
linear kinetic energy, with a velocity of 0.5c. The square is defined as 1-2-3-4. The square
created by the rotational kinetic energy is defined as 1-5-6-7. In Figure 2B, right, since
energy is one-half the velocity squared, we can define area A as the linear kinetic energy,
and area B as the rotational kinetic energy. The remaining area, C, represents the energy

associated with time.

Figure 2B displays the associated energies. Since energy is one-half of the velocity
squared, only one half of each velocity square, a triangle, is shown. Triangle A represents
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the linear kinetic energy of the moving object, 1
2
mv2L. Triangle B represents the rotational

kinetic energy, 1
2
mv2T . The tangential velocity, vT , is

√
2c2 − v2L, and for an object with a

linear velocity of 0.5c, the tangential velocity equals
√
1.75c. The net potential energy is the

difference between the rotational and linear kinetic energies, area C.

Area C is equal to the square of the special relativistic time function, and in the example
of Figure 2, has a value of 0.75c. The structure of Figure 2B suggests there is a third energy
value, one associated with time.

Kinetic energy is of the form 1
2
mv2x where vx is a velocity. Let us solve for this implied

velocity and energy. We will call this new energy KEtime. We will refer to the associated
velocity as vC . The kinetic energy of time would have the following form:

KEtime =
1

2
mv2C (18)

We see from our equations and Figure 2, that the kinetic energy of time is equal to the
difference between the rotational and linear kinetic energies:

1

2
mv2C =

1

2
mv2T −

1

2
mv2L (19)

Substituting
√
2c2 − v2L for vT and solving for vC we get:

vC =
√
2c2 − 2v2L (20)

In this example, where vL is 0.5c, the value of vC is
√
1.50c.

3.2. The Third Velocity is a Resultant Velocity

We now have three velocities: a linear, tangential and this new velocity. It turns out
that the three velocities can always be assembled to form a right triangle. This new energy
is not a fundamental energy, but an emergent energy, and the new velocity vector is not a
fundamental velocity, but an emergent velocity. For example, if you were to throw a ball
north while a strong wind was blowing to the east, the path of the ball would be northeast,
the net direction of the two forces. In the case of the spinning and linearly moving object,
the tangential and linear velocity vectors combine to a form a new vector, sometimes called
a ’resultant’vector.
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3.3. Centripetal Velocity

The word "centripetal" means center-seeking, and a centripetal force is what makes an
object follow a curved path, pushing it towards the center of rotation. Our new velocity
vector is the centripetal velocity of the vortex. It points to the center of rotation and is
derived from the linear and tangential velocity vectors. Surprisingly, centripetal velocity is
not discussed suitably in physics texts, which necessitates a short description here.

When a spinning circle is at rest relative to the observer, the centripetal velocity vector
points to the true center of a circle. With motion relative to the observer, the centripetal
velocity vector points to the instant center of rotation, a location that shifts from the true
center to the very bottom of the circle (the circle is defined as moving to the right) as the
circle is seen to move from rest to a roll. In Figure 3, we see that the location of the instant
center of rotation can be found at point F, the intersection of the circle’s vertical midline,
AH, and the diagonal line connecting the summed tangential and linear velocity vectors for
the top and bottom, CG.

A

D

H

B

E

I

C

F

G
Figure 3. Locating the instant center of rotation. Segments AB, DE, and HI show the
linear velocity vectors for our example of vL = 0.5c. The tangential velocity vector is√
1.75c , and at the top it adds to the linear velocity vector, the total terminating at point

C. At the botom, the tangential points to the rear, and the net velocity is negative, located
at point G. The center of the circle is at point D. But the instant center of rotation has
dropped below the center and is at point F, located where the diagonal of CG crosses the

midline (AH) of the circle.
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When we look at the velocity vector arrangements for our 0.5c example, Figure 4, we see
the tangential velocity vector, AB, is tangent to the circle and is perpendicular to the true
center. The centripetal velocity vector, AC, is perpendicular to the line connecting point A
and the instant circle of rotation, ICR.

Center

ICR

A

B C

Figure 4. The line AB is perpendicular to the line connecting the center of the circle to a
point on the curcumference, point A. Line AC is perpendicular to the line connecting the
instant cneter of rotation to point A. Line BC represents the lineal velocity vector, AB is
the tangential velocity vector, and AC is the centripetal velocity vector. This example

represents a spinning object moving at 0.5c to the right.

If the linear kinetic energy is zero, then the centripetal velocity is
√
2c, matching the

tangential velocity:

if vL = 0, then vC =
√
2c2 − 2v2L =

√
2c2 − 2 (0c) =

√
2c (21)

In the case where the linear velocity is 0.5c, the centripetal velocity is
√
1.5c:

if vL = 0.5c, then vC =
√
2c2 − 2v2L =

√
2c2 − 2 (0.5c)2 =

√
1.5c (22)
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When the linear kinetic energy is the speed of light, and the object would appear to
roll, the centripetal velocity is zero:

if vL = 0, then vC =
√
2c2 − 2v2L =

√
2c2 − 2 (1c) = 0 (23)

Centripetal velocity is distinct from tangential velocity if there is any motion relative
to the observer. Let us compare the equations of tangential and centripetal velocity side by
side:

vT =
√
2c2 − v2L vC =

√
2c2 − 2v2L (24)

When these equations are graphed, we can see the different behavior the equations
display as velocity approaches the speed of light:

Lineal Velocity
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Figure 5. A comparison of tangential velocity and centripetal velocity. They are identical
when the object is at rest, but diverge as the object’s speed increases relative to the

observer. Curve A represents the tangential velocity; curve B is the centripetal velocity.

In physics texts, equations of centripetal velocity seem always to be described as the
tangential velocity, and the two are usually considered equivalent and interchangeable. The
tangential velocity equation commonly used in textbooks describes objects in the observer’s
frame of reference, without discussion of what relative motion does to centripetal velocity.
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Translational motion changes the nature of the centripetal velocity vector, causing the tan-
gential and centripetal velocity vectors to diverge or split from one another. The equations
of tangential and centripetal velocity are identical when the spinning object is at rest rela-
tive to an observer, when the linear velocity is zero, but we must use the proper centripetal
velocity equation when working with an object that is translationally moving relative to the
observer.

3.4. The Frequency of Rotation is Determined by the Centripetal Velocity

Centripetal velocity is related to the period of time a spinning object takes to complete
a revolution:

vC =
2πr

period
(25)

As seen in Figure 5, an increase in the object’s linear velocity decreases the centripetal
velocity, which ranges from

√
2c to zero, as the relative velocity goes from rest to the speed

of light.

A decrease in the centripetal velocity means there is an increase in the period, or time,
to complete a revolution. A long period of rotation implies a low frequency, as period and
frequency are reciprocals. This gives us:

frequency =
vC
2πr

(26)

Substituting in the value of vC , and factoring out c, gives:

frequency =

√
2c2 − 2v2L
2πr

=

√
c2 − v2L√
2πr

=
c

√
1− v2L

c2√
2πr

(27)

3.5. The Base Frequency

The observer has an inherent frequency, and will see himself at rest, since his linear
velocity is zero: vL = 0. The observer’s frequency is thus:

base frequency =
c√
2πr

(28)
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The base frequency is his clock rate, what he uses to measure time. Other clock rates
must be measured against his base frequency.

3.6. The Ratio of Observed to Base Frequency

To measure the frequency of an object moving relative to him, the observer will compare
the frequency of the observed to his own base frequency:

frequency of observed
base (observer) frequency

=

 c

√
1−

v2
L
c2√

2πr


(

c√
2πr

) =

√(
1− v2L

c2

)
(29)

Alternatively, presented in a more standard form:

base (observer) frequency =
frequency of observed√(

1− v2L
c2

) (30)

Atomic clocks depend on frequency to mark time. We would time an event using our
clocks, in our reference frame, and our base frequency. A moving object will display a lower
frequency and thus a lower clock rate to us, and we, to them. This is why we observe that
a moving clock runs more slowly than ours, easily explaining special relativity.

4. Two Steps to Time

Time is a two-part phenomenon, coming from both the consequences of the 2c radial
expansion and from the nature of the hypervortices comprising the surface of the hyperverse.

4.1. Hyperverse Time

The radial expansion of the hyperverse carries the hyperverse surface volume into the
fourth dimension, the "true" direction of the expansion, at twice the speed of light, giving
us the one way arrow of time and the sense of the fleetingly short nature of a moment. The
relentless passage of time comes from the relentless 2c radial expansion. Time is everywhere
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in the universe; there is no escape from it, as we are not just in the universe, we are part of
it, made of the same atoms of space that comprise both matter and the void of space. In
hyperverse theory, matter is composed of the quanta of space, a topic discussed in detail in
[7] and [9].

As calculated in [8], there are 1.506 × 10104 frame advances per second. This gives us
a quantization of time at about 6.639 87× 10−105 seconds per frame, for our quantum level.
The duration is short before we move to the next frame. When we say events are far in
the future or far in the past is surprisingly in tune with what is happening, as these events
occurred in a location actually at great distances from us. The distance concept that seems
so natural to use is actually correct as the universe is not anywhere near where it was just
a few seconds ago.

The number of frame advances is presumed to be a constant for all points in the universe,
as the universe is the same age everywhere and all points on the surface experience the same
frame rate. This portion of time could be referred to as hyperverse time and can be counted
in frame advances. Dividing the age of the universe by our value of the time for one frame
advance gives us about 6.5× 10121 frame advances since the expansion started.

4.2. Atomic Time

Due to a constant tangential velocity of
√
2c, every vortex has the same amount of

energy, mc2. All observers, regardless of their state of motion would agree that ’their’
quanta have this total quantity of energy.

Self-observers in uniform, non-accelerated motion, see their own energy as fully allocated
to spin. They see themselves as being at rest, and have no perceived linear movement, and no
linear kinetic energy; all of the energy is rotational and the spin rate is seen as the maximum
allowed. Because the total quantity of energy of spinning atoms of space is everywhere
identical, and all observers can claim that they themselves are at rest, their vortices all have
identical spin rates, and thus, identical clock rates.

If two observers are moving at constant, but different, velocities relative to each other,
each can claim they are at rest and it is the other who is moving. Each observer deduces
that the other has a decreased centripetal velocity, and therefore a lower frequency and clock
rate.

Considering energy, since the total energy per atom of space is the same for each actor,
if one perceives the other is moving, the mover must have linear kinetic energy, which could
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only have been at the expense of rotational kinetic energy. The faster the other actor appears
to move, the more linear kinetic energy they would appear to possess. This decreases the
energy that is seen to be allocated to spin, lowering perceived rotational kinetic energy and
frequency of rotation, translating to lower perceived clock rates.

Understanding centripetal velocity is key to this concept. The vortices of both actors
have the same energy and spin rates, and each self-observes the same frequency and inherent
clock rate, but they would see the other actor’s vortices, moving relative to them, as having
a lower spin rate, or frequency, and thus a lower clock rate. We see the consequence of
apparent energy allocation as relativity.
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