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The fiery end of a journey to the event horizon of a black hole 

 
Douglas L. Weller 

 
 Light transmitted towards the event horizon of a black hole will never complete 

the journey.  Either the black hole will disintegrate or the light itself will disintegrate 

before the light can reach the event horizon.  The incomplete journey illustrates how 

locations where time is dilated observe and experience an increase in the rate that things 

disintegrate.  When a mass is compacted so that the Schwarzschild radius is near its 

surface, the very significant increase in time dilation at the surface results in a 

corresponding increase in the rate of surface disintegration, explaining the existence of 

quasars. 

 The progress of light transmitted radially toward the event horizon, located at 

the Schwarzschild radius R, of a black hole can be monitored with the use of measuring 

stations located between a light transmitter and the event horizon. 

 The distance and the time for light to travel from the light transmitter to each 

measuring station can be calculated from the Schwarzschild metric1, 

 

€ 

c 2dτ 2 = c 2(1− R
r
)dt 2 − dr2

(1− R /r)
− r2dθ 2 − r2 sin2θ( )dϕ 2 . (1) 

 The first step in the calculation is to determine values for time dilation and 

length contraction for each measuring station located a radial distance r from the center 

of the black hole. Each measuring station uses the proper time coordinate 

€ 

τ  to measure 

proper travel time and the proper radial coordinate 

€ 

ρ  to measure proper radial distance. 

The Schwarzschild time coordinate t is used to measure coordinate time. 



 

Page 2 of 8 Doug Weller 

 The light transmitter and the measuring stations are defined to be stationary with 

respect to the Schwarzschild space coordinates (r, 

€ 

θ ,

€ 

ϕ ) so that 

€ 

dr = dθ = dϕ = 0.  This 

reduces the Schwarzschild metric to  

 

€ 

c 2dτ 2 = c 2(1− R
r
)dt 2 . (2) 

 Solving equation (2) for 

€ 

dτ  yields  

 

€ 

dτ = dt 1− R
r

. (3) 

 In order to preserve general relativity it is necessary that at every location length 

contraction is equal to the inverse of time dilation;2 therefore, 

€ 

dr
dρ

=
dτ
dt

, allowing 

equation (3) to be rewritten as 

 

€ 

dρ =
dr

1− R /r
. (4) 

 Equation (3) and equation (4) can be used to obtain the distance from the light 

transmitter to a measuring station located at any radial location 

€ 

r ≥ R, as measured 

using proper radial coordinate 

€ 

ρ  as well as the travel time measured using either time 

coordinate t or proper time coordinate 

€ 

τ . 

 Equation (4) provides the integrand, 

€ 

dr
1− R /r

, used to calculate the proper 

radial distance 

€ 

Δρ  between the light transmitter located at radial location 

€ 

rL  and a 

measuring station located at radial location 

€ 

rM , i.e., 

 

€ 

Δρ =
dr

1− R /rrM

rL

∫ . (5) 
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 The speed of light is the same in every reference frame, that is 

€ 

dρ
dτ

= c  and 

therefore, 

€ 

dρ = cdτ .  Substituting this value into equation (4) yields 

€ 

dτ =
dr

c 1− R /r
 

providing the integrand 

€ 

dr
c 1− R /r

 used to calculate the proper time interval 

€ 

Δτ  (i.e., 

proper travel time) for light to travel from the light transmitter located at radial location 

€ 

rL  to the measuring station located at radial location 

€ 

rM , i.e.,  

 

€ 

Δτ =
dr

c 1− R /rrM

rL

∫ . (6) 

 From equation (3) and equation (4), 

€ 

dρ
dτ

=
dr
dt

1
1− R /r

.  Recognizing that for light 

€ 

dρ
dτ

= c  yields 

€ 

dt =
dr

c(1− R
r
)

, providing the integrand 

€ 

dr

c(1− R
r
)

 used to calculate the time 

interval 

€ 

Δt  (i.e., coordinate travel time) for light to travel from the light transmitter 

located at radial location 

€ 

rL  to the measuring station located at radial location 

€ 

rM , i.e., 

 

€ 

Δt =
dr

c 1− R /r( )rM

rL

∫ . (7) 

 The distance and travel time from the light transmitter to the event horizon can 

be calculated by treating the Schwarzschild radius R as the location of a measuring 

station.  

 The proper distance

€ 

Δρ  from the light transmitter to the event horizon is 

calculated by performing the integral in equation (5) with the limits R and 

€ 

rL .  The 

integral is convergent indicating proper distance

€ 

Δρ  is finite. 
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 The proper time interval

€ 

Δτ is calculated by performing the integral in equation 

(6) with the limits R and 

€ 

rL . The integral is convergent indicating proper time 

interval

€ 

Δτ is finite. 

 The time interval

€ 

Δt is calculated by performing the integral in equation (7) with 

the limits R and 

€ 

rL . The integral is divergent indicating time interval

€ 

Δt  is infinite. 

 When measured by coordinate time t, the journey of light to the event horizon is 

not completed in finite time.  Nevertheless, using equations (7), (5) and (6), every finite 

value of time t that occurs on light’s journey from the light transmitter to the event 

horizon can be mapped, respectively, to a specific value of radial distance r, a specific 

value of proper radial distance 

€ 

ρ , and a specific value of proper time 

€ 

τ . 

 It is generally accepted that black holes are not eternal, but will disintegrate 

within approximately 1055 years.3   Assuming that light from the light transmitter does 

not disintegrate first, a radial location 

€ 

rD  reached by the light in 1055 years can be 

calculated using equation (7).  The calculations shows 

€ 

rD>R.  

 The proper distance

€ 

Δρ  travelled by the light before the black hole disintegrates 

is calculated performing the integral in equation (5) with the limits 

€ 

rD  and 

€ 

rL .  The 

proper distance

€ 

Δρ  calculated with these limits is less than the proper distance to the 

event horizon. 

 The proper time interval

€ 

Δτ  is calculated performing the integral in equation (6) 

with the limits 

€ 

rD  and 

€ 

rL .  The proper time interval

€ 

Δτ  calculated with these limits is 

less than the proper time interval required for light to reach the event horizon. 

 As shown above, light emitted from the transmitter will not reach the event 

horizon of a black hole, in coordinate time or in proper time, before the black hole 

disintegrates. 
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 While in the above example it was assumed that light is able to propagate for 

1055 years, it is possible that the light itself will disintegrate before the black hole 

disintegrates.  For this case, the radial location 

€ 

rD  where the light disintegrates can be 

used in equations (5) and (6) to, respectively, calculate the corresponding proper 

distance

€ 

Δρ  and proper time interval

€ 

Δτ  to the location of light disintegration.  The 

calculations confirm that any light disintegration will occur before the light reaches the 

event horizon. 

 The journey of a particle from the location of the light transmitter to the event 

horizon of the black hole is similar to the journey of light as described above, except 

however, the particle’s journey will be shorter in both distance and time.  This is 

because the particle will travel at a slower velocity.  The particle will also be less hardy 

than light and therefore will disintegrate before the black hole disintegrates at a 

measuring station between the light transmitter and the event horizon. The radial 

location 

€ 

rD  of the measuring station where the particle disintegrates can be used in 

equations (6) and (5) to calculate the corresponding proper distance

€ 

Δρ  and proper time 

interval

€ 

Δτ  for light to reach the measuring station where the particle disintegrates 

before reaching the event horizon.  

 In essence, the particle experiences an increase in its rate of disintegration as it 

approaches the event horizon of a black hole.  This increase in disintegration rate is a 

logically necessary result of general relativity.  Increasing entropy, as observed from a 

low gravity field, occurs everywhere as the universe unwinds.  The same increase in 

entropy occurs at a faster rate when observed or experienced in a higher gravity field 

because of the dilation of time there.  As the particle approaches the event horizon of 

the black hole, time dilation approaches infinity, which accelerates the increase of 
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entropy accordingly.  As long as the particle (or if the particle were very hardy, the 

black hole) disintegrates in finite coordinate time, this will be experienced by the 

particle as an increase in the rate of its own disintegration (or that of the black hole) 

preventing the particle from reaching the event horizon. 

 The very significant increase in the rate of disintegration that is observed and 

experienced near the event horizon of a black hole, and by logical extension in space 

near the Schwarzschild radius of any mass, makes for a very intriguing picture of the 

collapse of a star, explaining the existence of quasars.  Consider, for example, the 

following potential scenario of the collapse of a supergiant, from the perspective of the 

surface, as the star compacts and the surface makes a run at the Schwarzschild radius.  

At the start, tremendous mass and acceleration produces a seemingly unstoppable 

downward momentum.   

 As the surface of the collapsing star approaches the Schwarzschild radius, the 

rate of disintegration increases noticeably.  Before reaching the Schwarzschild radius, 

surface layers begin to radiate into space.  The closer to the Schwarzschild radius the 

surface approaches, the faster the rate of disintegration.  If the surface of the collapsing 

star could draw very near the Schwarzschild radius, the rate of disintegration would be 

almost infinite. 

 The loss of mass at the surface of the collapsing star will hinder the surface’s 

attempt to overtake the Schwarzschild radius.  The lost of mass at the surface will 

reduce the volume V of the star, correspondingly decreasing the radius r in accordance 

with the well known relationship 

 

€ 

r = V 3
4π

3 . (8) 
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 The loss of mass will also decrease the value of the Schwarzschild radius R  in 

accordance with the well known relationship 

 

€ 

R =
2GM
c 2

, (9) 

where M represents the mass of the star and G represents the gravitational constant.

 Because of varying density, mass M may only roughly correspond to volume V; 

nevertheless, equation (8) and equation (9) clearly indicate that removal of mass at the 

surface of the collapsing star will reduce R at a significantly faster rate than it will 

reduce r. Therefore, the loss of mass at the surface will result in an increase in the 

distance between r and R pushing the Schwarzschild radius back down away from the 

surface.  The collapsing surface may continue for a time charging down toward the 

Schwarzschild radius, but it will never catch it. When the downward momentum of the 

collapsing star is spent, the Schwarzschild radius will remain below the surface.  During 

the collapse, however, a large amount of mass, perhaps many times the size of our own 

sun, will have been almost instantaneously turned to radiation. 

 From a distance, this inferno of a proportion rarely matched in the universe will 

at first be, at least partially, masked by the dilation of time.  However, when the collapse 

slows or pauses allowing the Schwarzschild radius to descend back down away from the 

surface, a faster playing clip of the remnants of the blaze may be released, that even in 

its diminished form can dazzle.   
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