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1 Introduction

This paper is an extract of the paper in ref. [1]. For further informations, a
more formal approach to the topic and clarifications on the notation refer to the
above mentioned article.

Products of distributions are usually handled by means of Colombeau alge-
bras (see [2] and [3]). The method I propose in the [1] is much more elementary.
However, I am not a professional mathematician and therefore the correctness
of my method should be evaluated by an expert of the subject.

2 Initial discussion

Aim of this paragraph is to provide the reader with an elementary introduction
to the product of distributions developed in [1]. To keep the discussion simple,
we start from a specific example which is also the obvious starting point for
defining products of distributions, namely δ2(x).

Given any function f ∈ C0, a possible way to define the Dirac delta function
is by means of the limit of a sequence of functions as follows:

lim
n→∞

nf(nx) = Aδ(x) (1)

where A =
∫ +∞
−∞ f(x)dx is the amplitude of the delta. Now, we suggest that the

most straightforward way to define the δ2(x) is also by means of the limit of a
sequence of functions which elements are precisely the square of the elements of
the sequence defined above:

lim
n→∞

n2f2(nx) = Bδ2(x) (2)

Unfortunately we do not know how to evaluate B which is the amplitude of the
δ2. To be constituent with the (1), we may think that where B =

∫ +∞
−∞ f2(x)dx.

However, given any f , to have a consistent definition, we should have B = A2

which is not always the case. Even worst, given A, if we pick a function f such
that

∫ +∞
−∞ f(x)dx = A, B depends from the choice of f .
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Let us see how to overcome the above issues. Given any function g ∈ C0,
we will call the limit of the following sequence:

lim
n→∞

n2g(nx) (3)

a δ2-like generalised functions.
We notice a very interesting property of the δ2-like generalised functions

defined above. Given any g1 ∈ C0 and the relevant h1 generalised function
defined as:

h1 = lim
n→∞

n2g1(nx) (4)

if we choose a second function g2 = α2g1(αx), with α > 0, and we consider the
relevant generalised function h2 defined as:

h2 = lim
n→∞

n2g2(nx) = lim
n→∞

n2α2g1(nαx) (5)

then, using the notation A(g) =
∫ +∞
−∞ g(x)dx, we see that by a changing of the

scaling of g1 by a factor of α, we increase the amplitude of g1 by α2 and we
shrink its shape by α so the net effect is to change the integral by a factor of α
and therefore we have:

A(g2) = αA(g1) (6)

at the same time we have also:

h1 = lim
n→∞

n2g1(nx) = lim
n→∞

(nα)2g1(nαx) (7)

= lim
n→∞

n2g2(nx) = h2

which shows clearly that h1 and h2 are the same generalised function because,
in the (x, y) plane and for n that goes to infinity, the two sequences of functions
shrink (along x) and grow (along y) in the same way. For example, if α is an
integer, the sequence for h2 is a sub-sequence of the one for h1.

The key point here is that the integral of the functions gi is not a good criteria
for determining the amplitude of s δ2-like generalised functions. We may say
that there is a degree of freedom in defining the same δ2 (i.e. the scaling factor of
f2) that has an impact on A(f2). We propose that, to determine the amplitude
of a δ2-like generalised function, we may compare it with a separate reference
δ2-like generalised function in order to remove the dependency from the scaling
factor. For example we may use, as a reference function, the (2) itself. Let us
see how to do that.

Suppose we want to evaluate the product u(x)δ′(x), with u(x) the Heaviside
function, which is known in the literature to be a δ2-like function having ampli-
tude −δ2(x) (compare with [4]). To be consistent with the (2), we have in this
case:

u(x)δ′(x) = lim
n→∞

n2(f(nx))(−1)f ′(nx) = Bδ2(x) (8)

where A(f) = 1 (i.e. δ function of amplitude 1) and:

f(x)(−1) =

∫ x

−∞
f(τ)dτ (9)
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we mesure the amplitude of the (8) with respect to the δ2 given by the (2)
meaning that we set B = A((f(x))(−1)f ′(x))/A(f2(x)). We have:

u(x)δ′(x) =

the product uδ′︷ ︸︸ ︷∫
(f(x))(−1)f ′(x)dx∫

f2(x)dx︸ ︷︷ ︸
ref. func. δ2

δ2(x) = −δ2(x) (10)

Where the above result is independent from f because for any possible f we
choose, integrating by parts, we have:

∫ +∞

−∞
(f(x))(−1)f ′(x)dx =

equal to zero︷ ︸︸ ︷[
(f(x))(−1)f(x)

]+∞
−∞
−
∫ +∞

−∞
(f(x))2dx (11)

Of corse, with the above definition of product, if we want to evaluate δ2 itself,
we have B = A(f2)/A(f2) = 1 which is consistent.

So, to sum up, we define the product of the δ with itself to be δ2, which is a
mathematical object with its own right to exist outside D′, and, by the above
method, we evaluate all the δ2-like product of distributions with respect of the
reference function given by it.

In order to evaluate all possible products of distributions, we define a whole
set of reference generalised functions as follows:

Definition. Let f(x) ∈ Cp be any function such that
∫ +∞
−∞ f(x)dx = 1. We

define the generalised functions ηp,q, with q > p to be the following limit:

ηp,q(x) = lim
n→∞

nq
dp

dxp
(f(nx))q−p with p, q ∈ Z (12)

What kind of generalised function are the ηp,q? If the sequence of distributions
fn = nqf (p)(nx), in the (12), converges to ηp,q, then fn

nq−p−1 converges to δ(p).
So, with an abuse of notation, we may say that:

ηp,q = A
δ(p)

np−q+1
with A depending on f (13)

The ηp,q are therefore the limit of sequences of functions that are shaped like
δ(p) and that, when we take the limit, grow at a lower or faster rate with respect
to it (according to the sign of p-q+1). Moreover, we will call p the order and q
the growing index of the generalised function.

The (12) tells us what is the real nature of the ηp,q and that we may rename
them as for the following table:
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ηp,q p=-1 p=0 p=1 p=2 p=3
q=5 · · · · · · · · · · · ·

q=4 · · · d
dx (δ3(x)) d2

dx2 (δ2(x)) · · ·

q=3 δ3(x) d
dx (δ2(x)) δ′′(x)

q=2 · · · δ2(x) δ′(x)

q=1 (δ2(x))(−1) δ(x)

q=0 u(x)

Figure 1 : η functions

Finally, we say that a function f ∈ C0 is a function of order p if it is possible
to find a function g such that 0 < |A(g)| <∞ and g(p) = f .

The following proposition applies:

Proposition. Given any function f ∈ Cm with m ∈ N,
∫ +∞
−∞ f(x)dx = 1 and

f(x) ≥ 0 for each x ∈ R, the product of k generalised functions, having gen-
erating function fi = dpi

dxpi
(f(x))qi−pi with orders pi < m and growing indexes

qi ∈ Z:
h = ηp1,q1ηp2,q2 · · · ηpk,qk (14)

is a representatives of the following generalised function:

h ∼ ap (f∗)

ap
(

dp

dxp fq−p
)ηp,q =

∫ +∞
−∞ xpf∗dx∫ +∞

−∞ xp dp

dxp fq−pdx
ηp,q (15)

where f∗ = f1f2 · · · fk, p < m is the order of the function f∗ and q = q1q2 · · · qk,
provided that the condition q > p is verified.
Moreover, the amplitude evaluated above is independent from f .
In particular, if q = p + 1, the above product h is an element of D′ and it is
equal to:

h =

∫ +∞
−∞ xpf∗dx∫ +∞
−∞ xp dp

dxp fdx
δ(p) (16)

In the next paragraph we give some examples of product of distributions
evaluated using the method described above. For the definition of the ap and
the bp coefficients, the structure of a generalised function and the notation
R(ηp,q), present in the next paragraph, refer to [1].

3 Equalities and examples of products in D’

By using the above defined product, we can prove interesting equalities involving
products among elements of D′. We will see some examples in this paragraph.
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Example 6.1: Evaluate the following product:

u(x)δ′(x) (17)

We use the proposition above. Before we start we need to choose the function
f . In this example we need C1 class functions, we choose the most simple one
which is a triangular window centred in the origin with base 2 and hight 1:

f(x) = (x+ 1)u(x+ 1)− 2xu(x) + (x− 1)u(x− 1) (18)

we have q = q1 + q2 = 2 and f∗(x) = f (−1)(x)f (1)(x) and therefore:

u(x)δ′(x) = lim
n→∞

n2 f (−1)(nx)f (1)(nx) (19)

We can now evaluate all the coefficients of the structure of our generalised
function:

b0 =
∫ +∞
−∞ f∗(x)dx∫ +∞
−∞ f2(x)dx

=
− 2

3
2
3

= −1 coeff. of η0,2 = δ2

b1 = a1 =
∫ +∞
−∞ xf∗(x)dx = 1

2 coeff. of η1,2 = δ′

(20)

where b1 = a1 because for p = 1, p + 1 = q and therefore, the coefficient a1 is
independent from f . We have:

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) +R

(
η2,2

)
(21)

We may also express u(x)δ′(x) as an equality among products of elements of D′

(compare with [4]), by ignoring the higher order terms:

u(x)δ′(x) = −δ2(x) +
1

2
δ′(x) (22)

There is a second way to get to the same result. By using the proposition above
we evaluate the the product of u(x)δ(x). We have:

u(x)δ(x)→ n f (−1)(nx)f(nx)→ q = 1 (23)

From which we have:

u(x)δ(x) =
1

2
δ(x) +R

(
η1,1

)
(24)

We use the Leibniz rule, which we know to work with our definition of product.
By taking the derivatives of both sides of the above equality we have:

δ2(x) + u(x)δ′(x) =
1

2
δ′(x) +R

(
η2,2

)
(25)

as expected.
Example 6.2: Evaluate the following product:

u(x)δ
′′
(x) (26)
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We use the proposition above. Before we start we need to choose the function
f . In this example we need C1 class functions, we choose again the (18) of the
previous example.
We have q = q1 + q2 = 3 and f∗(x) = f (−1)(x)f (2)(x). and therefore:

u(x)δ
′′
(x) = lim

n→∞
n3 f (−1)(nx)f (2)(nx) (27)

We can now evaluate all the coefficients of the structure of our generalised
function:

a0 =
∫ +∞
−∞ f∗(x)dx = 0 coeff. of η0,3 = δ3

b1 =
∫ +∞
−∞ xf∗(x)dx∫ +∞
−∞ x d

dx f2(x)dx
= − 3

2 coeff. of η1,3 = (δ2)′

b2 = a2 =
∫ +∞
−∞ f∗(x)x2dx = 1

2 coeff. of η2,3 = δ
′′

(28)

where b2 = a2 because for p = 2, p + 1 = q and therefore, the coefficient a2 is
independent from f . We have:

u(x)δ
′′
(x) = −3

2
η1,3 +

1

2
δ
′′

+R
(
η3,3

)
(29)

We see that u(x)δ
′′
(x) /∈ D′ since its component δ

′′
is negligible with respect of

η1,3 and therefore u(x)δ
′′
(x) ∼ − 3

2η
1,3.

Example 6.3: Evaluate the following product:

δ(x)δ′(x) (30)

We use the proposition above. Before we start we need to choose the function
f . In this example we need C1 class functions, we choose once again the (18)
of the previous example.
We have q = q1 + q2 = 3 and f∗(x) = f(x)f (1)(x). and therefore:

δ(x)δ′(x) = lim
n→∞

n3 f(nx)f (1)(nx) (31)

We can now evaluate all the coefficients of the structure of our generalised
function:

a0 =
∫ +∞
−∞ f∗(x)dx = 0 coeff. of η0,3 = δ3

b1 =
∫ +∞
−∞ f∗(x)xdx∫ +∞
−∞

d
dx f2(x)xdx

= 1
2 coeff. of η1,3 = (δ2)′

a2 =
∫ +∞
−∞ f∗(x)x2dx = 0 coeff. of η2,3 = δ

′′

(32)

we have:

δ(x)δ′(x) =
1

2
η1,3 +R

(
η3,3

)
(33)

Once again, there is a second way to get the same result. By taking twice the
derivative of both sides of the (24), and rearranging the terms we get:

δ(x)δ′(x) = −1

3
u(x)δ

′′
(x) +

1

6
δ
′′
(x) +R

(
η3,3

)
(34)
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We see easily that, taking into account the (29), the (33) and the (34) are in
perfect agreement.

Example 6.4: Evaluate the following product:

sign2(x)δ(x) (35)

We use the proposition above. We have:

sign2(x)δ(x) = lim
n→∞

n (2f (−1)(nx)− 1)2f(nx)→ q = 1 (36)

which is actually the sum of three products one of which is trivial. We have:

sign2(x)δ(x) =
1

3
δ(x) +R

(
η1,1

)
(37)

compare with [3] §1.1 ex. iii and with [5].

References

[1] V. Nardozza. Product of Generalised Functions - version v4 or most recent.
www.vixra.org/abs/1304.0158 (2013)

[2] J. F. Colombeau. Multiplication of Distributions. Springer-Verlag (1992)

[3] M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer. Geomet-
ric Theory of Genralized Functions with Applications to General Relativity.
Mathematics and its Applications, Vol. 537, Kluwer Academic Publishers,
Dordrecht (2001).

[4] B. P. Damyanov. Multiplication of Schwartz Distributions and Colombeau
Generalized Functions. Journal of Applied Analysis Vol. 5, No. 2 (1999), pp.
249-260.

[5] V. Nardozza. Product of Distributions Applied to Discrete Differential Ge-
ometry. www.vixra.org/abs/1211.0099 (2012) version v9 or most recent.

7


