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Neutrosophic Science 
 

(Preface) 
 
 
 Since the world is full of indeterminacy, the 
neutrosophics found their place into contemporary 
research. 

We now introduce for the first time the notions of 
neutrosophic measure and neutrosophic integral. 
We develop the 1995 notion of neutrosophic probability 
and give many practical examples. 
 
 Neutrosophic Science means development and 
applications of neutrosophic 
logic/set/measure/integral/probability etc. and their 
applications in any field. 
 
 It is possible to define the neutrosophic measure 
and consequently the neutrosophic integral and 
neutrosophic probability in many ways, because there 
are various types of indeterminacies, depending on the 
problem we need to solve. 
Indeterminacy is different from randomness. 
Indeterminacy can be caused by physical space 
materials and type of construction, by items involved in 
the space, or by other factors. 
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Fig. 1. An example of indeterminacy.  

What is tossed, 1, 3 or 5? 
 
 Neutrosophic measure is a generalization of the 
classical measure for the case when the space contains 
some indeterminacy. 

Neutrosophic probability is a generalization of the 
classical and imprecise probabilities. 
Several classical probability rules are adjusted in the 
form of neutrosophic probability rules. 
 

Finally, the neutrosophic probability is extended 
to  n-valued refined neutrosophic probability. 
 

The author 
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1.1. Introduction. 
Let <A> be an item. <A> can be a notion, an 

attribute, an idea, a proposition, a theorem, a theory, etc. 
And let <antiA> be the opposite of <A>; while <neutA> 
be neither <A> nor <antiA> but the neutral (or 
indeterminacy, unknown) related to <A>. 

For example, if <A> = victory, then <antiA> = 
defeat, while <neutA> = tie game. 

If <A> is the degree of truth value of a proposition, 
then <antiA> is the degree of falsehood of the 
proposition, while <neutA> is the degree of 
indeterminacy (i.e. neither true nor false) of the 
proposition. 

Also, if <A> = voting for a candidate, <antiA> = 
voting against that candidate, while <neutA> = not 
voting at all, or casting a blank vote, or casting a black 
vote. 

In the case when <antiA> does not exist, we 
consider its measure be null { m(antiA)=0 }. And 
similarly when <neutA> does not exist, its measure is 
null { m(neutA) = 0 }. 
 

1.2. Definition of Neutrosophic Measure. 
We introduce for the first time the scientific notion 

of neutrosophic measure. 
 
 Let X  be a neutrosophic space, and Σ  a                     
σ -neutrosophic algebra over X . A neutrosophic 
measure ν  is defined by for neutrosophic set A∈ Σ  by 

3: X Rν → , 
( ) ( )A = m(A), m(neutA),m(antiA)ν ,                       (1) 
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with antiA = the opposite of A, and neutA = the neutral 
(indeterminacy) neither A nor anti A (as defined 
above); 
for any A X⊆  and A∈ Σ , 
m(A) means measure of the determinate part of A; 
m(neutA) means measure of indeterminate part of A; 
and m(antiA) means measure of the determinate part of 
antiA; 
where ν  is a function that satisfies the following two 
properties: 

a) Null empty set: ( ) ( )0 0 0, ,ν Φ = .  

b) Countable additivity (or σ -additivity): For all 
countable collections { }n n L

A
∈

   of      disjoint 

neutrosophic sets in Σ , one has:  

 1n n n n
n L n L n Ln L

A m( A ), m( neutA ), m( antiA ) ( n )m( X )ν
∈ ∈ ∈∈

   = − −   
  
  

where X is the whole neutrosophic space, and
1n n nn L

n L n L

m( antiA ) ( n )m( X ) m( X ) m( A ) m( antiA ).
∈∈ ∈

− − = − = ∩ 
 (2) 

1.3. Neutrosophic Measure Space. 
A neutrosophic measure space is a triplet ( )X , ,νΣ . 

 
1.4. Normalized Neutrosophic Measure. 

A neutrosophic measure is called normalized if 
( ) ( )1 2 3X ( m( X ),m( neutX ),m( antiX )) x ,x ,xν = = ,  

with 1 2 3 1x x x+ + = ,  
and 1 2 30 0 0x ,x ,x≥ ≥ ≥ .                      (3) 

Where, of course, X is the whole neutrosophic measure 
space. 
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1.5. Finite Neutrosophic Measure Space. 
Let A X⊂ . We say that ( ) ( )1 2 3A a ,a ,aν =  is finite if 

all 1a , 2a , and 3a  are finite real numbers. 
 A neutrosophic measure space ( )X , ,νΣ  is called 

finite if ( ) ( )X a,b,cν =  such that all a, b, and c are finite 

(rather than infinite). 
 

1.6. σ -Finite Neutrosophic Measure. 
 A neutrosophic measure is called σ -finite if X can 
be decomposed into a countable union of 
neutrosophically measurable sets of fine neutrosophic 
measure. 
 Analogously, a set A  in X is said to have a              
σ -finite neutrosophic measure if it is a countable union 
of sets with finite neutrosophic measure. 
 

1.7. Neutrosophic Axiom of Non-Negativity. 
 We say that the neutrosophic measure ν  satisfies 
the axiom of non-negativity, if:  

 A∀ ∈ Σ , ( ) ( )1 2 3 1 2 30 if 0 0, and 0A a ,a ,a a ,a aν = ≥ ≥ ≥ ≥ . (4) 

 While a neutrosophic measure ν , that satisfies 
only the null empty set and countable additivity axioms 
(hence not the non-negativity axiom), takes on at most 
one of the ±∞  values.  
 

1.8. Measurable Neutrosophic Set and 
Measurable Neutrosophic Space. 
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 The members of Σ  are called measurable 
neutrosophic sets, while ( )X ,Σ  is called a measurable 

neutrosophic space. 
  

1.9. Neutrosophic Measurable Function. 
A function ( ) ( )X Yf : X , Y ,Σ → Σ , mapping two 

measurable neutrosophic spaces, is called neutrosophic 
measurable function if ( )1 Y XB , f B−∀ ∈ Σ ∈ Σ  (the inverse 

image of a neutrosophic Y -measurable set is a 
neutrosophic X -measurable set). 

 
1.10. Neutrosophic Probability Measure. 

As a particular case of neutrosophic measure ν  is the 
neutrosophic probability measure, i.e. a neutrosophic 
measure that measures probable/possible propositions         

( )0 3Xν− +≤ ≤ ,                    (5) 

where X is the whole neutrosophic probability sample 
space.  
We use nonstandard numbers, such 1+ for example, to 
denominate the absolute measure (measure in all 
possible worlds), and standard numbers such as 1 to 
denominate the relative measure (measure in at least one 
world). Etc. 
We denote the neutrosophic probability measure by NP  
for a closer connection with the classical probability P . 
 

1.11. Neutrosophic Category Theory. 
 The neutrosophic measurable functions and their 
neutrosophic measurable spaces form a neutrosophic 
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category, where the functions are arrows and the spaces 
objects. 
 We introduce the neutrosophic category theory, 
which means the study of the neutrosophic structures and 
of the neutrosophic mappings that preserve these 
structures. 
 The classical category theory was introduced 
about 1940 by Eilenberg and Mac Lane. 
 A neutrosophic category is formed by a class of 
neutrosophic objects X ,Y ,Z ,... and a class of 
neutrosophic morphisms (arrows) , , ,...ν ξ ω  such that: 

a) If ( )Hom X ,Y  represent the neutrosophic 

morphisms from X  to Y , then ( )Hom X ,Y and 

( )Hom X ',Y '  are disjoint, except when X X '=  

and Y Y '= ; 
b) The composition of the neutrosophic 

morphisms verify the axioms of 
i) Associativity: ( ) ( )ν ξ ω ν ξ ω=     

ii) Identity unit: for each neutrosophic 
object X  there exists a neutrosophic 
morphism denoted Xid , called 
neutrosophic identity of X  such that 

Xid ν ν=  and Xidξ ξ=  
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                                             Fig. 2 
 

1.12. Properties of Neutrosophic Measure.  
 

a) Monotonicity.   
 If 1A  and 2A  are neutrosophically measurable, with 

1 2A A⊆ , where 
  ( ) ( ) ( )( )1 1 1 1A m A ,m neutA ,m( antiA )ν = , 

and  ( ) ( ) ( )( )2 2 2 2A m A ,m neutA ,m( antiA )ν = , 

then 
1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( )m A m A m neutA m neutA m antiA m antiA≤ ≤ ≥ . (6) 

Let ( ) ( )1 2 3X x ,x ,xν =  and ( ) ( )1 2 3Y y , y , yν = . We say 

that ( ) ( )X Yν ν≤ , if 1 1x y≤ , 2 2x y≤ , and 3 3x y≥ .  

b)  Additivity. 
If 1 2A A = Φ , then ( ) ( ) ( )1 2 1 2A A A Aν ν ν= + ,    (7) 

where we define 
( ) ( ) ( )1 1 1 2 2 2 1 2 1 2 3 3a ,b ,c a ,b ,c a a ,b b ,a b m( X )+ = + + + − ,       (8) 

 
where X is the whole neutrosophic space, and  
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3 3 1 2( ) ( ) ( ) ( ) ( )

( ).

a b m X m X m A m B m X a a

m antiA antiB

+ − = − − = − −
= ∩

(9) 
  

1.13. Neutrosophic Measure Continuous from 
Below or Above. 

A neutrosophic measure ν  is continuous from 
below if, for 1 2A ,A ,...  neutrosophically measurable sets 
with 1n nA A +⊆  for all n , the union of the sets nA  is 
neutrosophically measurable, and 

  ( )
1

n n
n

n

A lim Aν ν
∞

→∞=

  = 
 
                                 (10) 

And a neutrosophic measure ν  is continuous from above 
if for 1 2A ,A ,...  neutrosophically measurable sets, with 

1n nA A +⊇  for all n , and at least one nA  has finite 
neutrosophic measure, the intersection of the sets nA  and 
neutrosophically measurable, and 

   ( )
1

n n
n

n

A lim Aν ν
∞

→∞=

  = 
 
 .                              (11) 

 
1.14. Generalizations. 

1.14.a. Neutrosophic measure is a 
generalization of the fuzzy measure, 
because when ( ) 0m neutA =  and 

m(antiA) is ignored, we get  
( ) ( )( ) ( )0 0A m A , , m Aν = ≡ ,                                           (12) 

and the two fuzzy measure axioms are verified: 
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a) If A = Φ , then ( ) ( )0 0 0 0A , ,ν = ≡  

b) If A B⊆ , then ( ) ( )A Bν ν≤ . 

1.14.b. The neutrosophic measure is 
practically a triple classical measure: 
a classical measure of the 
determinate part of a neutrosophic 
object, a classical part of the 
indeterminate part of the 
neutrosophic object, and another 
classical measure of the determinate 
part of the opposite neutrosophic 
object. Of course, if the 
indeterminate part does not exist (its 
measure is zero) and the measure of 
the opposite object is ignored, the 
neutrosophic measure is reduced to 
the classical measure. 

  
1.15. Examples. 
Let’s see some examples of neutrosophic objects 

and neutrosophic measures. 
a) If a book of 100 sheets (covers included) has 3 

missing sheets, then 
( ) ( )97 3 0book , ,ν = ,                                                 (13) 

where ν is the neutrosophic measure of the book 
number of pages. 

b) If a surface of 5 × 5 square meters has cracks 
of 0.1 × 0.2 square meters, then 

( ) ( )24 98 0 02 0surface . , . ,ν = ,                                                   (14) 

where ν is the neutrosophic measure of the surface. 
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c) If a die has two erased faces then   
( ) ( )4 2 0die , ,ν = , 

where ν is the neutrosophic measure of the die’s 
number of correct faces. 

d) An approximate number N  can be interpreted 
as a neutrosophic measure N d i= + , where d  
is its determinate part, and i  its indeterminate 
part. Its anti part is considered 0. 

 For example if we don’t know exactly a quantity 
q , but only that it is between let’s say [ ]0 8 0 9q . , .∈ , 
then 0 8q . i= + , where 0.8 is the determinate part of    
q , and its indeterminate part [ ]0 0 1i , .∈ .  
 We get a negative neutrosophic measure if we 
approximate a quantity measured in an inverse 
direction on the x-axis to an equivalent positive 
quantity. 
 For example, if [ ]6 4r ,∈ − − , then 6r i= − + , where  -
6 is the determinate part of r, and [ ]0 2i ,∈  is its 
indeterminate part. Its anti part is also 0. 
 

e) Let’s measure the truth-value of the 
proposition  
G = “through a point exterior to a line one can 
draw only one parallel to the given line”. 
The proposition is incomplete, since it does not 
specify the type of geometrical space it belongs 
to. In an Euclidean geometric space the 
proposition G is true; in a Riemannian 
geometric space the proposition G is false 
(since there is no parallel passing through an 
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exterior point to a given line); in a 
Smarandache geometric space (constructed 
from mixed spaces, for example from a part of 
Euclidean subspace together with another part 
of Riemannian space) the proposition G is 
indeterminate (true and false in the same time). 

( ) (1,1,1)Gν = .                                               (15) 
f) In general, not well determined objects, 

notions, ideas, etc. can become subject to the 
neutrosophic theory. 
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Chapter 2: 
Introduction to Neutrosophic Integral 
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 2.1. Definition of Neutrosophic Integral 

 
Using the neutrosophic measure, we can define a  

neutrosophic integral. 
The neutrosophic integral of a function f is written as: 
 

X
fdν                                  (16) 

 
where X is the a neutrosophic measure space,  
and the integral is taken with respect to the neutrosophic 
measure ν .  
 
 Indeterminacy related to integration can occur in 
multiple ways: with respect to value of the function to be 
integrated, or with respect to the lower or upper limit of 
integration, or with respect to the space and its measure. 
 

2.2. First Example of Neutrosophic Integral: 
Indeterminacy Related to Function’s Values 

Let 

fN: [a, b]  R                                             (17) 

where the neutrosophic function is defined as: 

fN (x) = g(x)+i(x)                                         (18) 
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with g(x) the determinate part of fN(x), and i(x) the  
indeterminate part of fN(x),where for all x in [a, b] one 
has: 

( ) [0, ( )], ( ) 0i x h x h x∈ ≥ .                                                              (19)
 

Therefore the values of the function fN(x) are 
approximate, i.e.  

( ) [ ( ), ( ) ( )]Nf x g x g x h x∈ + .                                                           (20) 

 

                   Y          

 

                                          

                                                     g(x)+h(x)                                                          
fN(x) 

 g(x)                                                                

 

                   O                  a                                                              b                  x                              

Fig. 3 

 

Similarly, the neutrosophic integral is an 
approximation: 
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( ) ( ) ( )
b b b

N

a a a

f x d g x dx i x dxν = +                                       (21)
 

2.3. Second Example of Neutrosophic Integral: 
Indeterminacy  Related to the Lower Limit 

Suppose we need to integrate the function  

f: X R                                                       (22) 

on the interval [a, b] from X, but we are unsure about 
the lower limit a.  Let’s suppose that the lower limit “a” 
has a determinant part “a1” and an indeterminate part ε, 
i.e. 

a = a1+ε                                                                  (23) 

where 

 
[0,0.1]ε ∈ .                                                                                          (24) 

                      Y                                                   

                                                                                            

f(x) 

                                                               

 

                     O                 a1  a1+0.1                                               b                 x                              

Fig. 4 
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Therefore 

1

1( ) i
b b

X

a a

fd f x dxν = −                                  (25) 

where the indeterminacy i1 belongs to the interval: 

1

1

0.1

1 [0, ( ) ]
a

a

i f x dx
+

∈  .                                                  (26) 

Or, in a different way: 

1

2

0.1

( ) i
b b

X

a a

fd f x dxν
+

= +                                             (27)
 

where similarly the indeterminacy i2 belongs to the 
interval: 

1

1

0.1

2 [0, ( ) ]
a

a

i f x dx
+

∈  .                                                        (28) 
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Introduction to Neutrosophic Probability 

  



 
 

28 
 

 

3.1. First Example of Indeterminacy. 
  

The idea of extending the neutrosophic principle, 
which is based on indeterminacy, to probability, came to 
my mind when I tossed a die outside, on my stairs made 
of concrete, but the concrete was broken, had small 
cracks, and the die got stuck on an edge in a crack. There 
was no clear face to see, hence it was an indeterminacy.  

 

 
Fig. 5. Indeterminate die state 

 
 Thus tossing a die on a cracked surface one can 
get: 
     { }1 2 3 4 5 6  , , , , , , indeterminacy . 
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 This is its sample space. 
 A cubic die (with 12 edges and 8 vertices) tossed 
on an irregular surface has the chance to fall on a vertex 
or on an edge in a small slit or crack (not on one of its 
faces). Therefore, tossing the die can turn on an 
indeterminate outcome. 
 Whence, the neutrosophic probability TNP  of 

tossing, for example { }1  is less than 
1

6
, since there are 

seven possible outcomes ( ) 1
1

6T <NP , not like in classical 

probability where ( ) 1
1

6
=P . 

The more irregularities on the surface (as below), 
the more indeterminacy occurs: 

 
Fig. 6 
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 In the classical probability the die and the surface 
it rolls on are considered perfect, hence there is no 
indeterminacy due to the materials. There is only 
randomness. 
 In neutrosophic probability one has, besides 
randomness, indeterminacy due to construction materials 
and shapes of the die and of the surface. 
 If the die is not regular, and the faces have 
different areas, or the die’s center of mass is not in the 
geometrical die’s center, then the probability will be 
proportional to the face’s surface, and the closer is the 
center of mass to a face the higher the probability for that 
face. 
 The die’s mass of inhomogeneous density will 
influence the probability outcome. 
 
 3.2. Second Example of Indeterminacy. 

 
Let’s consider a regular die (with six faces), 
having two faces whose print is erased (let’s say 
faces 5 and 6). Then: 

 ( ) ( ) ( ) ( ) 1
1 2 3 4

6
= = = =NP NP NP NP , 

 ( ) ( )5 6 0= =NP NP , 

           while ( ) 2

6
indeterm =NP ,                                (29) 

when the die is tossed on a regular surface. 
  
 3.3. Third Example of Indeterminacy. 
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On a surface with cracks there is a chance that 
flipping a coin, the coin falls into a crack and gets stuck 
on its edge; then we have again indeterminacy. 

NP (Head) = NP (Tale) < ½                       (30) 
and the sample space is {Head, Tale, indeterminacy}. 
 

 

 
Fig. 7. Indeterminacy related to tossing a coin 

 
3.4. Fourth Example of Indeterminacy. 
An urn with two types of votes: A-ballots and B-
ballots, but some votes are deteriorated, and we 
can’t determine if it’s written A or B. Therefore, 
we have indeterminate votes. 
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 In many practical applications we may not even 
know the exact number of indeterminate votes, or of A-
ballots, or of B-ballots. Therefore, the indeterminacy is 
even bigger. 
 
 3.5. Fifth Example of Indeterminacy. 

If there are two candidates A and B for presidency, 
and the probability that A wins is 0.46, it doesn’t 
mean that the probability that B wins is 0.54, since 
there may be blank votes (from the voters not 
choosing any candidate) or black votes (from the 
voters that reject both candidates). 

For example, the probability that B wins could be 
0.45, while the difference 1-0.46-0.45 = 0.09 would 
be the probability of blank and black votes together. 
Therefore we have a neutrosophic probability: 

( ) ( )0 46 0 09 0 045A . , . , .=NP  

 
3.6. Sixth Example of Indeterminacy. 
If a meteorology center reports that the chance of 
rain tomorrow is 60%, it does not mean that the 
chance of not raining is 40%, since there might be 
hidden parameters (weather factors) that the 
meteorology center is not aware of.  

 There might be an unclear weather, for example, 
cloudy and humid day, that some people can interpret 
as rainy day and others as non-rainy day. The 
ambiguity arouses indeterminacy. 

 
3.7. The Seventh Example of Indeterminacy. 
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If some drug tests are 95% reliable, it doesn’t 
mean that 5% they are unreliable, because there 
might be some unknown effects of the drugs that 
we are not sure they are beneficial or harmful. 

 
3.8. The Eighth Example of Indeterminacy. 
A roulette wheel has 38 numbers. But, having 
been used too much, several of its numbers have 
been erased, and one cannot read.  
Therefore, we get again indeterminacy. 

 
 3.9. Ninth Example of Indeterminacy. 

A deck of 52 cards has 3 damaged cards that we 
are unable to read. Then we have indeterminacy. 
If the damaged cards are visibly broken, we don’t 
have equiprobability. 

 
 3.10. Tenth Example of Indeterminacy. 

Probability in a soccer game. 
Classical probability is incomplete, because it 
computes for a team the chance of winning, or the 
chance of not winning, nut not all three chances as 
in neutrosophic probability: winning, having tie 
game, or losing. 
 
3.11. Eleventh Natural Example of 
Indeterminacy. 

 Indeterminacy occurs (yet rarely) whether a series 
of newborns will be girls or boys, since some transgender 
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children can have undetermined (ambiguous) sex, i.e. 
partially male and partially female). 
  

3.12. Example of a Neutrosophic Continuous 
Random Variable. 

  
The previous examples used neutrosophic discrete 
random variables. 
 
Let’s now consider a spinner as bellow: 
                                                       90 o 
 
 
 
 
 
                            180 o                                                360 o 
                                     180                                           
 
 
 
 
                                                           270 o 
                                                                  

                               Fig. 8 
 

The continuous sample space is [ ]0 360,Ω = . Let’s 
say that spinner’s table is erased between 270o – 360o, so 
if the spinner gets in this area (IVth quadrant) we are not 
able to read a number, we consider it indeterminacy 
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zone. Therefore ( ) 1

4
indeterm =NP . We have a continuous 

random variable. 
 

[ ]( ) [ ]( ) ( ) ( )( )90 100 90 100 90 100

10 90 260

360 360 360

, ch , ,ch indeterm ,ch ,

, ,

 =  

 =  
 

NP

(31) 
  

3.13. First Types of Indeterminacies. 
 One has at least two types of indeterminacies:  
 

a) The indeterminacy due to the space (for 
example the surface on which the dices are 
tossed on, the urn on which the votes are 
introduced, etc.). 
 

b) The indeterminacy due to the items contained 
into the physical space (for example the defect 
dice, the unclear ballots, etc.). 

 
 
3.14. Second Types of Indeterminacies. 

 
a) We have indeterminacy not related to a 

particular event, which is a constant 
indeterminacy. For example, tossing a regular 
die on a irregular surface which has cracks. No 
matter what outcome we look for 1, 2, ..., or 6, 
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the indeterminacy (chance that the die falls in a 
crack and has an unclear reading) is the same. 

b) But we may have indeterminacy related to each 
event. For example, let the sample space be: {ݕ݊݊ݑݏ	ݕܽ݀, ,ݕܽ݀	ݕ݊݅ܽݎ  {ݕܽ݀	݈݈݂ܽݓ݊ݏ
as a weather forecast for one weak from today. 
A metheorologist approximately computes the 
chance of each event, using various parameters, 
such as: statistics of past weather, today’s 
weather, etc. and gives the following (imprecise) 
probabilities: {[0.1, 0.2], [0.5, 0.7], [0.3, 0.6]},                   (32) 
where  [0.1, 0.2] means the probability of 
sunny day, 
  [0.5, 0.7] probability of rainy day, 
and  [0.3, 0.6] probability of snowfall day. 
Thus, we have different indeterminacies which 
are related to the occurrence of each event. 
Neutrosophically, we can write it as: 
(ݕܽ݀	ݕ݊݊ݑݏ)ܲܰ  = 0.1 + ݅ଵ,				where	݅ଵ ∈[0.0, 0.1],  
(ݕܽ݀	ݕ݊݅ܽݎ)ܲܰ  = 0.5 + ݅ଶ,				where	݅ଶ ∈[0.0, 0.2],  
and ܰܲ(݈݈݂ܽݓ݊ݏ	ݕܽ݀) = 0.3 + ݅ଷ,				 where	݅ଷ ∈ [0.0, 0.3] 
with ݅ଵ, ݅ଶ, ݅ଷ indeterminacies. 
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Let’s compute the union of events  
NP(sunny day or snowfall day). ܰܲ(ݕ݊݊ݑݏ	ݕܽ݀) + =(ݕܽ݀	݈݈݂ܽݓ݊ݏ)ܲܰ (0.1 + ݅ଵ) + (0.3 + ݅ଷ)= (0.1 + 0.3) + (݅ଵ + ݅ଷ)= 0.4 + ݅ସ, 
where ݅ସ ∈ [0.0, 0.1] + [0.0, 0.3] = [0.0, 0.4]. 
This could also be computed simply as in 
classical imprecise probability: ܲ(ݕ݊݊ݑݏ	ݕܽ݀	ܚܗ	݈݈݂ܽݓ݊ݏ	ݕܽ݀) =[0.1, 0.2] + [0.3, 0.6] = [0.4, 0.8] = 0.4 + ݅ସ, 
where  ݅ସ ∈ [0.0, 0.4]. 
Similarly for intersection of events: ܰܲ	(ݕ݊݊ݑݏ	܌ܖ܉	݈݈݂ܽݓ݊ݏ	ݕܽ݀)= (0.1 + ݅ଵ) ∙ (0.3 + ݅ଷ)= (0.1)(0.3)+ {0.3݅ଵ + 0.1݅ଷ + ݅ଵ݅ଷ}= 0.03+ {[0.0, 0.3] + [0.0, 0.3]+ [0.0, 0.3]} = 0.03 + ݅ହ, 
where ݅ହ ∈ [0.0, 0.9]. 
This is because: {ݕܿܽ݊݅݉ݎ݁ݐ݁݀݊ܫ} ∙ {ݎܾ݁݉ݑ݊} = {ݕܿܽ݊݅݉ݎ݁ݐ݁݀݊݅} and {ݕܿܽ݊݅݉ݎ݁ݐ݁݀݊݅} ∙ ={ݕܿܽ݊݅݉ݎ݁ݐ݁݀݊݅}  .{ݕܿܽ݊݅݉ݎ݁ݐ݁݀݊݅}
Classically: 
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(ݕܽ݀	݈݈݂ܽݓ݊ݏ	܌ܖ܉	ݕܽ݀	ݕ݊݊ݑݏ)ܲ =[0.1, 0.2] ∙ [0.3, 0.6] = [0.03, 0.12] = 0.03+݅ହ, 
where ݅ହ ∈ [0.0, 0.09]. 

Similarly for negation of events: ܰܲ(ܜܗܖ	ܽ	ݕ݊݊ݑݏ	ݕܽ݀) = 1 − (0.1 + ݅ଵ)= 1 − 0.1 − ݅ଵ = 0.9 − ݅ଵ == 0.8 + ݅, ݅	݁ݎℎ݁ݓ ∈ [0.0, 0.1]. 
Classically: ܲ(ܜܗܖ	ܽ	ݕ݊݊ݑݏ	ݕܽ݀) = 1 − [0.1, 0.2]= [0.8, 0.9] = 0.8 − ݅,	 where	݅ ∈ [0.0, 0.1]. 

c) Or mixt indeterminacies: to some events there is 
a chance of indeterminacy > 0, while to other 
events there is not. 
A similar example as the previous, but we   
change the data: {[0.1, 0.2], [0.5, 0.7], 0.3}.                            (33) 
Therefore, there is indeterminacy related to the 
first and second events, but not to the third. 
 

3.15. Distinction between Indeterminacy and 
Randomness. 

 Indeterminacy is different from randomness. 
Indeterminacy is due to the defects of the construction of 
the physical space (where an event can occur), and/or to 
the imperfect construction of the physical objects 
involved in the event, etc.  
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 Therefore, neutrosophic probability analyses both: 
the random phenomena, and the indeterminacy related to 
these phenomena. 
 In consequence, neutrosophic probability deals 
with two types of variables: random variables and 
indeterminacy variables, and two types of processes: 
stochastic process and respectively indeterminate 
process. 
 

3.16. Neutrosophic Random Variables. 
A classical random (stochastic) variable is subject 

to change due to randomness, while the neutrosophic 
random (stochastic) variable is subject to change due to 
both randomness and indeterminacy. 

A neutrosophic random variable’s values represent 
the possible outcomes and possible indeterminacies. The 
randomness and indeterminacy can be objective or 
subjective. 

Alike classical random variables, the neutrosophic 
random variables can be classified as: - discrete, that is it can take a value in a specified 

list of exact values and a finite number of 
indeterminacies; - continuous, that is it can take a value or an 
indeterminacy in an interval, or in a collection of 
intervals; 
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- mixt, that is it can take a value or indeterminacy 
either in a specified list of exact values, or in an 
interval or in a collection of intervals (mixture 
of discrete and continuous). 

Another classification, alike classical random 
variables, for neutrosophic random variables is - finite; having of course a finite number of 

possible outcomes and possible indeterminacies; - infinite; having an infinite number of possible 
outcomes or indeterminacies.  

An infinite neutrosophic random variable can be - countably; - or uncountably. 

A neutrosophic random variable X is admissible if 
it is possible to compute the chance that the value of X is 
less than any particular number, together with its 
corresponding indeterminacy and its nonchance. Which 
is equivalent to the possibility of computing the chance 
that the value of X is in any range, range that must be 
mapped to a subset of the neutrosophic sample space ߥΩ. 
 

3.17. Many Possible Neutrosophic Measures 
and Probabilities.  
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 We may be able to define the neutrosophic 
measure and neutrosophic probability in many ways, 
since we work with approximations and indeterminacies. 
Their definitions may depend on each particular 
application. 
 

3.18. Definition of Neutrosophic Probability    
 
 Neutrosophic probability (or likelihood) is a 
particular case of the neutrosophic measure. It is an 
estimation of an event (different from indeterminacy) to 
occur, together with an estimation that some 
indeterminacy may occur, and the estimation that the 
event does not occur. 
 Neutrosophic Probability and Neutrosophic 
Statistics started in 1995, but was not developed and 
applied as much as neutrosophic logic and neutrosophic 
set that are widely used. 
 
 A neutrosophic random variable is a variable 
that may have an indeterminate (unclear, ambiguous) 
outcome. 
 A neutrosophic random (stochastic) process 
represents the evolution over time of some neutrosophic 
random values. It is a collection of neutrosophic random 
variables. 
 The classical probability deals with fair dice, 
coins, roulettes, spinners, decks of cards, random walks, 
while neutrosophic probability deals with unfair, 
imperfect such objects, variables and processes. 
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 The neutrosophic probability is a generalization of 
the classical probability because, when the chance of 
indeterminacy of a stochastic process is zero, these two 
probabilities coincide. 
 

3.19. Neutrosophic Probability vs. Imprecise 
Probability. 

 
 In Imprecise Probability ( IP ), the probability of 
an event A, 
  ( ) ( ) [ ]0 1A a,b ,= ⊆IP                                (34) 

is an interval included into [ ]0 1, , not a crisp number. 
 The Neutrosophic Probability that an event A 
occurs is  
  

( ) ( ) ( ) ( )( ) ( )A ch A ,ch neutA ,ch antiA T ,I ,F= =NP ,        (35) 

 
but sometimes instead of “neutA” we say 
“indeterminacy related to A” and we denote it by 
“indetermA”; also we note “antiA” by A ; 
where T ,I ,F  are standard or nonstandard subsets of the 
nonstandard unitary interval ]-0, 1+[, and T  is the chance 
that A occurs, denoted ch(A); I  is the indeterminate 
chance related to A, ch(indetermA); and F  is the chance 
that A does not occur, ( )ch A .  

So, NP  is a generalization of the Imprecise 
Probability as well. 

Therefore, using other notations we have: 

( ) ( ) ( ) ( )( )AA ch A ,ch indeterm ,ch A=NP .                       (36) 
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 We used the notations T  (truth), I  
(indeterminate), and F  (falsehood) in order to be 
consistent with those from neutrosophic logic and 
neutrosophic set, widely spread. 
 In the most general case, T ,I ,F  are standard or 
non-standard subsets of the unitary non-standard interval 

0 1,− +   , in order to be able to make distinction between 

absolute sure event (sure event in all possible worlds -- 
whose probability value is 1+), and relative sure event 
(i.e. sure event in at least one world, but not in all words 
-- whose probability is 1, where 1<1+). 
Similarly, for absolute impossible event (impossible 
event in all possible worlds -- whose probability is 0− ), 
and relative impossible event (i.e. impossible event in at 
least one world, but not in all words -- whose probability 
is 0− , where 0− <0).  
  1 1 ε+ = +  and 0 0 ε− = − ,                          (37) 
where ε is a very tiny positive number. 
 For technical applications we’ll use only standard 
sets and the standard unit interval [ ]0 1, . And throughout 
this book, with few exceptions. 
 Let’s note by majuscules the subsets T ,I ,F  and by 
lower-case letters the crisp numbers t,i, f . For the crisp 
neutrosophic probability, when T ,I ,F are just standard or 
non-standard numbers in 0 1,− +   , in the most general 

case one has: 
  0 3t i f− +≤ + + ≤ ,                                    (38) 
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considering that the tree components t,i, f  are 
independent (as in neutrosophic logic and in 
neutrosophic set). 
 If only two components are dependent, while the 
third one is independent from them, then 
  0 2t i f− +≤ + + ≤ .                                    (39) 
 If all three components are dependent two by two, 
then 
  0 1t i f− +≤ + + ≤ .                                     (40) 
 Let’s consider the standard case. 

1) If 1t i f+ + =  one has complete probability (the 
most common application), or normalized 
probability. 

2) If 1t i f+ + <  one has incomplete probability 
(because the source of information or the 
stochastic process is incomplete, i.e. not well 
known). 

3) If 1t i f+ + >  one has paraconsistent probability 
(because of conflicting sources of information that 
transmit us contradictory information; for 
example one source may compute the chance that 
an event occurs using some criteria (parameters 
influencing the event), but it is not able to compute 
the chance that the event does not occur, while 
another independent source of information may 
compute the chance that the event does not occur 
using different criteria (different parameters), but 
not able to compute the chance that the event 
occur. 
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 Similarly, for computing the chance of 
indeterminacy of the stochastic process by a third 
independent source of information. Therefore it is 
possible to get the sum 1t i f+ + ≠ .                            (41) 
  

3.20. Sigma-Algebra of Events. 
A sigma-algebra or σ -algebra of X , in the 

measure theory, is a collection of subsets of the set X  
such that 

1) Φ ∈Σ ; 
2) X ∈Σ ; 
3) If A∈Σ  then the complement of A , ( )A ∈ ΣC ; 

4) If 1 2 nA ,A ,...,A ∈Σ , then the countable union 

1 2 nA A ,..., A ∈Σ   . 
  

3.21. Definition of Classical Probability. 
The classical probability measure is a mapping: 

  [ ]0 1: X ,→P                                            (42) 
where X  is a sample space, such that ( ) 1X =P  and P  is 

additive for the union 
  ( ) ( ) ( )A B A B= +P P P  for A B φ= ,   (43) 

even for infinite unions: 

  ( )
00

i n
nn

A A
≥≥

  = 
 

P P                                 (44) 

for iA  disjoint two by two, that lie in the sigma-algebra 
of events Σ of X .   
 

3.22. Neutrosophic Sigma-Algebra of Events. 
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The neutrosophic sigma-algebra of events νΣ  will 
be defined in the same way, with the distinction that the 
set X  contains some indeterminacy. Therefore there are 
some subjects of X  that are indeterminate parts. 
  

3.23. Neutrosophic Probability Measure. 
The neutrosophic probability measure is a 

mapping: 
[ ]3
0 1X ,→NP :                                                           (45) 

where X  is a neutrosophic sample space (i.e. X  contains 
some indeterminacy), 

  ( ) ( ) ( ) ( )( )AA ch A ,ch indeterm ,ch A=NP ,   (46) 

or, using other notations, we have: 
( ) ( ) ( ) ( )( )A ch A ,ch neutA ,ch antiA=NP                          (47) 

where indetermA means the indeterminacy that may 
occur when trying to have event A occurs, 
such that the neutrosophic probability of the whole space 
X has the property that: 

( ) ( )X , ,α β γ=NP , 

where -0≤ α, β, γ ≤ 1+, and 

0 3α β γ− +≤ + + ≤ .                                            (48) 
Therefore, the sum of the three components of the 
neutrosophic probability of the whole sample space is 
not required to be equal to 1 as in classical probability, 
since there cases where it is strictly less than 1, or 
strictly greater than 1. 
We also have: 
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( ) ( ) ( ) ( ) ( )( )A BA B ch A ch B ,ch indeterm ,ch A B∪= + NP

(49) 
for A B φ= , and for infinite unions: 

( ) ( )
0 000

n
n

n n A n
nnn

A ch A ,ch indeterm ,ch A
≥

−−−− −−−−

∪
≥≥≥

    =        
 NP (50) 

for nA  disjoint two by two that lie in the neutrosophic 
sigma algebra of events. 

Remark. Although in most cases the sum of the 
three components is 1 (in normalized probability): 
ch(A) + ch(neutA) + ch(antiA) = 1                           (51) 
or using similar notations 
ch(A) + ch(indetermA) + ( )ch A = 1,                          (52) 

we still recommend to computing all three components  
because it arises cases when the probability is not 
normalized.  
 

3.24. Neutrosophic Probability Mass 
Function. 

A Neutrosophic Probability Mass Function (݂݊݉)	is a function ݂:	ߥΩ ⟶ [0, 1]ଷ ݂(ݔ) ∈ [0, 1]ଷ for all ݔ ∈ (ݔ)݂ ,Ωߥ = (	ܿℎ(ݔ), ܿℎ(݅݊݀݁݉ݎ݁ݐ௫), ܿℎ(̅ݔ)	)	).   (53) 
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A Neutrosophic Event is any subset ܧ of the 
neutrosophic sample space	ߥΩ. The neutrosophic 
probability of any event ܧ is defined as: ܰܲ(ܧ) = ൫∑ ܿℎ(ݔ), ܿℎ(݅݊݀݁݉ݎ݁ݐா), ∑ ܿℎ(ݕ)௬∈ாത௫∈ா ൯.    

(54) 

 
3.25. Neutrosophic Probability Axioms. 

They are extensions of Kolmogorov axioms from 
classical probability. (ߥΩ,  ,is a neutrosophic probability space (ܲܰ,ܨܰ
where ߥΩ is a neutrosophic sample space, NF is a 
neutrosophic  event space, and NP is a neutrosophic 
probability measure. 

First Axiom. 

The neutrosophic probability of an event A ܰܲ(ܣ) = (	ܿℎ(ܣ), ܿℎ(݅݊݀݁݉ݎ݁ݐ), ܿℎ(̅ܣ)	), (55) 

where  ܿℎ(ܣ) ≥ 0, 
  ܿℎ(݅݊݀݁݉ݎ݁ݐ) ≥ 0, 

  ܿℎ(̅ܣ) ≥ 0,	 for any ܣ ∈  ;ܨܰ
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with the notations that "݅݊݀݁݉ݎ݁ݐ" means 
indeterminacy related to event A, and ̅ܣ is the opposite 
event of A (the antiA event). 

Second Axiom. 

 The neutrosophic probability of the sample space 
is between -0 and 3+. ܰܲ(ߥΩ) =(∑ ܿℎ(ݔ), ܿℎ(݅݊݀݁݉ݎ݁ݐఔஐ)௫∈ఔஐ , ܿℎ(ܽ݊݅ݐ	ߥΩ	)),      (56) 

where  −0 ≤ ∑ ܿℎ(ݔ) + ܿℎ(݅݊݀݁݉ݎ݁ݐఔஐ) + ܿℎ(ܽ݊݅ݐ	ߥΩ) ≤ 3ା,௫∈ఔஐ  
(57) 

with the notation ݅݊݀݁݉ݎ݁ݐఔஐ means total 
indeterminacy that may occur in the neutrosophic sample 
space. 

For the classical complete (normalized) sample space,  

ch(anti ߗߥ)= 0, but for incomplete sample space  

ch(anti ߗߥ) > (58)                                                           .0 

Third Axiom. 

 This axiom is concerned with neutrosophic σ-
additivity: ܰܲ(ܣଵ ∪ ଶܣ ∪ … ) = 
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=ቀ∑ ܿℎ(ܣ)ஶୀଵ , ܿℎ൫݅݊݀݁݉ݎ݁ݐభ∪మ∪…൯, ܿℎ(ܣଵ ∪ ଶܣ ∪ …തതതതതതതതതതതതതതതത )ቁ,
 (59) 

where ܣଵ,  ଶ,… is a countable sequence of disjoint (orܣ
mutually exclusive) neutrosophic events. 

If we relax the third axiom we get a neutrosophic 
quasiprobability distribution. 

 

3.26. Consequences of Neutrosophic 
Probability Axioms. 

a) Monotonocity. 

If A and B are two neutrosophic events, with 				ܣ ⊆ (ܣ)ܲܰ with ,ܤ = (ܿℎ(ܣ), ܿℎ(݅݊݀݁݉ݎ݁ݐ), ܿℎ(̅ܣ)) ܰܲ(ܤ) = ൫ܿℎ(ܤ), ܿℎ(݅݊݀݁݉ݎ݁ݐ), ܿℎ(ܤത)൯, 
then   ܿℎ(ܣ) ≤ ܿℎ(ܤ),                                 (60) 

  ܿℎ(݅݊݀݁݉ݎ݁ݐ) ≤ ܿℎ(݅݊݀݁݉ݎ݁ݐ),  (61) 

  ܿℎ(̅ܣ) ≥ ܿℎ(ܤത).                                   (62) 

b) Neutrosophic Probability of the Empty Set. 
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ܰܲ(∅) = (0, 0, 0).                                          (63) 
 

c) Bounding the Neutrosophic Probability. ܰܲ(ܣ) = (ܿℎ(ܣ), ܿℎ(݅݊݀݁݉ݎ݁ݐ), ܿℎ(̅ܣ))          
where  0 ≤ ܿℎ(ܣ) ≤ 1,                                               (64) 

  	0 ≤ ܿℎ(݅݊݀݁݉ݎ݁ݐ) ≤ 1,                    (65) 

   0 ≤ ܿℎ(̅ܣ) ≤ 1.                                    (66) 

d) Neutrosophic Addition Law (or Neutrosophic Sum 
Rule): 

For any two neutrosophic events A and B we have: ܰܲ(ܣ ∪ (ܤ = ൫ܿℎ(ܣ) + ܿℎ(ܤ) − ܿℎ(ܣ ∩ ,(ܤ ܿℎ(݅݊݀݁݉ݎ݁ݐ∪), ܿℎ(ܣ ∪  .തതതതതതത)൯ܤ
(67) 

If ܣ ∩ ܤ = ∅, then ܰܲ(ܣ ∪ (ܤ = ൫ܿℎ(ܣ) + ܿℎ(ܤ), ܿℎ(݅݊݀݁݉ݎ݁ݐ∪), ܿℎ(ܣ ∪  .തതതതതതത)൯ܤ
(68) 

e) Neutrosophic Inclusion-Exclusion Principle. ܰܲ(ߥΩ ∖ (ܣ = ൫ܿℎ(ߥΩ) − ܿℎ(ܣ), ܿℎ൫݅݊݀݁݉ݎ݁ݐఔஐ∖൯, ܿℎ(ܣ)൯. 
(69) 
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Also, if ܣ ⊆ ܤ)ܲܰ :then ,ܤ ∖ (ܣ = ൫ܿℎ(ܤ) − ܿℎ(ܣ), ܿℎ൫݅݊݀݁݉ݎ݁ݐ.∖ ൯, ܿℎ(ܤ ∖  .തതതതതതത)൯ܣ
(70) 

 

3.27. Interpretations of the Neutrosophic 
Probability. 

 Neutrosophic Probability can also have two 
interpretations, as the classical probability: 

a) Objective form, or describing objective state of 
affairs, whose most popular version is the 
neutrosophic frequentist probability; and 

b) Subjective form, or a degree of belief in an event 
to occur. 
 
3.28. Neutrosophic Notions. 

If an experiment produces indeterminacy, that is 
called a neutrosophic experiment. Collecting all 
results, including the indeterminacy, we get the 
neutrosophic sample space (or the neutrosophic 
probability space) of the experiment. 
The neutrosophic power set of the neutrosophic 
sample space is formed by all different collections 
(that may or may not include the indeterminacy) of 
possible results. These collections are called 
neutrosophic events. 
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3.29. Example with Neutrosophic Frequentist 
Probability. 

Let’s consider a more concrete example. 
 Using the Frequentist Neutrosophic Probability 
we can (approximately of course) determine what is the 
chance that the die tosses as indeterminate. Similarly as 
in classical probability, we can use a computer 
simulation, based upon connections between 
neutrosophic mathematical model (i.e. models involving 
indeterminacy) and our everyday life.  Neutrosophic 
statisticians can use simulations to approximate the 
probability of die uncertainty tossed on a specific 
irregular surface.  With computers a large number of 
trials can be simulated in short time. 
 Suppose we obtain that the chance of getting 
indeterminacy ( ) 0 10ch indeterm .=  for tossing a regular 

die on an irregular surface. The neutrosophic sample 
space is then: 
  { }1 2 3 4 5 6  Ω= , , , , , , indetermν .                     (71) 

Then, the neutrosophic probability of tossing event A  is 

  ( ) ( ) ( ) ( )( )AA ch A ,ch indeterm ,ch A=NP    (72) 

where ( )ch ⋅  mans “chance”, and A  is the opposite event 

of A (chance that antiA occurs). 
 For example: 

 
( ) ( ) ( ) ( )( )

( )

11 1 1

1 0 10 1 0 10
0 10 5 0 15 0 10 0 75

6 6

{ }ch { } ,ch indeterm ,ch { }

. .
, . , . , . , .

=

− − = ⋅ = 
 

NP
       (73) 

 ( ) ( )2 6...= = =NP NP . 
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In general: 
 ( ) ( ) ( )( ) ( )

A
A ch A ,ch indeterm ,ch A =  

 
NP .           (74) 

Hence 

 
( ) ( ) ( )( ) ( )

{ }( ) { }( )( ) ( )( )
1

2 3 4 5 6

1 1 1

2 3 4 5 6 1
, , , ,

ch ,ch indeterm ,ch

ch , , , , ,ch indeterm ,ch

 =  
 

=

NP
 

 ( )( )5 0 15 0 10 0 15 0 75 0 10 0 15. , . , . . , . , .= = .                    (75) 

Also, for  
 

1 2
1 2 1 2 1 2

or
or ch or ,ch indeterm ,ch or 

 
 

         =              
NP  

 ( ) ( )
1 2

1 2 1 2
or

ch ch ,ch indeterm ,ch and 
 
 

      = +       
 

{ }( )( ) ( )( )
( )
01 5 0 15 0 10 3 4 5 6 0 30 0 10 4 0 15

0 30 0 10 0 60

. . , . ,ch , , , . , . , .

. , . , . .

= + = ⋅

=
    (76) 

 
In general: 

 

( ) ( )
( A or B)

A or B ch A ch B ,ch indeterm ,ch A or B
     = +           

NP

(77) 
for A B φ= . 
 For neutrosophic non-exclusive events in general 
one has: 
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A or B
A or B ch A or B ,ch indeterm ,ch A or B

      =                
NP

 
( ) ( ) ( ) ( ) ( )( )ch A ch B ch A B ,ch indeterm ,ch Aand B= + −  . 

(78) 
Whence, if { } { }1 2 3  2 3 4 5A , , , B , , ,= = , then: 

{ } { }( )
( ) ( ) ( ) { } { }( )( )

1 2 3 2 3 4 5

3 0 15 4 0 15 2 0 15 0 10 4 5 6 1 6

, , or , , ,

. . . , . ,ch , , and ,

=

= + −

NP
 

   { }( )( ) ( )0 75 0 10 6 0 75 0 10 0 15. , . ,ch . , . , .= = . 

 In general, for independent events, one has: 
 

( )
A and B

A and B ch A and B ,ch indeterm ,ch A and B
     =             

NP

 

 ( ) ( ) ( )
A and B

ch A ch B ,ch indeterm ,ch A and B

−−−−−−−−−−−−−  
  = ⋅
  

  
. 

 (79) 
 

3.30. Example with Neutrosophic Frequentist 
Probability on a Neutrosophic Product 
Space. 

Let suppose we toss the previous regular die on an 
irregular surface twice. Therefore we have two 
independent events. What is the neutrosophic probability 
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of getting { }3 on the first tossing and {4} on the second 

tossing? 
 The first neutrosophic space with corresponding 
chances: 
 

 
{ }1

           0.15 0.15 0.15 0.15 0.15 0.15   0.10

Ω =  1,      2,      3,      4,     5,    6,     indetermν
,        (80) 

 
and the second neutrosophic space with corresponding 
chances: 
 

 
{ }2

           0.15 0.15 0.15 0.15 0.15 0.15   0.10

Ω =  1,      2,      3,      4,     5,    6,     indetermν
         (81) 

 
Whence we construct their neutrosophic product space: 
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 6      1,I , 2,I 6,I     I,I

1 1 1 2 1 6       I,1 , I,2 I,6     

...............................

6 1 6 2 6 6

, , , ,..., , ,...,

, , , ,..., , ,...,

, , , ,..., ,

  
 
  

 (82) 

where I= indeterminacy , 
 
with corresponding chances: 

     
0.0225, 0.0225, ...,0.0225    0.0150, 0.0150,...,0.0150   0.0100

0.0225, 0.0225, ...,0.0225    0.0150, 0.0150,...,0.0150

..............................

0.0225, 0.0225, ...,0.0225 

 
 
 

(83) 
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Hence,  
 { } { }( ) ( )3 4 0 15 0 15 0 00225ch and . . .= = ; 

 

( )
3 4

12 0 0150 0 0100 0 1800 0 0100

0 1900

{ } or { }
ch indeterm . . . .

. ;

  = + = + 
 

=

 

{ } { }( )
{ }( ) { } { } { } { } { }( )2 1

3 4

3 4 3 1 2 3 5 6 1 2 4 5 6 4

ch and

ch Ω , Ω , , , , , , , , , ,ν ν

=

= ∧ ∧ ∧ ∧
 

  ( )35 0 0225 0 7875. .= = . 

 { } { }( ) ( )3 4 0 0225 0 1900 0 7875and . , . , .=NP .          (84) 

We have considered that ( ) ( ) ( ) ( )1 I 6 I I,1 I,6, ,..., , , ,...,  are 

indeterminacies, while ( )I,I  obviously is a double 

indeterminacy. 
 

3.31. Example with Double Indeterminacy. 
 We change again the theoretical equipment. 
Instead of a fair die, we consider now a defect die in the 
sense that two of its faces have the print erased, for 
example the erased faces are { }5  and { }6 . 

The new neutrosophic probability space is:  
 

{ }1 2 3 4 d s, , , ,indeterm ,indetermνΩ =                                   (85) 

 
with two types of indeterminacies: one due to the 
physical die, denoted by dindeterm , and the second due to 

the physical space, denoted by sindeterm . 
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 We consider that chance of sindeterm  is the same 
as in the previous frequentist examples: 

( ) 0 10sch indeterm .= , and ( ) ( )1 4 0 15ch ... ch .= = =  as 

before.  
 But from two erased prints we get 

( ) ( )2 0 15 0 30dch indeterm . .= = .  

 
Thus 

 ( ) ( )
0 10 0 30 0 40

s dch total indeterm ch indeterm ch indeterm

. . . ,

  = + 
 

= + =
 

whence  
( ) ( ) ( )1 4 0 15 0 40 0 45... . , . , .= = =NP NP .               (86) 

 
This neutrosophic experiment is equivalent to 

experiment of having a perfect die with four faces (a 
tetrahedron), which is tossed on an irregular surface 
where the chance of indeterminacy (for the die to get 
stuck on one of its six edges or on one of its four vertices) 
is 0.40.  
Therefore 
 

{ }1 2 3 4, , , ,indeterm .νΩ =                                                 (87) 

 
3.32. Neutrosophic Example with Tossing a 

Coin Multiple Times. 

Let’s consider a regular coin [with two faces: H 
(head) and T (tale)] flipped on an irregular surface. By 
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neutrosophic frequentist probability let’s suppose the 
chance that the coin gets stuck on its edge into a surface 
crack is: ܿℎ	(݅݊݀݁݉ݎ݁ݐ) 	= 	0.02                                            (88)	

Because the coin is fair, the chances of head or tale 
are equal: ܿℎ	(ܪ) 	= 	ܿℎ(ܶ) = ଵି.ଶଶ = 0.49.                  (89) 

The neutrosophic probability space is: 

{ , , }H T IνΩ = ,                                                             (90) 

where “I” stands for indeterm(inacy). 

Therefore: ܰܲ(ܪ) = ܰܲ(ܶ) = (0.49, 0.02, 0.49).                     (91) 

We flip the coin three times. What is the 
(neutrosophic) probability of getting HTT? 

The neutrosophic product space is: ቄ 										0.49ܪ ܶ0.49										 0.02ቅܫ × 

ቄ 										0.49ܪ ܶ0.49										 0.02ቅܫ × 
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ቄ 										0.49ܪ ܶ0.49										 = 0.02ቅܫ ,ܶܶܪ,ܪܶܪ,ܶܪܪ,ܪܪܪ	} ,ܪܪܶ ,ܶܪܶ ,ܪܶܶ ܶܶܶ; 
and indeterminacy of first order: ܪܪܫ, ,ܶܪܫ ,ܪܶܫ ;ܶܶܫ ,ܶܫܪ,ܪܫܪ	 ,ܪܫܶ ;ܶܫܶ ,ܫܪܪ ,ܫܶܪ ,ܫܪܶ  	;ܫܶܶ
also indeterminacy of second order: ܪܫܫ, ;ܶܫܫ ,ܫܪܫ ;ܫܶܫ ,ܫܫܪ  ;ܫܫܶ
and indeterminacy of third order: ܫܫܫ	(92)                                                                               ,{ 

which has 3ଷ = 27	elements. 
Computing the chances: ܿℎ(ܪܪܪ) = ܿℎ(ܶܪܪ) = ⋯ = ܿℎ(ܶܶܶ) = (0.49)ଷ = 0.117649; ܿℎ(ܪܪܫ) = ܿℎ(ܶܪܫ) = ⋯ = ܿℎ(ܶܶܫ) = (0.49)ଶ(0.02) = 0.004802, 

for each first order indeterminacy; ܿℎ(ܪܫܫ) = ܿℎ(ܶܫܫ) = ⋯ = ܿℎ(ܶܫܫ) = 0.49(0.02)ଶ = 0.000196, 
for each second order indeterminacy; ܿℎ(ܫܫܫ) = (0.02)ଷ = 0.000008. 

Therefore indeterminacy propagates. 
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The sum of total indeterminate chances is: ܿℎ(݈ܽݐݐ	݉ݎ݁ݐ݁݀݊݅) = 12(0.004802) + 6(0.000196) + 1(0.000008) =0.058808. 
The chance that HTT occurs is ܿℎ(ܶܶܪ) = (0.49)ଷ = 0.117649, 

while the chance that HTT does not occur is: ܿℎ൫_____ܶܶܪ൯ = 7(0.117649) = 0.823543. 
Finally, ܰܲ(ܶܶܪ) = (0.117649, 0.058808, 0.823543). 
In the classical probability, where ܿℎ(݅݊݀݁݉ݎ݁ݐ) = 0, 

we get ܲ(ܶܶܪ) = 0.5ଷ = 0.125, 

and, transcribed into neutrosophic form, we get: ܰܲ(ܶܶܪ) = (0.5ଷ, 0, 7(0.5)ଷ) = (0.125, 0, 0.875).   
(93) 

The chance of flipping three times in a row and 
getting HTT is smaller in the neutrosophic probability 
space than in the classical probability space, because of 
the strictly positive chance of having indeterminacy: 0.117649 < 0.125000.                                              (94) 
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3.33. Example with Sum of Chances of an 
Event. 

 In classical probability: If ܣ is an event, then ܲ(ܣ) is the sum of probabilities of all outcomes in the 
set ܣ. 

In neutrosophic probability, it is similar if  ܣ = {ܽଵ, ܽଶ, … , ܽ}.                                        (95) ܰܲ(ܣ) = ( sum of chances of all outcomes in the set ܣ, ܿℎ(݅݊݀݁݉ݎ݁ݐ), ܿℎ(ܣ)തതത ) = ൫∑ ܿℎ൫ ܽ൯, ܿℎ(݅݊݀݁݉ݎ݁ݐ), ܿℎ(̅ܣ)ୀଵ ൯.                    (96) 

For example, if we retake one of the previous 
experiments of a regular die tossed on an irregular 
surface, where the chance of indeterminacy is 0.10, then ܰܲ({1, 2, 3})= ൫ܿℎ{1, 2, 3}, ܿℎ൫݅݊݀݁݉ݎ݁ݐ{ଵ,ଶ,ଷ}൯, ܿℎ({1, 2, 3തതതതതതത})൯ = ቀܿℎ(1) + ܿℎ(2) + ܿℎ(3), ܿℎ൫݅݊݀݁݉ݎ݁ݐ{ଵ,ଶ,ଷ}൯, ܿℎ({4, 5, 6})ቁ = (0.15 + 0.15 + 0.15, 0.10, ܿℎ(4) + ܿℎ(5) + ܿℎ(6) = (0.45, 0.10, 0.45),                                               (97) 

since	ܰܲ(1) = ܰܲ(2) = ܰܲ(3) = (0.15, 0.10, 0.75). 
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3.34. Paraconsistent Neutrosophic 
Probability. 

The paraconsistent neutrosophic probability has 
the property that the sum of its components is strictly 
greater than 1: 

 [3,1( +∈++ fit ,                                                          (98) 

therefore one has contradictions between chances. 

Forecasting an event from different criteria, we may 
obtain different chances of occurrence. 

For example, suppose two handball teams G and H will 
compete in a game next week. 

a) According to the history of their previous 
disputes, team G is 60% favorable to win. 

b) But, according to their last games in the actual 
season vs. other handball teams, H is showing a 
better performance than G, and the experts 
conclude upon this criterion that H has 70% 
chance to win. 

c) Others believe that since G was often better than 
H, but in this season H contrarily played better 
than G, as a compensation it is 10% chance that 
their game be undecided (tie). 
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Therefore, NP(G wins over H) = (0.6, 0.1, 0.7), 

with 0.6 + 0.1 + 0.7  > 1.                                          (99) 

 

3.35. Incomplete Neutrosophic Probability. 

The incomplete neutrosophic probability has the 
property that the sum of its components is strictly less 
than 1: 

)1,0]−∈++ fit ,                                                 (100) 

therefore one has incomplete (missing) information. 

Lets’ reconsider the previous example about two 
handball teams H and G that will compete in a game next 
week. 

a) If both teams have a weak performance in the 
present season and of almost equal values, then 
each one will have a slim chance to win on 20%. 

b) Studying the low number of their previous games 
when the results were tie, the handball experts 
conclude that it is a slim chance of 30% of having 
a tie game. 

Therefore, NP(G wins over H) = (0.2, 0.3, 0.2), 

with 0.2 + 0.3 + 0.2 < 1.                                         (101) 
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3.36. Neutrosophic Mutually Exclusive 
Events. 

In classical probability, if ܣ and ܤ are mutually 
exclusive (independent) events, then  ܲ(ܣ	ݎ	ܤ) = (ܣ)ܲ +  (102)                            .(ܤ)ܲ	

In neutrosophic probability, we have similar 
property for mutually exclusive events: ܰܲ(ܣ	ݎ	ܤ) = ൫ܿℎ(ܣ) +ܿℎ(ܤ), ܿℎ(݅݊݀݁݉ݎ݁ݐ		), ܿℎ	(ܣ	ݎ	ܤതതതതതതതതത)൯.                                       (103) 

In classical probability for non mutually exclusive 
events ܣ	and ܤ	one has: ܲ(ܣ	or	ܤ) = (ܣ)ܲ + (ܤ)ܲ −  (104)  .(ܤ	and	ܣ)ܲ

In neutrosophic probability for non mutually 
exclusive neutrosophic events one similarly has: ܰܲ(ܣ	or	ܤ) = ൫ܿℎ(ܣ) + ܿℎ(ܤ)− ܿℎ(ܣ	and	ܤ), ܿℎ(݅݊݀݁݉ݎ݁ݐ		), ܿℎ(ܣ	or	ܤതതതതതതതത)൯. 

(105) 

For example, let’s consider a deck of 52 cards, but 
such that 2 of them are deteriorated and one cannot read 
them. Let’s draw at random a single card. What is the 
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neutrosophic probability of getting a face card (event A) 
or a heart card (event B)? We know that none of the face 
and heart cards were deteriorated. There are 12 face 
cards (four types of each of J, Q, and K), 13 heart cards, 
and 3 cards that are both face and heart. ܰܲ(ܣ	ݎ	ܤ) =(ܿℎ(ܣ	ݎ	ܤ), ܿℎ(݅݊݀݁݉ݎ݁ݐ		), ܿℎ(ܣ	ݎ	ܤതതതതതതതതത)) =(ܿℎ(ܣ) + ܿℎ(ܤ) −ܿℎ	(ܣ	݀݊ܽ	ܤ), ܿℎ(݅݊݀݁݉ݎ݁ݐ		), ܿℎ	(̅ܣ	݀݊ܽ	ܤത)) =ቀଵଶହଶ + ଵଷହଶ − ଷହଶ , ଶହଶ , ହଶିଵଶିଵଷାଷିଶହଶ ቁ = ቀଶଶହଶ , ଶହଶ , ଶ଼ହଶቁ.      (106) 

Of course, ܰܲ(ܣ) = ቀଵଶହଶ , ଶହଶ , ଷ଼ହଶቁ, 

(ܤ)ܲܰ = ൬1352 , 252 , 3752൰, ܰܲ(ܣ	݀݊ܽ	ܤ) = ቀ ଷହଶ , ଶହଶ , ସହଶቁ.                                   (107) 

We do not simplify the fractions because we can 
better compare these neutrosophic probabilities if we 
leave the same denominators for them all. 

But let’s say we don’t know if any of the two 
erased cards are among the face or heart cards. Then: 

(ܣ)ܲܰ  = ቀቂଵହଶ , ଵଶହଶቃ , ଶହଶ , ቂଷ଼ହଶ , ସହଶቃቁ,          (108) 
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and				ܰܲ(ܤ) = ቀቂଵଵହଶ , ଵଷହଶቃ , ଶହଶ , ቂଷହଶ , ଷଽହଶቃቁ,         (109) 

and 			ܰܲ(ܣ	and	ܤ) = ቀቂ ଵହଶ , ଷହଶቃ , ଶହଶ , ቂସହଶ , ସଽହଶቃቁ, 
(110) 

whence ܰܲ(ܣ	or	ܤ) = ቀቂଵ଼ହଶ , ଶସହଶቃ , ଶହଶ , ቂଶହଶ , ଷଶହଶቃቁ, 
(111) 

because ܿℎ(ܣ	or	ܤ) = = 1052 , 1252൨ + 1152 , 1352൨ −  152 , 352൨= 2152 , 2552൨ −  152 , 352൨= 21 − 352 , 25 − 152 ൨ = 1852 , 2452൨, 
and ܿℎ(ܣ	or	ܤതതതതതതതത) = = ܿℎ(ݓℎ݈݁	ݏݎݐݑ݁݊ℎ݅ܿ	ݕݐ݈ܾܾ݅݅ܽݎ	݁ܿܽݏ)− ܿℎ(݅݊݀݁݉ݎ݁ݐ) − ܿℎ(ܣ	ݎ	ܤ) = 1 − 252 − 1652 , 2452൨ = 5052 − 1852 , 2452൨ = 2652 , 3252൨. 
 

3.37. Neutrosophic Experimental Probability. 

In classical experimental probability is 
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௨		௧௦	௩௧		௨௦௧௧	௨		௧௦ .                         (112) 

Similarly, Neutrosophic Experimental 
Probability is: 

ۈۉ
ݏ݈ܽ݅ݎݐ	݂	ݎܾ݁݉ݑ݊	݈ܽݐݐݏݎݑܿܿ	ܣ	ݐ݊݁ݒ݁	ݏ݁݉݅ݐ	݂	ݎܾ݁݉ݑ݊ۇ , ݏ݈ܽ݅ݎݐ	݂	ݎܾ݁݉ݑ݊	݈ܽݐݐݏݎݑܿܿ	ݕܿܽ݊݅݉ݎ݁ݐ݁݀݊݅	ݏ݁݉݅ݐ	݂	ݎܾ݁݉ݑ݊ ݏ݈ܽ݅ݎݐ	݂	ݎܾ݁݉ݑ݊	݈ܽݐݐݎݑܿܿ	ݐ݊	ݏ݁݀	ܣ	ݐ݊݁ݒ݁	ݏ݁݉݅ݐ	݂	ݎܾ݁݉ݑ݊	, ۋی

 .ۊ
(113) 

3.38. Neutrosophic Survey. 

A Neutrosophic Survey is a way to obtain 
neutrosophic experimental probability. 

Example. Let’s say that we toss a regular die five 
times on an irregular surface, and we get: 2, 5, 1, ,ݕܿܽ݊݅݉ݎ݁ݐ݁݀݊݅ 4. 
 

3.39. Neutrosophic Conditional Probability 
for Independent Events. 

In classical probability, if ܣ and ܤ are 
independent events, then ܲ(ܣ	݊݁ݒ݅݃	ܤ) =  (114)    .(ܣ)ܲ

Similarly for neutrosophic independent events: ܰܲ(ܣ	݊݁ݒ݅݃	ܤ) =  (115)                            ,(ܣ)ܲܰ	



 
 

69 
 

because  ܿℎ(ܣ	݊݁ݒ݅݃	ܤ) = ܿℎ(ܣ),ܿℎ(݅݊݀݁݉ݎ݁ݐ	݃݅݊݁ݒ	ܤ) = ܿℎ(݅݊݀݁݉ݎ݁ݐ),         (116) 

and ܿℎ	(̅ܣ	݊݁ݒ݅݃	ܤ) = ܿℎ(̅ܣ).                                       (117) 

 

3.40. Neutrosophic Probability of an 
Impossible Event (Φ) on the neutrosophic 
probability space ߥΩ		is: ܰܲ(Φ) = 	 ൬ 0, ܿℎ(݅݊݀݁݉ݎ݁ݐ),ܿℎ(ߥΩ) − ܿℎ(݅݊݀݁݉ݎ݁ݐ)൰.       (118) 

 

3.41. Neutrosophic Probability of a Sure 
Event (ߥΩ) on the neutrosophic 
probability space ߥΩ		is: ܰܲ(ߥΩ) = (1 − ܿℎ(݅݊݀݁݉ݎ݁ݐ), ܿℎ(݅݊݀݁݉ݎ݁ݐ), 0).                     

(119) 

 

3.42. Neutrosophic Bayesian Rule. 

In classical probability, the Bayesian Rule is: 
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(ܤ|ܣ)ܲ = (ܣ|ܤ)ܲ ()().                            (120) 

Let’s examine the neutrosophic version of this 
rule. 

Suppose we have an urn with 5 A-votes, 2 
indeterminate (unclear, erased) votes, and 3 B-votes. 

If ܣ is the event of extracting an A-vote from the 
urn, and B the event of extracting a B-vote from the urn, 
then: ܰܲ(ܣ) = ቀ ହଵ , ଶଵ , ଷଵቁ , (ܤ)ܲܰ = ቀ ଷଵ , ଶଵ , ହଵቁ. 

(121) 

If one B-vote has be taken from the urn, then ܰܲ(ܤ|ܣ) = ቀହଽ , ଶଽ , ଶଽቁ.                                    (122) 

But if one A-votes has been taken from the urn, 
then ܰܲ(ܣ|ܤ) = ቀଷଽ , ଶଽ , ସଽቁ.                                    (123) 

In general, the Neutrosophic Bayesian Rule is: ܰܲ(ܤ|ܣ) = ൫ܿℎ(ܤ|ܣ), ܿℎ(݅݊݀݁݉ݎ݁ݐ	|	ܤ), ܿℎ(̅ܤ|ܣ)൯ 
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= ቆܿℎ(ܣ|ܤ) ()() , ܿℎ(݅݊݀݁݉ݎ݁ݐ	|	ܤ), ܿℎ	(̅ܤ|ܣ)ቇ. 
(124) 

Therefore, as in classical probability ܿℎ(ܤ|ܣ) = ܿℎ(ܣ|ܤ) ()().                                       (125) 

For our particular example, we get: ܰܲ(ܤ|ܣ) == ൭ܿℎ(ܣ|ܤ) ܿℎ(ܣ)ܿℎ(ܤ) , ܿℎ(݅݊݀݁݉ݎ݁ݐ|ܤ), ܿℎ(̅ܤ|ܣ)൱ 

= ൮39 × 510310 , 29 , ܿℎ(ܤ|ܤ)൲ 

= ቀହଽ , ଶଽ , ଶଽቁ.                                                              (126) 

 

3.43. Neutrosophic Multiplicative Rule. 

In classical probability, the Multiplication Rule 
for Probabilities (equivalent with the Conditional 
Probability) is: ܲ(ܣ	݀݊ܽ	ܤ) = (ܣ)ܲ	 ∙  (127)                   .(ܣ	݊݁ݒ݅݃	ܤ)ܲ	
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The Multiplication Rule for Neutrosophic 
Probabilities is: ܰܲ(ܣ	݀݊ܽ	ܤ) = (	ܿℎ(ܣ) ∙ ܿℎ(ܤ	݊݁ݒ݅݃	ܣ),ܿℎ(݅݊݀݁݉ݎ݁ݐ	ௗ	) + ܿℎ(݅݊݀݁݉ݎ݁ݐ			|	ܣ) −  ܿℎ(݅݊݀݁݉ݎ݁ݐ	ௗ	) ∙ ܿℎ(݅݊݀݁݉ݎ݁ݐ	ௗ	|ܣ),ܿℎ(ܣ) ∙ ܿℎ(ܣ	݊݁ݒ݅݃	ܣ) + ܿℎ(ܤ) ∙ ܿℎ(ܣ	݊݁ݒ݅݃	ܤ) +ܿℎ(ܤ) ∙ ܿℎ(ܤ	݊݁ݒ݅݃	ܤ)൯,                                       (128) 

because:  ܿℎ൫݅݊݀݁݉ݎ݁ݐ	ݎ݂	ܣ)	݀݊ܽ	(ܤ൯ == ܿℎ(݅݊݀݁݉ݎ݁ݐ) ∙ ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ)+ ܿℎ(݅݊݀݁݉ݎ݁ݐ) ∙ ܿℎ(ܣ|ܣ)+ ܿℎ(݅݊݀݁݉ݎ݁ݐ) ∙ ܿℎ(ܣ|ܤ)+ ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ) ∙ ܿℎ(ܣ)+ ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ) ∙ ܿℎ(ܤ)= ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ)∙ ቂܿℎ(݅݊݀݁݉ݎ݁ݐ) + ܿℎ(ܣ) + ܿℎ(ܤ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥቃ+ ܿℎ(݅݊݀݁݉ݎ݁ݐ)∙ ቂܿℎ(ܣ|ܣ) + ܿℎ(ܣ|ܤ) + ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ− ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ)ቃ= ܿℎ(݅݊݀݁݉ݎ݁ݐ) + ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ)− ܿℎ(݅݊݀݁݉ݎ݁ݐ) ∙ ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ), 
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due to the facts that ቂܿℎ(݅݊݀݁݉ݎ݁ݐ) + ܿℎ(ܣ) + ܿℎ(ܤ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥቃ = 1                (129) 

and ቂܿℎ(ܣ|ܣ) + ܿℎ(ܣ|ܤ) + ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥቃ = 1. 
(130) 

Let’s consider the previous neutrosophic example: 5 2 ܣ3 − ݏ݁ݐݒ ݉ݎ݁ݐ݁݀݊݅ − ݏ݁ݐݒ ܤ −  ݏ݁ݐݒ

We pick two votes in succesion without 
replacement. 

Suppose ܣ is the event that the first is an A-vote, 
and B is a B-vote. 

We have: ܿℎ(ܣ) = 510 , ܿℎ(݅݊݀݁݉ݎ݁ݐ) = 210,	 ܿℎ(ܤ) = 310	, ܿℎ(ܣ|ܣ) = 49	, ܿℎ(݅݊݀݁ܣ|݉ݎ݁ݐ) = 29	, ܿℎ(ܣ|ܤ) = 39	, 	ܿℎ(ܤ|ܣ) = 54	, ܿℎ(ܤ|ܤ) = 29	, 
whence: 
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(ܤ	݀݊ܽ	ܣ)ܲܰ = ቀ ହଵ ∙ ଷଽ 	 , ଶଵ + ଶଽ − ଶଵ ∙ ଶଽ 	 , ହଵ ∙ ସଽ + ଷଵ ∙ହଽ + ଷଵ ∙ ଶଽቁ = (	ଵହଽ	 , ଷସଽ	 , ସଵଽ	).                                     (131) 

 

3.44. Neutrosophic Negation (or Neutrosophic 
Probability of Complementary Events). 

For any event A different from indeterminacy, from the 
sample space X, one has: 

NP(A) = ( ch(A), ch(indetermA), ch(antiA) ), (132) 

whence the neutrosophic probability of the complement 
of A, noted as C(A) (or as antiA) is: 

NP( C(A) ) = NP( antiA ) = ( ch(antiA), ch(indetermantiA), 

ch( anti(antiA) ) = ( ch(X)-ch(A), ch(indetermantiA), ch(A) ). (133) 

 

3.45. De Morgan’s Neutrosophic Laws. 

NP(C(A ∪ B) ) = ( ch(C(A ∪ B)  ), ch(indetermC (A ∪ B)),  

ch( C(C (A ∪ B))  )  

= ( ch(C(A)∩C( B) ), ch(indetermC (A)∩C (B)),  

ch( C(C (A)∩C(B)) ) 

= NP(C(A)∩C( B)).                                                       (134) 
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Similarly, 

NP(C(A∩B) ) = ( ch(C(A∩B)  ), ch(indetermC (A∩B)),  

ch( C(C (A∩B))  )  

= ( ch(C(A) ∪ C( B) ), ch(indetermC (A) ∪ C (B)),  

ch( C(C (A) ∪ C(B)) ) 

= NP(C(A) ∪ C( B)).                                                     (135) 

  

3.46. Neutrosophic Double Negation. 

In classical probability,  

P( anti(antiA) ) = P(A).                                         (136) 

In neutrosophic probability, for A an event different 
from indeterminacy: 

NP(A) = ( ch(A), ch(indetermA), ch(antiA) ),        (137) 

then: 

NP(antiA) = ( ch(antiA), ch(indetermantiA), ch(anti(antiA)) ) 

= ( ch(antiA), ch(indetermantiA), ch(A) )                            (138) 

whence  

NP( anti(antiA) ) = ( ch(anti(antiA)), ch(indetermanti(antiA)),  
ch(antiA) ) = ( ch(A), ch(indetermA), ch(antiA) ) = NP(A). (139) 
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Let’s reconsider the previous example about a urn with: 5 2 ܣ3 − ݏ݁ݐݒ ݉ݎ݁ݐ݁݀݊݅ − ݏ݁ݐݒ ܤ −  ݏ݁ݐݒ

NP(A)=(5/10, 2/10, 3/10), 

then NP( antiA ) = (3/10, 2/10, 5/10), 

and it follows that NP( anti(antiA) )=(5/10, 2/10, 3/10) 
= NP(A). 

 

3.47. Neutrosophic Expected Value. 

Let’s consider a neutrosophic discrete probability 
space X with the determined outcomes x1, x2, …, xr and 
their respective chances to occur p1, p2, …, pr, and with 
indeterminacies indeterm1, indeterm2, …, indetermk , 
then the Neutrosophic Expected Value (NE) is: 

1 1

(
r s

j j k
j k

NE n p m
= =

= + ⋅  ch(indetermk))                         (140) 

where nj is the possible numerical outcome for the 
corresponding chance pj, for all j, and mk is the possible 
numerical outcome for the corresponding chance that 
indetermk occurs, for all k. 

If we reconsider the previous neutrosophic 
example: 
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5 2 ܣ3 − ݏ݁ݐݒ ݉ݎ݁ݐ݁݀݊݅ − ݏ݁ݐݒ ܤ −  ݏ݁ݐݒ

And the numerical outcomes for extracting an A-vote is 
loosing $2.00, for extracting a B-vote is gaining $3.00, 
while for extracting an indeterminate vote is loosing 
$1.00.  What  is the neutrosophic expected value? 

NE = -2×(5/10) + 3×(3/10) - 1×(2/10) = -$0.30.  (141) 

 

3.48. Neutrosophic Probability and 
Neutrosophic Logic Used in The Soccer 
Games. 

For all games where there are three possible 
results (winning, loosing, or tie), neutrosophic 
probability works perfectly, but the classical or 
imprecise probabilities do not apply, since they can 
describe one result only. 

Let’s say: What is the probability that a soccer 
team wins in a soccer game? Neutrosophic probability 
gives all three chances: chance to win, chance to get a tie 
game, and chance to loose. 

Suppose two soccer games will play: teams Alpha 
(α) vs. Beta (β), and Gamma (γ) vs. Delta (δ). ܰܲ(݈ܣℎܽ	ݐ	݊݅ݓ) = (0.7, 0.2, 0.1),            (142) 
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which means that Alpha has 0.6 chance to win, 0.2 
chance to tie game, and 0.1 chance to loose, ܰܲ(ܽ݉݉ܽܩ	ݐ	݊݅ݓ) = (0.3, 0.5, 0.2),                   (143) 

then what is the neutrosophic probability that both teams 
Alpha and Gamma win in their soccer games? 

We make the product of the neutrosophic 
probability spaces: ൜ ఈܹ	, ,	ఈఉܫ ఈ0.7ܮ 0.2 0.1ൠ 	× 

൜ ఊܹ	, ,	ఊఋܫ ఊ0.3ܮ 0.5 0.2ൠ 
                                                      (144) 

where ఈܹ = ,winning	ߙ ఈఉܫ =indeterminacy	(tie	games	between	ߙ	and	ߚ), ఈܮ ;loosing	ߙ	= similarly	for ఊܹ, ܫఊఋ, ,ఊܮ which	is 
൜ ఈܹ ఊܹ	, ఈܹܫఊఋ	, ఈܹܮఊ	,0.21 0.35 0.14 ఈఉܫ				 ఊܹ	, ,	ఊఋܫఈఉܫ ,0.06	ఊܮఈఉܫ 0.10 0.04 ఈܮ				 ఊܹ	, ,	ఊఋܫఈܮ ఊ0.03ܮఈܮ 0.05 0.02ൠ	, 

(145) 

and the numbers below each possible outcome represent 
their corresponding chances to occur. 

We can re-arrange the final result in many ways. 

a) In the classical probability, we can say: 
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ܲ൫(݈ܣℎܽ	݃݊݅݊݊݅ݓ)&(ܽ݉݉ܽܩ	݃݊݅݊݊݅ݓ)൯ =0.7(0.3) = 0.21,                                           (146) 

while 1 − 0.21 = 0.79 is the probability of the opposite 
event, negation of  ൫(݈ܣℎܽ	݃݊݅݊݊݅ݓ)&(ܽ݉݉ܽܩ	݃݊݅݊݊݅ݓ)൯, i.e. in the 

two soccer games either there is at least a tie game, or 
at least one of the teams Alpha or Gamma looses. 

b) In the neutrosophic probability, the outcome is 
more refined. ܾ1)			ܰܲ൫(݈ܣℎܽ	݃݊݅݊݊݅ݓ)&(ܽ݉݉ܽܩ	݃݊݅݊݊݅ݓ)൯= {	ܿℎ(݈ܣℎܽ	ܹ݅݊݊݅݊݃	&	ܽ݉݉ܽܩ	݃݊݅݊݊݅ݓ), 	ܿℎ(ܽݐ	ݐݏ݈ܽ݁	݁݊	݁݅ݐ	݃ܽ݉݁),	 ܿℎ(referring	to	݈ܣℎܽ	and	ܽ݉݉ܽܩ: one	loosing, 	the	other	winning,	 or	both	loosing)} = = (0.21, 0.35 + 	0.06 + 0.10 + 0.04 +0.05, 0.14 + 0.03 + 0.02) =(0.21, 0.60, 0.19).                                   (147) ܾ2)		ܰܲ൫(݈ܣℎܽ	݃݊݅݊݊݅ݓ)&(ܽ݉݉ܽܩ	݃݊݅݊݊݅ݓ)൯ ,݁݉ܽ݃	݁݅ݐ	ܽ	ݏℎܽ	ܽ݉݉ܽܩ	݀݊ܽ 	ℎ݈ܽܣ	݂	݁݊	ݐݏ݈ܽ݁	ݐܽ)ℎܿ	 ,(݃݊݅݊݊݅ݓ	ܽ݉݉ܽܩ)&(݃݊݅݊݊݅ݓ	ℎ݈ܽܣ)	} =  	,(ݏ݁ݏ݈	݁݊݊	݀݊ܽ
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ܿℎ(ܽݐ	ݐݏ݈ܽ݁	݁݊	݂ 	݈ܣℎܽ	ݎ	ܽ݉݉ܽܩ	ݏ݁ݏ݈)) = = (0.21, 0.35 + 0.06 + 0.10, 0.14 + 0.04 +0.03 + 0.05 + 0.02) = (0.21, 0.51, 0.28). 
(148) 

c) Another solution to this soccer game would be 
to use neutrosophic logic. Let’s consider 

        ଵܲ = {Team	݈ܣℎܽ	will	win},	 and												 ଶܲ = {Team	ܽ݉݉ܽܩ	will	win}  
as two neutrosophic logical propositions whose values 
are (0,7, 0.2, 0.1), and respectively (0.3, 0.5, 0.2). 

Then one uses the neutrosophic operator “and” (Λே)	as	part	of	the	N − norm: 
ଵܲΛே ଶܲ = (0.7Λி0.3, 0.2Vி0.5, 0.1Vி0.2), 

(149) 

where Λி	is the fuzzy “and” operator (t-norm), 

and Vி is the fuzzy “or” operator (t-conorm). 

c1. If we take the fuzzy and/or operators 
min/max, we get: 

ଵܲΛே ଶܲ =(min(0.7, 0.3) ,max(0.2, 0.5) ,max(01. , 0.2)) =(0.3, 0.5, 0.2).                                        (150) 
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c2. If we take the fuzzy and/or operators 
as				ݔ ∙ ݔ	/	ݕ + ݕ − ݔ ∙  (151)                          ,ݕ

we get 

ଵܲΛே ଶܲ = ൫0.7(0.3), 0.2 + 0.5 − 0.2(0.5), 0.1 + 0.2 −0.1(0.2)൯ = (0.21, 0.60, 0.28).                               (152) 

(In neutrosophic logic, the sum of its three components 
may be different from 1.) 

Similarly for other particular t-norms/t-conorms. 

 

3.49. A Neutrosophic Question. 

Rolling two regular dice on an irregular surface, 
what is the neutrosophic probability of getting a sum of 
6? 
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Fig. 9. Double Indeterminacy 

 

The five favorable cases will be: 1 + 5, 2 + 4, 3 + 3, 4 + 2, 5 + 1.         (153) 

But what about: 

6 +	indeterm, and indeterm +	6? 

Should we consider that 

6 +	indeterm = 6                            (154) 
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 (and consequently: indeterm +	6	 = 6) ? 

or should we say that 

6 +	indeterm	=	indeterm ? 

Of course,    

indeterm +	indeterm = indeterm.                (155) 

Surely, in a game the players can make 
conventions among themselves, for example that a 
number plus indeterminacy is equal to that number, but 
this would mean that indeterminacy is taken for zero, 
which is not quite true. 

Let’s compute ܰܲ(݉ݑݏ = 6). 
Neutrosophic Probability Spaces are: ߥΩଵ = {1, 2, 3, 4, 5, 6, Ωଶߥ											 ;#1	die	for	ଵ}݉ݎ݁ݐ݁݀݊݅ = {1, 2, 3, 4, 5, 6, indeter݉ଶ}	for die # 2. 

The neutrosophic probability product space is Ωଵ × =Ωଶߥ	 {	(1, 1), (1, 2), … , (1, 6), … (6, 1), (6, 2), … , (6, 6),	 (indeter݉ଵ, 1), (indeter݉ଵ, 2), … , (indeter݉ଵ, 6),	 (1, indeter݉ଶ), (2, indeter݉ଶ), … , (6, indeter݉ଶ),	 
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(indeter݉ଵ, indeter݉ଶ)	}.                           (156) 

Considering that through frequentist neutrosophic 
experiment for a single die we have found the chance of 
getting indeterminacy is 0.10, whence ܿℎ(1) = ⋯ = ܿℎ(6) = ଵି.ଵ = 0.15,	 we get: ܰܲ(sum = 6) == ൫ܿℎ(sum =6), ܿℎ(indeter݉௦௨ୀ), ܿℎ(sum ≠6	and	no	indeterm)൯ = (	5 ∙(0.15)(0.15), 12(0.10)(0.15) +0.10(0.10), 31(0.15)(0.15)	) =(0.1125, 0.1900, 0.6975).                                      (157) 

In classical probability, where there is no 
indeterminacy,  ܲ(sum = 6) = 536 ≈ 0.1389 > 0.1125 = ܿℎ(݉ݑݏ = 6)	                                           (158) from	neutrosophic	probability. 

 

3.50. Neutrosophic Discrete Probability 
Spaces. 
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In general, if we have two neutrosophic discrete 
probability spaces, with the chances of occuring of each 
event listed below that event ߥΩଵ = ,ଵܣ} ,ଶܣ … , ,୬ܣ	 indetermଵ}							ଵ, …,ଶ , ,୬ ch(indetermଵ) 
and   ߥΩଶ = ,ଵܤ} ,ଶܤ … , ,୬ܤ	 indetermଶ}							ݍଵ, ,ଶݍ … , ,୬ݍ ch(indetermଶ), 
then the neutrosophic probability of having event ܣ and 

event ܤ to occur is: 

 ܰܲ൫ܣ	and	ܤ൯ = 	ቆ ∙ ,ݍ ଵܫ + ଵܫ ,ܫ− ,ଶܫ ∑ ௩ݍ௨ −  ∙ ௨ୀଵ,௩ୀଵ,ݍ ቇ.                                   (159) 

This can be further generalized to the neutrosophic 
discrete probability product of s spaces: ߥΩଵ × Ωଶߥ × …× ,୰,ଵܣΩୱ=ෑ൛ߥ ,୰,ଶܣ … , A୰,୬౨, indeterm୰ൟୱ

୰ୀଵ  

with corresponding neutrosophic probabilities ܲ,ଵ			 ܲ,ଶ 		…			 ܲ,ೝ			ܫ. 
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Then ܰܲ൫ܣଵ,భ	and	ܣଶ,మ	and… 	and	ܣ௦,ೞ൯ =
ۈۉ
∏ۇ ,ೝ௦ୀଵ , ∑ (−1)୲ିଵS୲, ∑ ൫∏ p୰,ೝୱ୰ୀଵ ൯ −୩భୀଵ,୬భ୩మୀଵ,୬మ……………୩ೞୀଵ,୬ೞ

ୱ୲ୀଵ

∏ ୰,ೝୱ୰ୀଵ ۋی
 (160)                                                          ,ۊ

where  										 ଵܵ = ଵܫ + ଶܫ + ⋯+ terms	ݏ)																		௦ܫ = ௦ଵ) ܵଶܥ	 = ଶܫଵܫ + ଷܫଵܫ + ⋯+ ௦ܫଵܫ + ⋯+ ௦ܫ௦ିଵܫ 									൬ݏ)ݏ − 1)2 	terms =  ௦ଶ൰ܥ	

…………………………………………………………. 										ܵ௧ =∑ మܫభܫ … (భ,మ,…,)∈ࣝ{భ,మ,…,ೞ}ܫ 							ቀ ௦!௧!(௦ି௧)! 	terms =  ௦௧ቁܥ	

(161) 

where  ࣝ {ଵ,ଶ,…,௦}௧  is the family of all subsets of {1, 2, … ,  ,{ݏ
such that the cardinal of each subset is t, for 1 ≤ ݐ ,ݏ≥  .integer	ݐ
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3.51. Classification of Neutrosophic 
Probabilities. 

1. There is an objective neutrosophic probability 
when the chances of all events, including the chance of 
identerminacy, can be computed objectively. 

For example: Tossing a cubic die, which has two 
faces that are unreadable, on a regular surface. Let’s 
consider that the numbers 5 and 6 are erased. We can 
exactly compute  ܿℎ(indeterm) = 26, ܿℎ(1) = ܿℎ(2) = ܿℎ(3) = ܿℎ(4) = 16. 

2. The frequentist neutrosophic probability when 
at least the chance of one event, or the chance of some 
indeterminacy, cannot be computed objectively 
(exactly), but one can make experiments in order to 
compute frequentist chances. 

For example: Tossing a regular die on an irregular 
surface having many cracks. We are not able to exactly 
compute the chance of indeterminacy (i.e when the die 
gets stuck in a crack on a vertex or on an edge). We may 
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experiment, tossing the die a number of times in order to 
compute chance of indeterminacy as number of 
favorable cases over total number of cases. But this is 
just an aproximation. And if we repeat the experiment, 
we get a different result. 

3. Subjective Neutrosophic Probability is neither 
posssible to compute it objectively (exactly), nor to 
experiment it and compute it as frequentist chance. 

For example, and aircraft is detected in the sky. A 
source estimates it as to be 60% friend, 30% hostile, and 
10% neutral. The estimation is subjective. Another 
source could give us a different estimation. 

 

3.52. The Fundamental Neutrosophic 
Counting Principle. 

Let’s consider a neutrosophic event E that can 
occur in e ways and e1 indeterminacies. After E has 
occurred, a neutrosophic event F can occur in f ways and 
f1 indeterminacies. Then, the neutrosophic event E 
followed by the neutrosophic event F can occur in e·f 
ways, and in e1·f+e·f1 indeterminacies of first order, and 
in e1·f1 indeterminacies of second order. 

Taking the previous example about tossing a cubic 
die, which has two faces 5 and 6 that are unreadable, but 
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on an irregular surface. And then another cubic die with 
all readable faces, tossed on an irregular surface. We 
have the following neutrosophic sample spaces: 

νΩ 1 = {1, 2, 3, 4, indetermdie, indetermspace} (162) 

νΩ 2 = {1, 2, 3, 4, 5, 6, indetermspace}            (163) 

Then an event E followed by an event F can occur in  

4·6 = 24 ways, 

2·6 + 4·1 = 16 indeterminacies of first order, 

and  

2·1 = 2 indeterminacies of second order. 

 

3.53. A Formula for the Fusion of Subjective 
Neutrosophic Probabilities. 

For subjective neutrosophic probability, in order 
for us to having a better aproximation, we’d need more 
sources of information relating us about the same event. 
We then combine all subjective chances given by them. 

Suppose a satellite is detected by radar in the sky, 
which can be friendly (t), neutral (i), or hostile (f). We 
have two observers that give us the following subjective 
neutrosophic probabilities: 
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ܰ ଵܲ(satellite) = ,ଵݐ) ݅ଵ, ଵ݂),                         (164) 

where ݐଵ = ܿℎ(݁ݐ݈݈݅݁ݐܽݏ	ݏ݅	ݕ݈݀݊݅݁ݎ݂), 
  ݅ଵ = ܿℎ(݁ݐ݈݈݅݁ݐܽݏ	ݏ݅	݈ܽݎݐݑ݁݊), 
  ଵ݂ = ܿℎ(݁ݐ݈݈݅݁ݐܽݏ	ݏ݅	ℎ݈݁݅ݐݏ), 
and  ܰ ଶܲ(satellite) = ,ଶݐ) ݅ଶ, ଶ݂).                         (165) 

We consider the following normalized 
probabilities: ݐଵ + ݅ଵ + ଵ݂ = ଶݐ + ݅ଶ + ଶ݂ = 1	,                            (166) 

but in case if they are non-normalized, the problem is 
solved in the same way. Note that t stands for truth, i 
stands for indeterminacy, and f stands for falsehood. (ܰ ଵܲ ∩ ܰ ଶܲ(ݐ) = ଶݐଵݐ + ቀ ௧భమమ௧భାమ + ௧మమభ௧మାభቁ + ቀ ௧భమమ௧భାమ +௧మమభ௧మାభቁ.                                                                     (167) 

Because:     ݐଵ ∙ ݅ଶ is redistributed back to the truth (t) and 
indeterminacy (i), proportionally with respect to t1, and 
respectively to ݅ଶ: ௫భ௧భ = ௬భమ = ௧భమ௧భାమ	,                                             (168) 
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where ݔଵ and y1 are the parts from ݐଵ ∙ ݅ଶ that are 
redistributed back to t (chance of friendly) and 
respectively to i (chance of neutral), 

whence ݔଵ = ௧భమమ௧భାమ ଵݕ					,	 = ௧భమమ௧భାమ	.                                        (169) Similarly	ݐଶ ∙ ݅ଵ is redistributed back to the truth 
(t) and indeterminacy (i), proportionally with respect to 
t2, and respectively to ݅ଵ: ௫మ௧మ = ௬మభ = ௧మభ௧మାభ	,                                             (170) 

where ݔଶ and y2 are the parts from ݐଶ ∙ ݅ଵ that are 
redistributed back to t (chance of friendly) and 
respectively to i (chance of neutral), 

whence ݔଶ = ௧మమభ௧మାభ ଶݕ					,	 = ௧మభమ௧మାభ	.                                        (171) 

 

Again, ݐଵ ∙ ଶ݂ is redistributed back to t and f (falsehood) 
proportionally with respect to ݐଵ and respectively ଶ݂:  ௫య௧భ = ௭భమ = ௧భమ௧భାమ	,                                             (172) 
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whence ݔଷ = ௧భమమ௧భାమ ଵݖ					,	 = ௧భమమ௧భାమ	.                                    (173) 

And, similarly ݐଶ ∙ ଵ݂ is redistributed back to t 
and f proportionally with respect to ݐଶ and respectively ଵ݂: ௫ర௧మ = ௭మభ = ௧మభ௧మାభ	,                                          (174) 

whence ݔସ = ௧మమభ௧మାభ ଶݖ					,	 = ௧మభమ௧మାభ	.                                     (175) 

In the same way, ݅ଵ ∙ ଶ݂ is redistributed back to i 
and f proportionally with respect to ݅ଵ	and	respectively	 ଶ݂:	 ௬యభ = ௭యమ = భమభାమ	,                                          (176) 

whence ݕଷ = భమమభାమ ଷݖ					,	 = భమమభାమ	.                                     (177) 

While ݅ଶ ∙ ଵ݂	is redistributed back to i and f 
proportionally with respect to ݅ଶ and respectively ଵ݂: ௬రమ = ௭రభ = మభమାభ	,                                          (178) 
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whence ݕସ = మమభమାభ ସݖ					,	 = మభమమାభ	.                                      (179) 

Then, (ܰ ଵܲ ∩ ܰ ଶܲ)(݅) = ݅ଵ݅ଶ + ቀ భమ௧మభା௧మ + మమ௧భమା௧భቁ +ቀ భమమభାమ + మమభమାభቁ                                                      (180) 

and (ܰ ଵܲ ∩ ܰ ଶܲ)(݂) = ଵ݂ ଶ݂ + ቀ భమ௧మభା௧మ + మమ௧భమା௧భቁ +ቀ భమమభାమ + మమభమାభቁ.                                                       (181) 

 

3.54. Numerical Example of Fusion of 
Subjective Neutrosophic Probabilities: (0.6, 0.1, 0.3) ∧ (0.2, 0.3, 0.5) =(0.44097, 0.15000, 0.40903),                              (182) 

because ݐଵ = 0.6, ݅ଵ = 0.1, ଵ݂ = ଶݐ	0.3 = 0.2, ݅ଶ = 0.3, ଶ݂ = 0.5ൠ                                 (183) 

are replaced into the three previous neutrosophic 
formulas: 
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	(ܰ ଵܲ ∩ ܰ ଶܲ)(ݐ) =	= 0.6(0.2) + ቈ0.6ଶ(0.3)0.6 + 0.3 + 0.2ଶ(0.1)0.2 + 0.1+ ቈ0.6ଶ(0.5)0.6 + 0.5 + 0.2ଶ(0.3)0.2 + 0.3 	≃ 0.44097; (ܰ ଵܲ ∩ ܰ ଶܲ)(݅) =	= 0.1(0.3) + ቈ0.1ଶ(0.2)0.1 + 0.2 + 0.3ଶ(0.6)0.3 + 0.6+ ቈ0.1ଶ(0.5)0.1 + 0.5 + 0.3ଶ(0.3)0.3 + 0.3 	≃ 0.15000; (ܰ ଵܲ ∩ ܰ ଶܲ)(݂) =	= 0.3(0.5) + ቈ0.3ଶ(0.2)0.3 + 0.2 + 0.5ଶ(0.6)0.5 + 0.6+ ቈ0.3ଶ(0.3)0.3 + 0.3 + 0.5ଶ(0.1)0.5 + 0.1 	≃ 0.40903. 
(184) 

Therefore, there is a higher chance that the 
satellite is friendly, because: 0.44097 > 0.40903 > 0.15000.                 (185) 

 



 
 

95 
 

3.55. General Formula for Fusioning Classical 
Subjective Probabilities Provided by 
Two Sources. 

The principle of redistributing the conflicting 
chances, for example ݐଵ݅ଶ, back to t and i, is the same as 
in PCR5 rule ( Proportional Conflict Redistribution rule 
#5 from The Dezert-Smarandache Theory of Paradoxist 
and Plausible Reasoning (DSmT) ) used in information 
fusion: 

if two sources of information ଵܵ, and ܵଶ	give the 
subjective probabilities ଵܲ and ଶܲ	about the same event 
E to occur,  

then combining both of them using PCR5 we get 

for any event E in the subjective probability space Ω, ( ଵܲ ∧ ଶܲ)(ܧ) = ଵܲ(ܧ) ∙ ଶܲ(ܧ) + ∑ ቂభ(ா)మ∙మ(௫)భ(ா)ାమ(௫) +௫∈ஐ௫∩ாୀ∅మ(ா)మ∙భ(௫)మ(ா)ାమ(௫)ቃ .                                                           (186) 

 

3.56. Different Ways of Combining 
Neutrosophic Subjective Probabilities 
Provided by Two Sources. 
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Let’s set the problem in a different way and use 
different notations. By combining subjective 
probabilities we don’t get a single result, but many, since 
we do aproximations. 

A military veicle is moving in a warzone. Two 
experts report the chances of the vehicle to be friendly 
(F), neutral (N), or hostile (H): ܰ ଵܲ(vehicle) = ,ଵܨ) ଵܰ,  ଵ)                        (187)ܪ

and ܰ ଶܲ(vehicle) = ,ଶܨ) ଶܰ,  ଶ),                       (188)ܪ

where all  ܨଵ, ଵܰ, ,ଵܪ ,ଶܨ ଶܰ,  ଶ  are chances (numbers inܪ
[01,]), such that  ܨଵ + ଵܰ + ଵܪ = ଶܨ + ଶܰ + ଶܪ =1	(normalized	neutrosophic	probabilities). 

Suppose ܰ ଵܲ ∧ ܰ ଶܲ = ,ܨ)  with similarly 	,(ܪ,ܰ
F, N, H in [0,1] and F + N + H = 1. 

Let’s multiply  (ܨଵ + ଵܰ + ଶܨ)(ଵܪ + ଶܰ +  (ଶܪ
=1 ×	1=1. 

We get 9 terms in the left side: ܨଵܨଶ + ଵܨ ଶܰ + ଶܪଵܨ + ଵܰܨଶ + ଵܰ ଶܰ + ଵܰܪଶ ଶܨଵܪ+ + ଵܪ ଶܰ + ଶܪଵܪ = 1.                                     (189) 

These 9 terms are distributed to F, N, H. 
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Of course ܨଵܨଶ will go to ܨ, ଵܰ ଶܰ wil go to N, and ܪଵܪଶ will go to H.  

The other 6 terms have to be distributed to F, N, H 
too. 

We pay attention to the symmetry of distribution 
of these 6 terms to F and H. 

a) Pessimistic case: ܨଵ ଵܰ and ܨଶ ଵܰ to N. 

Similarly ܪଵ ଶܰ and ܪଶ ଵܰ to N. 

There are left ܨଵܪଶ and ܨଶܪଵ. 
a1) We can either distribute both of them to N (in 
a very pessimistic case); 

a2) or we can use, for example PCR5, to 
redistribute them back to F and H proportionally 
(in a less pessimistic way). 

 
b) Optimistic case: ܨଵ ଵܰ and ܨଶ ଵܰ to F. 

Similarly ܪଵ ଶܰ and ܪଶ ଵܰ to H. 

There  are left ܨଵܪଶ and ܨଶܪଵ, 
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b1) We can either distribute both of them to N (in 
a less optimistic case), 

b2) or we can use for example PCR5 to 
redistribute them back to F and H proportionally 
(in a very optimistic way). 

No normalization in needed, since the sum ܨ +ܰ +  .will be 1 ܪ

 

3.57. Neutrosophic Logic Inference type in 
Fusioning Subjective Neutrosophic 
Probabilities.  

Let the neutrosophic probability space be Φ ,ܰ,ܨ}=  where F = friend, N = neutral, H = hostile. If	,{ܪ
we consider that all intersections of events are empty: ܨ ∩ ܰ = ܨ ∩ ܪ = ܰ ∩ ܪ = ∅,                       (190) 

we can use the neutrosophic logic inference. 

Suppose an aircraft is detected. We need to find 
out if it’s a friend, or neutral, or hostile. 

We have two sources that give the subjective 
chances: 
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           F       N      H ܰ ଵܲܰ ଶܲ					ܽଵ ܽଶ ܽଷܾଵ ܾଶ ܾଷ 

where all ܽଵ, ܽଶ, ܽଷ, ܾଵ, ܾଶ, ܾଷ are positive and ܽଵ + ܽଶ +ܽଷ = ܾଵ + ܾଶ + ܾଷ = 1. 
Then 

 ܰ ଵܲ ∧ ܰ ଶܲ = (ܽଵ, ܽଶ, ܽଷ) ∧ (ܾଵ, ܾଶ, ܾଷ) =(ܽଵ ∧ ܾଵ, ܽଶ ∨ ܾଶ, ܽଷ ∨ ܾଷ)	                                       (191) 

in a pessimistic way,  

or   ܰ ଵܲ ∧ ܰ ଶܲ = (ܽଵ, ܽଶ, ܽଷ) ∧ (ܾଵ, ܾଶ, ܾଷ) =(ܽଵ ∧ ܾଵ, ܽଶ ∧ ܾଶ, ܽଷ ∨ ܾଷ)	                                      (192) 

in an optimistic way. 

 " ∧ " is a t-norm operation, and " ∨ " is a t-conorm 
operation. For example, ∧/∨ can be as in fuzzy logic 
respectively: 

min/max, ݕݔ	/	ݔ + ݕ − ,0}ݔܽ݉ ,ݕݔ ݔ + ݕ − 1}	/݉݅݊{1, ݔ +  etc.                (193)  ,{ݕ

Then we normalize each way if needed. 
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The N-norm and N-conorm were defined above 
with the help of t-norm and t-conorm. 

Numerical Example: 

          F        N        H ܰ ଵܲܰ ଶܲ					0.4 0.1 0.50.3 0.5 0.2 ܰ ଵܲ ∧ ܰ ଶܲ = (	0.4, 0.1, 0.5) ∧ (0.3, 0.5, 0.2) = 	= (0.4 ∧ 0.3, 0.1 ∨ 0.5, 0.5 ∨ 0.2) = = (݉݅݊{0.4, ,0.1}ݔܽ݉,{0.3 ,0.5}ݔܽ݉,{0.5 0.2}	) = 

(using min/max operators) = (0.3, 0.5, 0.5)	normalized	to	 ൬ 315 , 515 , 515൰.	 ܰ ଵܲ ∧ ܰ ଶܲ =(݉݅݊{0.4, 0.3},݉݅݊{0.1, ,0.5}ݔܽ݉,{0.5 0.2}	) =(0.3, 0.1, 0.5)	normalized	to	 ቀଷଽ , ଵଽ , ହଽ	ቁ.                (194) 

If we combine both pessimist  and optimist results we 
get: 

                        F                  N                 H 

                    [	 ଷଵହ,	ଷଽ ]         [	ଵଽ,	 ହଵହ ]         [	 ହଵହ,	ହଽ ] 
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It would be interesting of computing using the 
other ∧/∨ operators and compare or combine (for 
example making the average of) the results. 

 

3.58. Neutrosophic Logic vs. Subjective 
Neutrosophic Probability.  

 In neutrosophic logic, the operator AND 
computes the conjunction of the two or more different 
logical propositions. 

 In subjective neutrosophic probability, there is a 
single neutrosophic probability space, and two or more 
sources of information that provide subjective chances 
about the events to occur. Then we use various 
procedures to aggregate the subjective probabilities 
provided by all sources in order to get the best 
estimation. 

 

3.59. Removing Indeterminacy. 

 We can remove indeterminacy from the sample 
space, but then the second axiom of Kolmogorov is 
invalidated, because the neutrosophic probability of the 
whole sample space is strictly less than 1. 
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Let’s suppose having a cubic die whose three faces 
4, 5, 6 are erased and unreadable. We then have ܿℎ(1) = ܿℎ(2) = ܿℎ(3) = ଵ                         (195) 

and ܿℎ(݅݊݀݁݉ݎ݁ݐ) = 3 ቀଵቁ = ଷ = ଵଶ.                             (196) 

So, if we remove the indeterminacy, our 
neutrosophic sample space becomes: ߥΩ = {1, 2, 3}                                                (197) 

and ܿℎ(ߥΩ) = ଵଶ < 1.                                                      (198) 

 Ω is an incomplete classical sample space. Theߥ 
first and third axioms remain valid, but the second axiom 
is invalided. 

 

3.60. n-Valued Refined Neutrosophic 
Probability Space and Neutrosophic 
Probability. 

Let’s consider a handball game between two 
teams, Romania and Bulgaria. What is the neutrosophic 
probability that Romania wins? 
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The simplest sample space with respect to 
Romania is: ߥΩ = {victory, equality, defeat}.                  (199) 

 Suppose that the neutrosophic probability measure 
NP (Romania wins) = (0.7, 0.1, 02). But we go further 
and refine the sample space and, implicitly, the 
probability measure. 

The n-Valued Refined Neutrosophic Sample 
Space is: ߥΩ = ቄ൛ ଵܸ, ଶܸ, … , ܸൟ, ,ଵܧ} ,ଶܧ … , ,{ܧ ,ଵܦ} ,ଶܦ … ,  ௦}ቅܦ

(200) 

where , ,ݎ ݏ ≥ 1 and  + ݎ + ݏ = ݊; 
also: 

ଵܸ = Romania wins with 1 goal difference (i.e. 1-0, 2-1, 
3-2, etc.); 

.......................................................................................... 

ܸିଵ = Romania wins with p−1 goals difference; 

ܸ = Romania wins with p or more goals difference; ܧଵ = tie game (equality), with score 0-0, 1-1; 
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ଶܧ = tie game, with score 2-2; ܧିଵ = tie game, with score (r-1) to (r-1); ܧ = tie game, with score x to x, where ݔ ≥  .ݎ
Similarly: ܦଵ = Romania is defeated with 1 goal difference (i.e. 0-

1, 1-2, 2-3, etc.); 

௦ିଵܦ .......................................................................................... = Romania is defeated with ݏ −1 goals 
difference; ܦ௦ = Romania is defeated with s or more goals 
difference. 

 Consequently, the n-Valued Refined 
Neutrosophic Probability Measure could be: ܰܲᇱ	(Romania	wins) = 

= ቌ൭0.4, 0.2, 0.5, 0.05, 0, … , 0ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ ൱ , ቆ0.03, 0.05, 0.02, 0… , 0ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ ቇ , ቆ0.1, 0.08, 0.02, 0, … ,0ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ௦ ቇቍ. 
(201) 

In general, let’s consider a neutrosophic 
probability space, and a neutrosophic event A. ܰܲ(ܣ) = 	 (ܿℎ(ܣ), ܿℎ(݅݊݀݁݉ݎ݁ݐ), ܿℎ(̅ܣ)) = 
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by notation to (T, I, F), 

where for simplicity T = truth, I = indeterminacy, and F 
= falsity as in neutrosophic logic. 

Then the n-Valued Refined Neutrosophic 
Probability is: ܰ ܲ(ܣ) =ቀ൫ ଵܶ, ଶܶ, … , ܶ൯, ,ଵܫ) ,ଶܫ … , ,(ܫ ,ଵܨ) ,ଶܨ … ,  ௦)ቁ        (202)ܨ

with , ,ݎ ݏ ≥ 1 and  + ݎ + ݏ = ݊; 
and 					 ܶ = the chance that event A occurs and the 

occurence has the property ܲ; 
ܫ  = the indeterminacy related to the occurence 
of event A, such that the indeterminacy has the property ܳ; 

ܨ  = the chance that event A does not occur and 
the non-occurence has the property ܴ; 
where 1 ≤ ݆ ≤ , 1 ≤ ݇ ≤ ,ݎ and	1 ≤ ݈ ≤  .ݏ
 Remarks. 

a) Such n-Valued refinement is not possible for all 
applications. 
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a1) For example, if we consider a cubic die with 
four erased faces 1, 2, 3, and 4, tossed on a regular 

surface, then ܰܲ(5) = ቀଵ , ସ , ଵቁ ; but we are not 

able to refine the occurrence of {5}, neither the 
non-occurrence of {5}, nor the indeterminacy that 
might be related to this event. 

a2) But if we consider a regular die tossed on an 
irregular surface with several small cracks and 
other deep cracks, we may refine the 
indeterminacy for each event, since the die may 
get stucked in a small crack with a vertex of faces, 
we can read (for example 4  & 5 & 6), or the die 
can fall in a deep crack that we are not able to see 
it at all. Yet, we are not able to refine the 
occurrence or non-occurrence of an event in this 
case. 

b) The refinements can be done in multiple ways, 
depending on the properties ܲ , ܳ, ܴ we choose, 

for all j, k, l. 

 

3.61. Neutrosophic Markov Chain. 

It is a straight neutrosophic generalization of the 
classical Markov chain, i.e. some indeterminacy is taken 
into consideration in the classical probability space. 
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The neutrosophic Markov chain is a sequence of 
neutrosophic random variables ଵܺ, ܺଶ, …,	with the 
property that the next neutrosophic state depends on the 
current neutrosophic state only: ܰܲ(ܺ = |ݔ ଵܺ = ,ଵݔ ܺଶ = ,ଶݔ … , ܺିଵ (ିଵݔ= = ܰܲ(ܺ = ିଵܺ|ݔ =  ିଵ).                      (203)ݔ

It is a neutrosophic mathematical system that is 
characterized as memoryless. 

A neutrosophic transition is a change of the state 
of a system with indeterminacy. 

A neutrosophic Markov chain of order m, where 1 ≤ ݉ < ∞, or neutro-sophic Markov chain with 
memory m, is: ܰܲ(ܺ = ିଵܺ|ݔ = ,ିଵݔ ܺିଶ ,ିଶݔ= … , ଵܺ = (ଵݔ = = ܰܲ(ܺ = ିଵܺ|ݔ = ,ିଵݔ ܺିଶ ,ିଶݔ= … , ܺି =  ି).                                         (204)ݔ

We defined above the neutrosophic Markov chain 
for discrete time. For a continuous time, we use a 
continuous index: ܰܲ(ܺ = ିଵܺ|ݔ = (ݕ = ܰܲ(ܺିଵ = ିଶܺ|ݔ  for all n.                                                              (205) ,(ݕ=
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To illustrate an example about a discrete 
neutrosophic Markov chain, we use a neutrosophic 
probability graph (this should be distinguished from the 
neutrosophic graph and neutrosophic fuzzy graph, both 
introduced by W.B. Vasantha Kandasamy & F. 
Smarandache in our algebraic structure books since year 
2003). 

Let’s consider the world economy, and its states: 
economic prosperity (P), economic recession (R), and 
economic depression (D). 

Suppose we have the following neutrosophic 
probability graph, during a year: 

 

 

 

 

 

 

 

Fig. 10 

 

P

R D

(0.24,	0.02,	0.04)
(0.27,	0.09,	0.04)

(0.32,	0.06,	0.02)	
(0.35,	0.05,	0.00)

(0.40,	0.10,	0.00)

(0.10,	0.05,	0.05)	(0.20,	0
.00,	0.1

0)	

(0.19,	0.03,	0.08) (0.07,	0.03,	0.10)
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Upon the figure, an economic prosperity year is 
followed by another economic prosperity year 40% of 
the time while 10% of the time it is unknown, an 
economic recession year 20% of the time, while 10% of 
the time it is not followed by an economic recession, and 
an economic depression year 10% of the time and 5% of 
the time it is unknown while 5% of the time it is not 
followed by an economic recession year. 

The neutrosophic transition matrix of this graph is: 

                         P                         R                         D 											ܲܰܲ = ܦ											ܴ (0.40, 0.10, 0.00) (0.20, 0.00, 0.10) (0.10, 0.05, 0.05)(0.19, 0.03, 0.08) (0.35, 0.05, 0.00) (0.24, 0.03, 0.04)(0.07, 0.03, 0.10 (0.27, 0.09, 0.04) (0.32, 0.06, 0.02) 
The state space is {ܲ, ܴ,  .{ܦ
The stochastic row vectors are: ܲ =					ܴ ܦ					= =					[1 0 0],[0 1 0],[0 0 1]. 
Let X be any of these stochastic row vectors, 

with the neutrosophic relation ܺ(ାଵ) = ܺ()ܰܲ                                                  (206) 

for any time n. 
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 Whence ܺ(ାଶ) = 	ܺ(ାଵ)ܰܲ = ൣܺ()ܰܲ൧ܰܲ = ܺ()(ܰܲ)ଶ                                                            (207) 

and more general: ܺ(ା) = ܺ()(ܰܲ).                                            (208) 

At the end we normalize the rows of matrix (ܰܲ). 
We define the multiplication of neutrosophic 

probabilities as (ܽଵ, ܾଵ, ܿଵ) ∙ (ܽଶ, ܾଶ, ܿଶ) =(ܽଵܽଶ,݉ܽݔ{ܾଵ, ܾଶ},݉ܽݔ{ܿଵ, ܿଶ}),                          (209) 

and the addition of neutrosophic probabilities as: (ܽଵ, ܾଵ, ܿଵ) + (ܽଶ, ܾଶ, ܿଶ) = (ܽଵ +ܽଶ,݉݅݊{ܾଵ, ܾଶ},݉݅݊{ܿଵ, ܿଶ}).                                 (210) 

In case when the neutrosophic probability is 
reduced to classical probability (i.e. ܾଵ = ܾଶ = ܿଵ =ܿଶ = 0),	we get the same result for neutrosophical 
prbability matrix ܰܲ as for the classical probability 
matrix ܲ. 
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Other multiplication and addition operators of 
neutrosophic probabilities can be defined as well. For 
example: (ܽଵ, ܾଵ, ܿଵ) ∙ (ܽଶ, ܾଶ, ܿଶ) =(ܽଵܽଶ,݉݅݊{ܾଵ, ܾଶ},݉ܽݔ{ܿଵ, ܿଶ}),                               (211) 

or (ܽଵ, ܾଵ, ܿଵ) ∙ (ܽଶ, ܾଶ, ܿଶ) =ቀܽଵܽଶ, భାమଶ ,ଵܿ}ݔܽ݉, ܿଶ}ቁ , etc.                               (212) 

and similarly for the addition of neutrosophic 
probabilities changing the middle component to ݉ܽݔ{ܾଵ, ܾଶ}, or average 

భାమଶ , etc. 

Let’s note (ܰܲ)ଶ = {ܿ}.;                           (213) ܿଵଵ =[(0.40, 0.10, 0.00)(0.20, 0.00, 0.10)(0.10, 0.05, 0.05)] ∙(0.40, 0.10, 0.00)(0.19, 0.03, 0.08)(0.07, 0.03, 0.10) = (0.40, 0.10, 0.00)ܲ → ܲ ∙(0.40, 0.10, 0.00)ܲ → ܲ +(0.20, 0.00, 0.10)ܲ → ܴ (0.19, 0.03, 0.08)ܴ → ܲ +	(0.10, 0.05, 0.05)ܲ → ܦ (0.07, 0.03, ܦ(0.10 → ܲ =
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(0.16, 0.10, 0.00) + (0.038, 0.03, 0.10) +(0.007, 0.05, 0.10) = (0.205, 0.050, 0.000).        (214) 

 ܿଵଵ means the neutrosophic probability of having 
an economic prosperity year (P), after 2 years, starting 
from prosperity: [(ܲ → ܲ) ∧ (ܲ → ܲ)]	or	[(ܲ → ܴ) ∧ (ܴ →ܲ)]	or	[(ܲ → (ܦ ∧ ܦ) → ܲ)],                                  (215) 

where, for example, ܲ → ܴ means “from prosperity to 
recession”, and so on. ܿଵଶ = (0.080, 0.10, 0.10) + (0.070, 0.05, 0.10)+ (0.027, 0.09, 0.05)= (0.277, 0.050, 0.050) ܿଵଶ = (0.004, 0.10, 0.05) + (0.048, 0.02, 0.10)+ (0.032, 0.06, 0.05)= (0.084, 0.020, 0.050) ܿଶଵ = (0.076, 0.10, 0.08) + (0.0665, 0.05, 0.08)+ (0.0168, 0.03, 0.10)= (0.1593, 0.003, 0.080) ܿଶଶ = (0.038, 0.03, 0.10) + (0.1225, 0.05, 0.00)+ (0.0648, 0.09, 0.004)= (0.253, 0.003, 0.000) 
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ܿଶଷ = (0.019, 0.05, 0.08) + (0.0840, 0.05, 0.04)+ (0.0768, 0.06, 0.04)= (0.1798, 0.005, 0.004) ܿଷଵ = (0.028, 0.100, 0.100)+ (0.0513, 0.09, 0.08)+ (0.024, 0.060, 0.100)= (0.1017, 0.06, 0.08) ܿଷଶ = (0.014, 0.03, 0.10) + (0.0945, 0.09, 0.04)+ (0.0864, 0.09, 0.04)= (0.1949, 0.03, 0.04) ܿଷଷ = (0.007, 0.05, 0.10) + (0.0648, 0.09, 0.04)+ (0.1024, 0.06, 0.02)= (0.1742, 0.05, 0.02). 
Thus (ܰܲ)ଶ=  (0.205, 0.05, 0.0) (0.277, 0.05, 0.05) (0.084, 0.02, 0.05)(0.1593, 0.03, 0.08) (0.2253, 0.03, 0.0) (0.1798, 0.05, 0.04)(0.1017, 0.06, 0.08) (0.1949, 0.03, 0.04) (0.1742, 0.05, 0.02). 

(216) 

We normalize the rows by dividing each of the nine 
components by their sum. We get with three decimal 
approximation: 
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(ܰܲ)ଶ
= (0.261, 0.064, 0.000) (0.352, 0.064, 0.064) (0.106, 0.025, 0.064)(0.201, 0.038, 0.101) (0.284, 0.038, 0.000) (0.226, 0.062, 0.050)(0.135, 0.080, 0.107) (0.260, 0.040, 0.053) (0.232, 0.066, 0.027). 

(217) 

According to this neutrosophic transition matrix, 
after two years the largest chance of the economy to be 
is in the state of recession. 

 

3.62. Applications of Neutrosophics. 

Once could use the neutrosophics in statistical 
physics, financial markets, risk management, 
mathematical biology, quantum theory, and in almost 
any humanistic or scientific field where indeterminacy, 
unknown, and in general where <neutA> (neutrality with 
respect to an item <A>) occur. 
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Chapter 4. 
Neutrosophic Subjects for Future Research 
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Neutrosophic Subjects 
 
 

1. Neutrosophic topologies, including neutrosophic
metric spaces and smooth topological spaces. 

2. Neutrosophic numbers (a+bI, where I =
indeterminacy and I^2 = I, mI+nI = (m+n)I, 0I = 0,
and a, b are real or complex numbers), and
arithmetical operations, including ranking procedures
for neutrosophic numbers. 

3. Neutrosophic rough sets. 
4. Neutrosophic relational structures, including

neutrosophic relational equations, neutrosophic
similarity relations, and neutrosophic ordering. 

5. Neutrosophic geometry (Smarandache geometries). 
6. Neutrosophic probability. 
7. Neutrosophic logical operations, including n-norms,

n-conorms, neutrosophic implicators, neutrosophic
quantifiers. 

8. Measures of neutrosophication. 
9. Deneutrosophication techniques. 
10. Neutrosophic multivalued mappings. 

11. Develop the neutrosophic measure (defined in this
book). 
12. Develop the neutrosophic integral (defined in this
book). 

13. Neutrosophic differential calculus. 
14. Neutrosophic mathematical morphology. 
15. Neutrosophic algebraic structures. 
16. Neutrosophic models.  
17. Neutrosophic cognitive maps.  
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18. Neutrosophic relational maps. 
19. Neutrosophic matrix, bimatrix, ..., n-matrix.   
20. Neutrosophic graph, which is a graph that has at least 

one indeterminate edge or one indeterminate node. 
21. Neutrosophic tree, which is a tree that has at least one 

indeterminate edge or one indeterminate node. 
22. Neutrosophic fusion rules for information fusion. 
23.  Applications: neutrosophic relational databases,

neutrosophic image (thresholding, denoising,
segmentation) processing, neutrosophic linguistic
variables, neutrosophic decision making and
preference structures, neutrosophic expert
systems, neutrosophic reliability theory, 
neutrosophic soft computing techniques in e-
commerce and e-learning, image segmentation,
etc. 
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In this book, we introduce for the first time the 

notions of neutrosophic measure and neutrosophic 

integral, and we develop the 1995 notion of 

neutrosophic probability. We present many practical  

examples.

It is possible to define the neutrosophic measure and 

consequently the neutrosophic integral and neutrosophic 

probability in many ways, because there are various 

types of indeterminacies, depending on the problem we 

need to solve. Neutrosophics study the indeterminacy. 

Indeterminacy is different from randomness. It can be 

caused by physical space materials and type of 

construction, by items involved in the space, etc.  

 

  




