Abstract: Nature is the inseparable mixing of the classical structures (the bare particles) and the quantum fields in which the quantum effects are turbulent i.e. there are rapid random changes in local densities of quantum field. The quantum time is going turbulent so the precise quantum physics/methods should by free from turbulent time. The internal structures of the classical bare particles/objects determine the possible interactions of them with quantum fields so we cannot neglect these structures as it is in the mainstream theories (the sizeless points). In the string/M theory a classical structure is defined but there is the fundamental wrong assumption that we can reduce all classical structures to the same closed string. Moreover, the fundamental closed strings have smaller size than it is assumed in the string/M theory and they are inflexible. The neglected structure of the bare particles causes that there appears the mathematically incoherent renormalization whereas the substitution of some classical definitions of time for turbulent quantum time causes that the same equations lead to different solutions. To fit theoretical results to experimental data there appear approximations, mathematical tricks and free parameters. Such incoherent methods cannot lead to the lacking part of ultimate theory. Instead applying the incoherent methods we should seek interactions that lead directly to statistical stationary distributions of energy and/or matter i.e. we should directly look for eigenstates. To describe the inflation we should seek the succeeding sham-stable states (the regions of the expanding Cosmos with relatively slower changes in density) and stable states and such methods are presented in this paper. The VEV and Planck values are calculated as well. What stopped the inflation?

1. Introduction
In the quantum fields there are the random creations and annihilations of the pairs of quantum particles, of 4-particle systems, and so on. This causes rapid variation of local densities in the spacetimes and the quantum fields. We can define local unit of time as the mean time between collisions of the components of a spacetime or a quantum fields. This means that in quantum fields there are random changes of local unit of time. We can define unit of time in a different way, for example, as the period of spinning of a vortex that represents a quantum particle. But a vortex can consists of smaller and smaller vortices so there are many different units of time associated with a quantum particle. Moreover, in a defined place can appear different vortices i.e. different units of time. This means that in quantum fields time is going turbulenty. We cannot solve univocally equations containing
turbulently going time. It causes that to fit the theoretical results to experimental data there appear approximations, mathematical tricks and free parameters. We can see that in quantum physics the equations dependent on time are useless. We must apply new methods that should be independent on time.

We should seek statistical stationary distributions of energy and/or matter i.e. we should directly look for eigenstates. We should seek interactions that lead directly to the eigenstates.

To describe the inflation we should describe the succeeding sham-stable states (the regions of the expanding Cosmos [2] with relatively slower changes in density) and stable states.

The classical bare particles and the two spacetimes appeared due to the inflation. The interactions of the classical structures of the bare particles with the classical ground state of a spacetime leads to the quantum fields inseparable associated with the classical bare particles. Nature is composed of the classical ground states of the spacetimes and classical bare particles and the quantum fields associated with the bare particles. Nature is the systems composed of the inseparable classical stable structures and quantum changing structures (the fields composed of the created pairs and the remnants of annihilating virtual or/and real pairs of particles). The interactions of the classical structures with the quantum fields lead to the anomalous parts of the physical quantities as, for example, to the anomalous magnetic moment of electron. We can define univocally only the classical time associated with motions of the classical structures in classical unchanging ground state of spacetime - it is the relative time in the General Relativity.

We cannot univocally define quantum time i.e. time should not appear in problems in which dominate the quantum effects. Since quantum time can be defined arbitrarily so equations of motions in quantum physics lead to different solutions. For example, at the end of June 1982 and the beginning of July there was in University of Cambridge an international workshop concerning the inflation and the very early Universe (the Nuffield conference/meeting). Among the other things there was discussed the anisotropy with small fluctuations. Many great theorists obtained very different results concerning the same problem in spite of applying the same equations. The results were from 10^{-4} to 10^2 i.e. the upper limit was one million times higher than the lower one. The conclusion was that the authors applied different definitions of time so they obtained different results. You know, they claimed that non-dimensional result (the small fluctuations of temperature in relation to the mean temperature) depends on a definition. This leads to conclusion that the same differential equations can give different solutions. It shows that Feigenbaum is right, i.e. to understand the quantum behaviour of Nature the differential equations dependent on time are useless. Quantum processes are turbulent so time is going turbulently as well. There is not some evolution of a wave function dependent on defined univocal time – there is the drift to reach a state of equilibrium defined by the leaking structure of the classical bare particles. Just there is a scaling that follows from the phase transitions of the fundamental spacetime [1]. Of course, the differential equations of motion are fruitful to describe the classical phenomena.

Each set of phenomena is realized by Nature if leads to the leaking structure of the classical objects arising due to the phase transitions of the fundamental spacetime described within the Everlasting theory, especially it concerns the internal structure of the Einstein-spacetime components (the neutrino-antineutrino pairs) and the core of proton. Just due to the Feigenbaum constant $\delta = 4.6692016…$, different systems behave the same. There are some structures in non-linear systems such as $x_{i+1} = r x_i (1 - x_i)$ (a parabola that a half can approximately represent the inverse square law) and $x_{i+1} = r \sin(\pi x_i)$ (a sinus function that can represent the imaginary part of the exponential function with the base equal to the base of the natural logarithm) that in a limit behave the same i.e. in a limit the ratio of the reduplicators of the periods reaches the Feigenbaum constant. A part of the first function can
represents, for example, the classical law of universal gravitation or lines of forces produced by a charge whereas the second a distribution of virtual pairs i.e. a quantum field.

New methods must be based on the phase transitions of the fundamental spacetime and interactions of the bare particles with the quantum pairs or pairs of pairs, and so on, via the classical spacetimes. Such physics is mathematically very simple. It follows from the fact that the interactions are defined by the internal structure of the bare particles (such structure is neglected in the mainstream theories so there appears the renormalization that is mathematically incoherent – just the applied formula \(\infty - \infty = \text{constant} \neq 0 \) is incorrect; energy of any field cannot be infinite; infinite energy follows from incompleteness of theories). The new methods cause that free parameters are not needed and number of initial parameters is reduced to seven. Due to the fact that in the new methods definition of time is not needed, they directly lead to the eigenstates. The scaling is directly associated with the different values of the couplings of the bare particles with the classical and quantum fields.

The mainstream quantum physics and general relativity define the limitations for experiments, not for Nature. It is true that we cannot send a photon with speed higher than the speed of light in vacuum and it is true that we cannot simultaneously measure energy of a system and its lifetime. On the other hand, it is not true that Nature cannot communicate with superluminal speeds i.e. Nature almost immediately knows the real states of all its parts. It follows from the fact that there are the superluminal gravitationally massless particles which trajectory cannot be measured in experiments. In our Cosmos, the maximum delay for gravity is approximately \(2 \cdot 10^{-67} \text{s} \) (it follows from the size of our Cosmos [2] and speed of tachyons [1]) whereas for the quantum effects \(6 \cdot 10^{-38} \text{s} \) (it follows from the size of our cosmos and linear speed of the binary systems of the closed strings responsible for the quantum entanglement [1]).

The “turbulent” quantum time causes that the Feynman’s discovery of a formal connection between the classical Lagrangian and canonical quantum mechanics [3] is not realized by Nature. The standard path integral cannot change it as well. A wave function can describe the possible configurations of the virtual structures but we cannot arrange them in time because we cannot define a real time. Physicists propose to break the equivalence of the Feynman’s path integral and the canonical quantum mechanics, for example, by adding to the Schrödinger equation non-linear terms. But we can see that we never will able to unify the classical relativistic well-defined time with the “turbulent” quantum time. There are not exact solutions of the equations dependent on time for the quantum phenomena. Then, to obtain solutions consistent with experimental data we must apply approximations, mathematical tricks and free parameters. Such “methods” do not lead to the lacking part of ultimate theory.

In this paper I described the stationary states during the inflation. Here as well are calculated the VEV and Planck values. I answered the question what stopped the inflation?

2. The stationary states during the inflation
 A. The initial conditions [1]

 Due to a collision of two or more internally timeless very big pieces of space there appeared liquid-like spacetime composed of tachyons. This spacetime was perfectly ordered so its entropy was smallest.

 Mean radius of tachyon is
 \[
 r_t = 0.47571055 \cdot 10^{-64} \text{m}.
 \]

 Mean linear speed of tachyon is
 \[
 v_t = 2.386343972 \cdot 10^{97} \text{m/s}.
 \]

 Mean speed on equator of mean tachyon is
 \[
 v_{st} = 1.725741 \cdot 10^{70} \text{m/s}.
 \]

 Mean inertial mass of tachyon is
m_t = 3.752673 \times 10^{-107} \text{ kg}.

Dynamic viscosity resulting from smoothness of surfaces of tachyons is

\eta = 1.87516465 \times 10^{138} \text{ kg m}^{-1} \text{s}^{-1}.

Mean inertial mass density of the fundamental/Newtonian spacetime is

\rho_N = 2.645834 \times 10^{15} \text{ kg m}^{-3}.

Today this spacetime is classical since today from the tachyons cannot be created any particles or pairs of particles, and so on.

Mean mass density of the Einstein spacetime is

\rho_E = 1.10220055 \times 10^{28} \text{ kg m}^{-3}.

Today the ground state of this spacetime is classical whereas the excited states behave as the quantum particles and from such particles there consist the quantum fields in which time is going turbulently.

On base of the above initial parameters we can calculate inertial mass density of a tachyon which is the density of timeless space

\rho_t = 8.32192436 \times 10^{85} \text{ kg m}^{-3}.

We can as well calculate the Reynolds number for maximum dense fundamental spacetime composed of tachyons

N_R = 1.0076047 \times 10^{-19},

and the radius of closed string which can be produced due to the value of the Reynolds number

r_1 = (2r_1)/N_R = 0.94424045 \times 10^{-45} \text{ m}.

The initial 7 parameters lead to new set of 7 parameters [1]:

Gravitational constant: G = 6.6740007 \times 10^{-11} \text{ m}^3/(\text{kg} \text{ s}^2)

Half-integral spin: h/2 = 1.054571548 \times 10^{-34} / 2 \text{ Js}

Speed of light in spacetimes: c = 2.99792458 \times 10^8 \text{ m/s}

Electric charge of electron: e = 1.60217642 \times 10^{-19} \text{ C}

Mass of electron: m_{electron} = 0.510998906 \text{ MeV}

Mass of neutral pion: m_{pion(o)} = 134.97674 \text{ MeV}

Mass of charged pion: m_{pion(+)} = 139.57041 \text{ MeV}.

Due to the phase transitions of the fundamental spacetime composed of tachyons there appeared during the inflation the binary systems of the closed strings and the Einstein spacetime composed of the neutrino-antineutrino pairs. Today, due to the phase transitions, there can appear the next classical structures i.e. the cores of baryons that lead to the atom-like structure of baryons [1] and the cosmic structures/protoworlds that lead to the new cosmology [1], [2]. The three last classical structures consist of torus and condensate in its centre. The tachyons have infinitesimal spin in relation to the reduced Planck constant so the closed strings have internal helicity. Due to the phase transitions, the helicity and spin of the closed strings is adopted by the greater and greater tori – the closed strings and tori are the simplest objects that can have internal helicity. Since the linear speeds of components of a torus must be conserved and because the tori are the stable structures so there appear the radial convergent velocities that cause that there appears condensate in centre of torus.

Due to the saturation of interactions of the closed strings via the fundamental spacetime composed of tachyons, we can define the fundamental formulae for the phase transitions of this spacetime. Knowing the number of tachyons the closed strings consist of K^2 (K^2 = 2πr_1/(2r_1)) we can find number of tachyons in the greater and greater tori K^4, K^8, K^{16} (greater
Tori are not in existence since their sizes are greater of our Cosmos [2]. This remarks lead to two initial formulae.

The mean radii of the tori of stable objects are

\[r_d = r_1 K^{d-1}, \]

(1)

where \(d = 1, 2, 4, 8 \).

The rest masses of the tori of the stable objects are

\[m_d = m_1 K^{2(d-1)}, \]

(2)

where \(m_1 \) is for the closed string.

On the torus of the core of baryons appear the bosons. Their symmetrical decays lead to the Titius-Bode law for the strong interactions i.e. lead to the atom-like structure of baryons

\[R = A + dB, \]

(3)

where \(A \approx 0.7 \) fm, \(B \approx 0.5 \) fm and \(d = 0, 1, 2, 4 \).

The 7 initial parameters and 3 very simple fundamental formulae are the foundations of Nature.

B. The first sham-stable state

Due to the dynamic viscosity of the tachyons there appeared the condensates of the tachyons in which were produced the binary systems of closed strings (entanglons). Why binary systems, not free closed strings? It is because global and local total internal helicity must be equal to zero. From the initial conditions follows that spin of each closed string is half-integral whereas of the entanglons is unitary. Since the tachyons are the gravitationally massless objects so they behave as pseudoscalars (in physics, a pseudoscalar changes sign under a parity inversion such as improper rotation – it is possible since the tachyons have infinitesimal non-gravitational spin). This means that the field composed of the condensates of the tachyons is the pseudoscalar field. From the tachyons in the condensates there were produced the entanglons which due to their spin are the vector particles with defined eigenvector. But the entanglons as well are the gravitationally massless particles – due to the opposite internal helicities of the closed strings and their interactions with the free tachyons, they produce only the antiparallel half-jets. We can see that the entanglons are the eigenvectors of the gravitationally massless scalar condensates/fields. We can see as well that the mass matrix of the pseudoscalar and scalar fields is equal to zero. Since the pseudoscalar and scalar fields are gravitationally massless so the spins are imaginary i.e. such fields behave as spinless fields. The gravitationally massless scalar condensates are the massless Goldstone bosons [5], [6] in which are defined the directions of the Goldstone fields by the antiparallel half-jets produced by the entanglons.

Now on base of the initial conditions I will calculate the VEV (the vacuum expectation value) for the gravitationally massless Goldstone bosons/condensates – they consist of the tachyons and entanglons. Due to the dynamic viscosity there appears the centrifugal force acting on a tachyon on surface of the Goldstone boson that depends on curvature of the surface of condensate

\[F_t = m_t v_t^2 / R_{\text{cond}}, \]

(4)

where \(R_{\text{cond}} \) denotes the radius of the condensate.
On the other hand, we can define friction force acting on spinning tachyon as product of dynamic viscosity, Reynolds number, arm of the friction force, and the spin speed of the tachyon in the point of application of the friction force

\[F_t = \eta N_R r_t v_{st} \tag{5} \]

Comparing formulae (4) and (5) we obtain

\[R_{\text{cond}} = m_t v_t^2 / (\eta N_R r_t v_{st}) = 1.3777 \times 10^{-37} \text{ m.} \tag{6} \]

The radius \(R_{\text{cond}} \) is very close to the radius of condensate composed of entanglons in centre of neutrinos \([1],[8]\).

Now we can calculate the VEV i.e. the inertial mass of the condensate

\[\text{VEV} = M_{\text{cond, inertial}} = 4\pi \rho_t R_{\text{cond}}^3/3 = 9.1157 \times 10^{-25} \text{ kg} = 511.4 \text{ GeV}. \tag{7} \]

It is close to the VEV applied in the mainstream electroweak theory multiplied by 2 (\(\approx 493 \text{ GeV} \)) and it is close to the VEV applied in the Everlasting Theory \([8]\) (\(\approx 504 \text{ GeV} \)). It is the reason that the Higgs mechanism acts correctly in the electroweak theory. Mass of the Z boson is greater than the W boson so their structures are different. This leads to conclusion that to conserve the symmetries of the VEV defining a spinless condensate there must appear two Z bosons with antiparallel spins. There as well should be the same number of each type of charge. This means that VEV decays as follows

\[\text{VEV} \rightarrow 2(W^+ + W^-) + 2Z \approx 504 \text{ GeV}. \tag{8} \]

What should be the unimportant correction in the GSW electroweak theory that leads to the two times higher VEV but which does not change the final results i.e. the masses of the W and Z bosons? We know that we use the fifth gamma matrix \(\gamma^5 \) to project a Dirac field onto its left-handed and right-handed components. There appear following expressions \((1 \pm \gamma^5)/2 \). In the GSW theory we compare two expressions describing the same effective interaction so in both expressions there should be the same expressions containing the fifth matrix. But we can see that they are not [7]. Due to the four-boson symmetry characteristic for the weak interactions [1] there, due to the pairs of pairs of the fermions [1], instead the \((1 + \gamma^5)/2 \) should be \((1 + \gamma^5) \). Such correction leads to VEV two times higher. But such correction does not change the final results i.e. the masses of the Z and W bosons. It is because the masses are directly proportional to VEV and there instead the bosons appear their pairs to conserve the symmetries of the condensate which energy defines the VEV. Emphasize that the fifth gamma matrix is useful in discussion of quantum chirality.

C. The second sham-stable state

Exchanges of the closed strings between the binary systems of the closed strings cause that there appear surfaces composed of the entanglons exchanging the closed strings. Due to the tagged antiparallel half-jets, the unitary spins of the entanglons are perpendicular to the surfaces whereas due to the exchanged closed strings, all spins of entanglons on a surface are parallel and entanglons are in distance equal to \(2\pi r_1 \). Such surfaces I will refer to as the hyper-surfaces.

D. The first stable state

The greater structures should adopt the main properties of the binary systems of closed strings i.e. shape, internal helicities and spins. This means that there appear tori that surfaces
are the hyper-surfaces. They are the neutrinos which can differ due to the senses of the spins of entanglons and can differ due to the internal helicity/chirality. It leads to four different neutrinos. Since spin of created objects must be unitary (as the entanglons) so there appear the neutrino-antineutrino pairs i.e. the components of the ground state of the Einstein spacetime. The Einstein-spacetime components are the zero-helicity/chirality vector particles. But we can see that the zero-helicity follows from the opposite internal helicities of the components in an Einstein-spacetime component. At distances sufficiently larger than the size of neutrinos (we can calculate it from formula (1) [1]) the jets produced by entanglons a neutrino consists of are divergent and produce gradient in the fundamental spacetime composed of tachyons — it is the gravitational field so neutrinos and entanglons are the smallest objects carrying the gravitational mass. They are the Principle-of-Equivalence particles. Their properties are described here [1].

We can see that the Einstein spacetime can be a vector field.

The three states described in points B, C and D, are the succeeding stages in the Higgs mechanism that leads from the gravitationally massless tachyons to the Principle-of-Equivalence Einstein-spacetime components. More details concerning the Higgs mechanism we can find in my book and papers [4]. We can see that particles acquire their gravitational mass due to rotation of the spins of the entanglons (i.e. due to rotation of the directions of the Goldstone fields) in such a way that new field (i.e. the spin of an Einstein-spacetime component) is perpendicular/orthogonal to the spins of entanglons placed on equator of an Einstein-spacetime component. Such transformation of the scalar and pseudoscalar fields in Lagrangian causes that there appears mass matrix. The part of mathematical description of the Higgs mechanism we can find, for example, here [7].

There are the two spacetimes: the spacetime composed of free tachyons that did not transform into the Einstein spacetime and the Einstein spacetime. The first spacetime is associated with gravity whereas the second with electromagnetism and strong and weak interactions. Can we calculate the ratio of the densities of the two spacetimes from the initial conditions? The calculated mass of the condensate inside neutrinos is in approximation 1.9×10^{-67} kg [1] and is about 4.7×10^{42} times smaller than the mass of the Goldstone bosons (VEV). On the other hand, the ratio of the constant of electromagnetic interactions of electrons to the gravitational constant is in approximation 4.2×10^{42} [1] and is equal to the ratio of the densities of the Einstein spacetime and the fundamental spacetime composed of the tachyons.

3. Planck critical quantities

Probability of finding the exchanged entanglons between the Einstein-spacetime components, which are responsible for quantum entanglement, is highest on the equators of the tori [1] in an Einstein-spacetime component. Distance between centres of the tori is $2\pi r_{\text{neutrino}}/3$ [1]. This means that distance between the centre of the Einstein-spacetime component and a point on equator is $\lambda = r = r_{\text{neutrino}} \sqrt{1 + \pi/3} = 1.6003 \times 10^{-35}$ m – this value is very close to the Planck length.

Maximum speed of rotation of an Einstein-spacetime component is the speed of light c. Calculate energy, not mass, associated with length of wave equal to the circumference of a circle that radius is equal to the Planck length (the Planck energy is associated with rotation of the Einstein-spacetime components – they are the non-relativistic particles i.e. their mass does not depend on their motions [1]): $E = \hbar/(2\pi \lambda c) = \hbar/(\lambda c) = 2.1981 \times 10^{-8}$ kg – this value is very close to the Planck mass.

The obtained values lead to the critical time and critical energy density very close to the Planck time and Planck energy.
4. What stopped the inflation?

When there appeared the Einstein spacetime then there was an abstract sphere on which the positive gravitational pressure forced on an Einstein-spacetime component by the matter inside the sphere ([2] – see formula (9)) was equal to the dynamic pressure of this spacetime ([2] – see formula (10)). It is easy to notice that contrary to the outside of the sphere, inside the sphere the gravitational pressure is lower than the absolute value of the dynamic pressure. This means that outside the sphere the Einstein spacetime had collapsed so there appeared the timeless spatial boundary. It stopped the inflation and fixed the initial conditions.

5. Summary

Nature is the inseparable mixing of the classical structures (the bare particles) and the quantum fields in which the quantum effects are turbulent i.e. there are rapid random changes in local densities of quantum field.

This means that quantum time is going turbulent so the precise quantum physics/methods should by free from turbulent time.

The internal structures of the classical bare particles/objects determine the possible interactions of them with quantum fields so we cannot neglect these structures as it is in the mainstream theories (the sizeless points). In the string/M theory a classical structure is defined but there is the fundamental wrong assumption that we can reduce all classical structures to the same closed string. Moreover, the fundamental closed strings have smaller size than it is assumed in the string/M theory and they are inflexible.

The neglected structure of the bare particles causes that there appears the mathematically incoherent renormalization whereas the substitution of some classical definitions of time for turbulent quantum time causes that the same equations lead to different solutions. To fit theoretical results to experimental data there appear approximations, mathematical tricks and free parameters. We can see that such incoherent methods cannot lead to the lacking part of ultimate theory. Instead applying the incoherent methods we should seek statistical stationary distributions of energy and/or matter i.e. we should directly look for eigenstates. We should seek interactions that lead directly to the eigenstates.

Due to the phase transitions of the fundamental spacetime composed of tachyons there appeared during the inflation the binary systems of the closed strings and the Einstein spacetime composed of the neutrino-antineutrino pairs. Today, due to the phase transitions, there can appear the next classical structures i.e. the cores of baryons that lead to the atom-like structure of baryons [1] and the cosmic structures/protoworlds that lead to the new cosmology [1], [2]. The three last classical structures consist of torus and condensate in its centre. The tachyons have infinitesimal spin in relation to the reduced Planck constant so the closed strings have internal helicity. Due to the phase transitions, the helicity and spin of the closed strings is adopted by the greater and greater tori – the closed strings and tori are the simplest objects that can have internal helicity. Since the linear speeds of components of a torus must be conserved and because the tori are the stable structures so there appear the radial convergent velocities that cause that there appears condensate in centre of torus.

To describe the inflation we should describe the succeeding sham-stable states (the regions of the expanding Cosmos [2] with relatively slower changes in density) and stable states and such methods are presented in this paper and other my papers [4] concerning particle physics, cosmology and existence including the mental processes.

Here as well are calculated the VEV and Planck values. I answered the question what stopped the inflation?
References
 http://www.rxiv.org/abs/1203.0021 [v2].
 http://www.rxiv.org/abs/1308.0138 [v2].
[7] Steven Weinberg, The Quantum Theory of Fields,
 Volume II, Modern Applications,
 The Press Syndicate of the University of Cambridge (1996).
 http://www.rxiv.org/abs/1311.0050 .