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Abstract

A model is presented where the Higgs mechanism of the Standard Model is deduced

from the alignment of a strongly correlated fermion system in an internal space with

A4 symmetry. The ground state is constructed and its energy calculated. Finally,

it is claimed that the model may be derived from a field theory in 6+1 dimensions.

1



1 Introduction

The Higgs sector of the Standard Model (SM) of elementary particles and the as-

sociated spontaneous symmetry breaking (SSB) show a strong similarity with the

Landau-Ginzburg describtion of superconductivity as well as with the linear sigma

model of pion physics, and it has long been speculated, that just as in those cases

an underlying microscopic pairing interation may be at work in the SM. One op-

tion put forward already in 1979 is that the Higgs particle may be composed of

’techniquarks’ U and D[1, 2], in a similar way in which pions are composed of up-

and down-quarks u and d, and a technicolor QCD-like theory was suggested for the

underlying dynamics. The main drawback of such technicolor models, in particu-

lar in their ’extended’ form, is the appearance of unwanted flavor changing neutral

currents (FCNC)[8].

The starting point of the present approach is an isospin doublet ψ = (U,D) of Dirac

fermions just as in technicolor models, however without a technicolor quantum num-

ber and, to avoid FCNCs, without a direct interaction to quarks and leptons. Rather

we shall assume that the pairing mechanism is due to exchange interactions and

strong correlations of fermions, effects which in many body physics are known to be

responsible for SSB in superconductors and (anti)ferromagnets. In contrast to solid

state physics we do not consider these effects in physical space, but attribute them

to arise from an independent dynamics which is active in the internal spaces. To be

concrete, we assume the existence of a non-relativistic real internal 3-dimensional

space R3 with rotational SO(3)-symmetry for which the doublet ψ = (U,D) serves

as an (internal) Pauli spinor with an initial internal SU(2) spin symmetry. The

geometrical picture is that the world is a fiber bundle over Minkowski space with

fibers given by the R3 spaces, and that within these fibers physical processes take

place. We further assume that at high temperatures there is a symmetric state in

which the internal spins are distributed randomly in the fibers, giving rise to a local

SU(2) symmetry of the Lagrangian, local in the sense that on each site in each fiber

the spins may be rotated independently. With respect to Lorentz symmetry both

U and D can appear as lefthanded or righthanded objects, so that one may in fact

consider separately a SU(2)L for the lefthanded and SU(2)R for the righthanded

objects.

2



To recapitulate, the Standard Model SSB is triggered by the Higgs field H, a doublet

under SU(2)L which via a symmetry breaking potential

V (H) = −µ2H+H + λ(H+H)2 (1)

acquires a non-vanishing vacuum expectation value 〈H+H〉 = µ2

2λ
. More in detail

the Higgs doublet can be parametrized as

H =
1√
2

(

i(πx − iπy)

σ − iπz

)

(2)

so that

V (H) = −1

2
µ2(σ2 + ~π2) +

1

4
λ(σ2 + ~π2)2 (3)

with minimum at

Λ2

F := 〈σ2〉 = µ2

λ
(4)

which is often called the Fermi scale. Note that σ is a real scalar field, while

~π = (πx, πy, πz) is an axial vector field which can be interpreted as the longitudinal

components of the afterwards massive W/Z bosons. In the framework of our model

~π can be identified with the internal chiral spin vector, and x, y, z are the coordinates

of the internal 3-dimensional R3 space.

Although π-condensates could be conceivable, in particle physics it turns out that

the vev is attributed to the σ field alone, i.e.

〈H〉 = 1√
2

(

0

〈σ〉

)

=
1√
2

(

0

ΛF

)

(5)

The shifting relation σ = ΛF + φ defines the physical Higgs particle φ, whose tree

level mass can easily be shown to be mφ =
√
2µ. The values ΛF = 246 GeV and

mφ = 124 GeV fix the Higgs potential completely.

2 Symmetry Breaking in an A4 model

In ref. [4] it was shown that the internal (spin and vibrational) excitation spectrum

of the Shubnikov group A4 + S(S4 − A4)[15, 17, 16] yields the correct multiplet
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Figure 1: The local ground state of the model, living in a 3-dimensional internal R3

space (called the ’fiber’). Shown are the corner points (small circles) of the internal

tetrahedron, which can be represented by their coordinate vectors ~ri. The origin

of coordinates is taken to be the center of the tetrahedron, and is identical to the

base point of the fiber in Minkowski space. On each corner point i = 1, 2, 3, 4 there

is a chiral spin vector ~πi, pointing in the same radial direction as ~ri. (Note that

the spin vectors are shown but not the coordinate vectors ~ri.) The tetrahedron

itself has the tetrahedral group S4 as point group symmetry. However due to the

pseudovector property of the spin vectors the whole system has the Shubnikov point

symmetry A4+Q(S4−A4)[15], where Q is the internal parity operation and A4 is the

subgroup of S4 which does not contain reflections. The Shubnikov group is chiral,

the configuration with opposite chirality being given when the 4 spin vectors would

point inwards instead of outwards. Before the formation of the chiral tetrahedron

the internal spins U and D, which according to eq. (7) are the building blocks of the

spin vectors ~πi, can freely rotate and thus there is an internal spin SU(2) symmetry

group, which however is broken to A4 +Q(S4 − A4) when the chiral tetrahedron is

formed.
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structure of all 24 quark and lepton states of the 3 families

A(νe) + A′(νµ) + A′′(ντ ) + T (d) + T (s) + T (b) +

As(e) + A′
s(µ) + A′′

s(τ) + Ts(u) + Ts(c) + Ts(t) (6)

where A, A′, A′′ and T are singlet and triplet representations of A4 and the index s

denotes genuine representations of the Shubnikov group[15].

This discovery has led to the main assumption of the present paper, namely that fig.

1 should be taken as the local ground state of the model. In other words, it is assumed

that in each of the 3-dimensional internal R3 fibers there is a discrete tetrahedral

structure and that the internal dynamics is such that spin vectors arrange themselves

according to this internal tetrahedral symmetry, as depicted in fig. 1. Shown are the

corner points of the internal tetrahedron and on each corner point i = 1, 2, 3, 4 the

chiral spin vector ~πi, pointing in the same radial direction as the coordinate vector ~ri.

(The ~ri are not shown in the figure, and the precise mathematical definition of the

chiral spin vectors ~πi will be given later in eq. (7).) The tetrahedron itself has the

tetrahedral group S4 as point group symmetry. However, due to the pseudovector

property of the internal spin vectors the whole system loses its reflection symmetries

and obtains instead the Shubnikov symmetry group A4 + Q(S4 − A4)[15, 17, 16],

where Q is the internal parity operation and A4 is the subgroup of S4 which does

not contain reflections. Note that Q itself does not belong to the Shubnikov group,

and so internal parity is violated by the ground state fig. 1. One can rephrase this

by stating that the ground state and its symmetry are chiral with respect to the

internal coordinates, the configuration with opposite chirality being given when the

4 spin vectors would point inwards instead of outwards.

In section 1 it was argued that the internal R3 spaces are nonrelativistic, at rest

(no boosts allowed, because they are fixed to their base point in Minkowski space)

and rotationally invariant, with an internal rotational SO(3) and a corresponding

spin SU(2) under which the fundamental spinor ψ = (U,D) transforms. Due to

this symmetry at high temperatures each of the vectors ~πi can freely rotate in the

internal space. This symmetry, however, is valid only before the formation of the

internal tetrahedron and is broken to A4 + Q(S4 − A4) when the tetrahedron is

formed and the ~πi are fixed to their position in fig. 1. In the language of many-

particle physics fig. 1 is a frustrated antiferromagnet configuration[11], because the
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spin vectors try to avoid each other as far as possible, but do not achieve to form a

completely anti-parallel configuration.

Note that this breaking as yet has nothing to do with the spontaneous breaking of

SU(2)L, but is dictated by the internal dynamics which leads to the formation of

one tetrahedral ’molecule’. Rather it can be related to the breaking of the so called

’custodial’ SU(2) to be defined below.

As shown in the next section, the breaking of internal parity Q is accompanied by a

breaking of parity in external Minkowski space. The point is that assuming a uni-

versal field theory for 1+3+3 dimensions a connection will be established between

the internal and external parity operations. Any particle with chiral interactions in

the internal space will experience an internal polarization due to the chiral struc-

ture in fig. 1, and this polarization will be accompanied by a corresponding chiral

interaction of the particle in the base space, an effect which will be used to explain

the V − A structure of the weak interactions (for details see the next section).

Within the formalism of section 3 the simultaneous violation of internal and external

parity will show up in the simultaneous appearance of ~τ and γ5 in eqs. (7) and (40),

where ~τ denotes the triplet of internal Pauli matrices and γ5 = iγ1γ2γ3γ4 the γ5-

matrix in Minkowski space. These quantities are representatives of parity violating

behavior in their respective spaces (internal R3 and Minkowski space), because γ5

gives it a pseudoscalar behavior in Minkowski space and ~τ a pseudovector behavior

in the internal space. They are the building blocks for the chiral spin vectors, which

will now be constructed. Namely, one chooses to define

~π =
1

Λ2
(ψ̄iγ5~τψ) =

2

Λ2









− Im[ŪLDR + D̄LUR]

Re[ŪLDR + D̄LUR]

− Im[ŪLUR + D̄RDL]









(7)

where Λ at this point is just a mass scale to keep the dimensions right. To make

the list of components of the Higgs doublet eq. (2) complete we write

σ =
1

Λ2
(ψ̄ψ) =

1

Λ2
[ŪU + D̄D] =

2

Λ2
Re[ŪLUR + D̄RDL] (8)

When combined to the Higgs potential eq.(3), the theory is invariant under SU(2)L×
SU(2)R ×U(1) transformations, where the charge of the U(1)-transformations ψ →
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Figure 2: The global ground state of the model after SSB consists of an aligned

system of chiral tetrahedrons over Minkowski space (the latter is represented by the

long arrow). R is the magnitude of a tetrahedron and r the distance between two of

them. Associated to the 2 length scales R and r are the energy scales ΛR and Λr, as

defined in the text. Before the SSB the chiral tetrahedrons are oriented randomly

(not shown) and there is a corresponding local SO(3)L symmetry, because each rigid

tetrahedron can be rotated freely and independently from the others. After the SSB

the coordinate- as well as the spin-vectors of all tetrahedrons are aligned (as shown

in the figure). Unfortunately, this picture is only symbolic, not only because R is

initially a length scale defined in internal space but also because the condensate

〈ŪU + D̄D〉 responsible for the SSB does not define a direction in internal R3 space

and breaks the covering group SU(2)L of SO(3)L rather than the group itself.

eiαψ can be identified with the internal fermion number. The vev of the σ field

〈σ〉 = 1

Λ2
〈ψ̄ψ〉 (9)

breaks this symmetry to SU(2)D × U(1), where SU(2)D is the diagonal so called

’custodial’ SU(2) group. In the framework of the present model it can be identified

with the internal spin SU(2) introduced before, and one concludes that although it

is a symmetry of the Higgs potential it is not a symmetry of the system as a whole,

because it is broken by the formation of the internal tetrahedron.

Inserting (7) and (8) in (3), the bilinear term ∼ H+H of the Higgs potential has

precisely the form of a 4-fermion interaction as appears in the Nambu-Jona-Lasinio
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(NJL) Lagrangian[9]

LNJL = ψ̄(iγµ∂
µ −m)ψ +

1

Λ2
R

[(ψ̄ψ)2 + (ψ̄iγ5~τψ)
2] (10)

where m denotes the bare mass of the fundamental fermions ψ = (U,D) and Λ−2

R the

NJL-coupling which for dimensional reasons is written in terms of a new scale ΛR.

In technicolor theories this scale is usually interpreted as the mass of a heavy vector

boson exchanged between the techniquarks, and is running due to renormalization

group effects. Introducing a vev 〈ψ̄ψ〉 a comparison between (10) and (1), i.e.

µ2H+H =
1

Λ2
R

[(ψ̄ψ)2 + (ψ̄iγ5~τψ)
2] (11)

fixes the unknown energy scale Λ in eqs. (7)-(9) in terms of ΛF and ΛR. Renor-

malization effects even allow to derive a gap equation for the mass of the funda-

mental fermion. For consistency reasons, at low energies ∼ ΛF all scales involved

Λ ∼ µ ∼ ΛR must then be of the same order O(ΛF ).

In contrast, at high energies, where there is no condensate and no symmetry breaking

potential (V > 0 → L < 0), the NJL coupling Λ−2

R must be small and negative, the

scale ΛR roughly corresponding to the extension of an internal tetrahedron, cf. fig.

2. In that regime it is thus a repulsive potential and leads to the antiferromagnetic

configuration fig. 1. If one is looking closely, one can identify the ~π~π term in the

original Higgs potential eq. (3) together with (7) as a sort of an internal Heisenberg

spin-spin interaction. Such an interaction takes the form

HH = −J
∑

i 6=j

~πi~πj (12)

where the sum is over sites i of a given discrete structure and J is the coupling de-

rived from an exchange integral in internal space. J > 0 accounts for ferromagnetic

attraction and J < 0 for antiferromagnetic repulsion. The appearance of a large

exchange integral is a quantum effect due the Pauli principle and explains the phe-

nomenon of magnetism in solid state physics. In the present model J is the internal

exchange integral defined by integrating over internal coordinates (cf. section 3 for

details).

Comparing (12) with (3) one can identify J = µ2/2, i.e. there is attraction in the

SSB regime of energies ∼ ΛF , where µ
2 > 0. For high energies (small distances)
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Figure 3: Bethe-Slater curve: the exchange integral J as a function of the distance

between 2 internal spin vectors. If the spin vectors lie within one tetrahedron, their

distance is small ∼ R and according to the figure J is negative. This corresponds

to antiferromagnetic behavior and leads to the formation of the frustrated structure

fig. 1 with symmetry A4 + Q(S4 − A4), because the spin vectors try to avoid each

other as far as possible. In contrast, if the internal spin vectors belong to different

tetrahedrons, their distance is large, of order r, and J is positive. This corresponds

to ferromagnetic behavior. At distances of the order of the Fermi scale, in the

picture denoted by F, one is still in the ferromagnetic regime. Note that in ordinary

magnetism the Bethe-Slater curve is used to understand the magnetic behavior of

metals. Elements like Fe and Co are characterized by large lattice spacings and

corresponding large distances between spin vectors, much larger than the extension

of the electron wave function. In these cases one has J > 0 and a ferromagnetic

behavior. On the other hand, antiferromagnets like Cr and Mn are characterized

by small lattice spacings and corresponding small distances between spin vectors,

typically not much larger than the extension of the electron wave function. In these

cases J < 0 and therefore antiferromagnetic behavior.

.
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where the SSB gets lost, the potential is repulsive with J < 0 and leads to the

internally frustrated antiferromagnetic configuration of fig. 1. Such an energy de-

pendence of the exchange integral is very well known from the theory of magnetism

and is given by the so-called Bethe-Slater curve depicted in fig. 3. The antiferro-

magnetic repulsion at short distances follows from the Coulomb force which governs

the exchange integral J. (Note again that in the model discussed here all quantities

are defined and to be taken in the internal space, not in real space.)

In the present case one can even calculate the energy for the local vacuum state

fig. 1 and prove that it is a local minimum. To see this, just consider the products

~πi~πj = |~π|2 cosαij where |~π|2 is the length of the spin vectors and αij the angle

between them (i, j = 1, 2, 3, 4). It can then easily be seen that for the configuration

fig. 1 one gets the same energy as for the ideal antiferromagnetic configuration

where 2 spin vector show in the +z and the other 2 in the -z direction, namely
∑

4

i 6=j=1
~πi~πj = 2|~π|2, while all other configurations give larger values.

When the distances become larger and the energy is lowered towards the Fermi scale,

J changes sign due to the Bethe-Slater effect shown in fig. 3, and would in principle

lead to an attractive ’ferromagnetic’ interaction between 2 distinct tetrahedrons fig.

2, so that an alignment of spin vectors of these tetrahedrons would occur, induced

by the last term ∼ ~π~π in the NJL-Lagrangean eq. (10). A useful order parameter for

magnetic systems in such a situation is the total magnetization, in our case the sum

of all internal chiral spin vectors over internal and Minkowski space. Unfortunately,

in the present case the total internal spin vector is not suitable to use. The point is

simply that for a single local ground state configuration fig. 1 the ’magnetization’

vanishes:

~π =
4
∑

i=1

~πi = 0 (13)

(in agreement with eq. (5)), i.e. effectively there is no internal magnetic interaction

between 2 tetrahedrons. In other words, looked at from the distance the internal

’magnetic field’ of a single internal tetrahedron cannot be perceived. This is the

deeper reason why there are no chiral π-condensates in the Standard Model. One

has to search for another order parameter, and that is how the Higgs doublet H

comes into play. According to eq.(2) H contains besides the chiral spinvector ~π the
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scalar field σ, and it is this quantity which carries the condensate and should be

used as the order parameter, cf. eq.(5).

Strictly speaking one must distinguish the chiral spin vector ~π for the local internal

ground state in fig. 1, which sums up to zero, from the fields ~π in the Higgs doublet,

which can be interpreted as the longitudinal modes of the W/Z bosons. Concep-

tually, they are related to each other in the same way as the vacuum condensate

〈σ〉 is related to the Higgs field φ. While the spin vectors can be defined for one

tetrahedron alone (just as in ferromagnetism the spin vector f+~τf can be defined

for one electron alone), the bound states, when formed, turn out to be extended

objects over many tetrahedrons over Minkowski space.

To summarize the situation, the breaking of the internal symmetries consists in 2

steps:

• The formation of a tetrahedron due to an internal interaction within one sin-

gle internal space. This interaction is ’antiferromagnetic’ and leads to a ’frus-

trated’ configuration, because the spin vectors try to avoid each other but do

not achieve to form a completely anti-parallel configuration. Nevertheless, the

frustrated tetrahedron breaks internal spin SU(2) as well as internal parity to

the Shubnikov group A4 + Q(S4 − A4). This symmetry breaking however is

not spontaneous but arises from the arrangement of a single ’molecule’ due to

the internal antiferromagnetic exchange interaction which avoids parallel spin

states. (How this kind of internal magnetism can be understood from a more

fundamental higher dimensional theory will be explained in section 3.) The

local ground state thus is a chiral configuration, i.e. it violates both internal

and external parity, and the whole system is left SU(2)L-symmetric - where

the precise definition of the group SU(2)L is as follows:

• Before the SSB each local tetrahedral ground state can rotate independently of

the others, i.e. it can freely rotate over its base point in Minkowski space, and

this rotational symmetry of the rigid chiral spin vector system corresponds to

a SO(3)L symmetry group, whose covering group defines SU(2)L. It is in fact

a local symmetry, because the rotation can be different for tetrahedrons over

different base points. The SSB breaking of this group and the correspond-

ing Higgs mechanism consist in the alignment of all rigid tetrahedrons over
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Minkowski space, cf. fig. 2. In other words, fig. 2 shows the global ground

state of the universe after the SSB. Unfortunately, this picture is only sym-

bolic, because the condensate 〈ŪU + D̄D〉 responsible for the SSB does not

define a direction in internal R3 space and breaks the covering group SU(2)L

of SO(3)L rather than the group itself.

Corresponding to this scenario 2 new energy scales may be introduced: one is the

magnitude of the tetrahedron ΛR, which determines the strength of the NJL-coupling

at small distances, and the other the average distance Λr between 2 tetrahedrons in

Minkowski space (cf. fig. 2). One can also associate these scales to 2 temperatures

TR > Tr. Cooling down the universe from big bang temperatures, at about TR the

rigid tetrahedrons are formed in the internal fibers. Afterwards, at Tr, the tetrahe-

drons are aligned over finite domains of Minkowski space. In this regime of distances

the NJL-coupling becomes positive, increases (an effect which in technicolor theories

is attributed to the renormalization group, but which I associate to the Bethe-Slater

behavior of the internal exchange integral), and finally, at the Fermi temperature,

reaches its maximum value, when the local domains combine to extend to the whole

universe. In this domain picture the Fermi scale extends over many tetrahedrons,

and it is well possible that an additional long range correlation is at work here,

similar to the role phonons play in superconductivity.

The expert reader will find that the presented formulas (7)-(11) are similar to what

one gets in simple technicolor models[8]. It should be noted, however, that there are

2 important differences: first, there is no need of a (techni)color quantum number

here, because my model is a strongly correlated fermion system in the sense of

solid state physics and the bound states are formed by these correlations instead

of by (techni)color forces. Secondly, the fermions U and D do not interact directly

with quarks and leptons[4], and so the model does not have problems with FCNCs.

Finally, in technicolor theories the value of the condensate is usually assumed to be

〈ψ̄ψ〉 ∼ Λ3

F (14)

In other words, the extension of the condensates (and of the Higgs particle) is of the

order of the Fermi scale. Such a value of the condensate is also appropriate in the

present model, although the interpretation is somewhat different (see above).
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It is interesting to note that at energies ≤ ΛF the microscopic tetrahedral structure

does not shine up at all in the Higgs system. The only effect of the tetrahedral

structure at low energies are the multiplets of the vibrational and spin excitations

eq. (6), to be interpreted as the observed quark and lepton spectrum.

I repeat that the internal spin transformations are local in the sense, that the tetrahe-

drons can be rotated independently over different points of the base space (Minkowski

space). One has here a fiber space, where each fiber has a discrete crystalline struc-

ture. Connections can be defined over the fibers, which give rise to the gauge fields.

While the photon is a story of its own to be discussed in the next section, the explicit

construction of the SU(2)L gauge fields may easily be sketched, because it is quite

similar to the construction of the Higgs doublet. In fact they are also bound states

of the fundamental fermions U and D and differ from the chiral internal spin vector

field ~π only by their Lorentz behavior:

~W =
1

Λ2
(ψ̄γµ(1− γ5)~τψ) (15)

Due to the appearance of the factor ~τ they are polarized in internal space by the

internal chiral vacuum fig. 1, and, as shown in the next section, this polarization

will carry down to give a handedness ∼ 1 − γ5 in Minkowski space, providing the

chiral nature of the weak interactions.

3 The background Scenery: QED in 7 and 8 di-

mensions

The interested reader may worry, what kind of dynamical framework can account for

the phenomena described in the last section. The correlations between the internal

(~τ ) and external (γ5) axial structures are so intriguing that one is tempted to look

for a unifying higher dimensional model which comprises all the necessary features.

An immediate suggestion is a 6+1 dimensional space R6+1 with SO(6,1) symmetry

which fibers out to give the R3 fibers discussed in the last section. This fibration

may be associated with the formation of the tetrahedrons (fig. 1) at scale ΛR, which

span a 3-dimensional subspace of R6+1 and may in fact be used to define what a

fiber is. Namely, the fibers can be defined to be spanned by the tetrahedrons, while
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everything orthogonal is called Minkowski space. One then has

SO(6, 1) → SO(3, 1)× SO(3) (16)

While the base space is to be identified with physical Minkowski space and its

SO(3,1) Lorentz group, a kind of non-relativistic physics with rotational SO(3) will

take place in the fibers.

As to the dynamics I suggest to consider 6+1-dimensional QED (’QED7’) broken

down to the above fiber space, and want to show how this splits into ordinary

QED4 plus a non-relativistic electrodynamics in the fibers, i.e. an interaction which

to some extent can be discussed within the so-called NRQED framework[12, 13]. A

major difference as compared to ordinary NRQED will be the appearance of a chiral

factor γ5 which prevents the whole problem from being fully factorizable and bends

the fibers down to the base space and furthermore relates internal and external

chiralities.

The main ingredients of QED7 are a SO(6,1) spinor field (the QED7-’electron’) and

a massless vector field (the QED7-’photon’). As for the fermion there is a single

8-dimensional spinor representation in SO(6,1) decomposing as[10]

8 → (1, 2, 2) + (2, 1, 2) (17)

under the fibration SO(6, 1) → SO(3, 1)×SO(3). Here representations of SO(3, 1)×
SO(3) are denoted by a set of 3 numbers (a, b, c), where (a, b) are representations of

the Lorentz group and c is the dimension of a SO(3)-representation. For example,

c=2 corresponds to a non-relativistic Pauli spinor in internal space, whose 2 spin

orientations are identified with the SU(2) flavors U and D introduced in the last

section. It should be noted that (1,2,2) and (2,1,2) are complex conjugate with

respect to each other, so one is the antiparticle representation of the other.

The QED7-photon transforms according to the fundamental 7-dimensional repre-

sentation of SO(6,1) and decomposes as[10]

7 → (2, 2, 1) + (1, 1, 3) (18)

i.e. into an ordinary QED4 photon which is a singlet under internal spin SU(2) plus

an internal 3-dimensional vector potential to describe the internal photon.

14



The Lagrangian of QED7 resembles that of QED4

LQED7 = −1

4
FµνF

µν + ψ̄(iΓµD
µ −m)ψ (19)

where µ and ν run from 0 to 6, ψ is the 8-dimensional spinor of eq. (17), Γµ are the

Dirac matrices in 6+1 dimensions and Dµ = ∂µ + ieAµ is the covariant derivative

containing the 7-vector multiplet Aµ of eq. (18).

To make the decomposition SO(6, 1) → SO(3, 1) × SO(3) explicit one should de-

compose the corresponding 6+1 dimensional Dirac algebra. In fact the Dirac ma-

trices of SO(6,1) are 8×8 matrices and can be built up as tensor products of Pauli

matrices[18]

Γ0 = τ1 ⊗ τ0 ⊗ τ0 (20)

Γ1 = iτ2 ⊗ τ0 ⊗ τ0 (21)

Γ2 = iτ3 ⊗ τ1 ⊗ τ0 (22)

Γ3 = iτ3 ⊗ τ2 ⊗ τ0 (23)

Γ4 = iτ3 ⊗ τ3 ⊗ τ1 (24)

Γ5 = iτ3 ⊗ τ3 ⊗ τ2 (25)

Γ6 = iτ3 ⊗ τ3 ⊗ τ3 (26)

where the first 2 columns on the rhs correspond to Lorentz SO(3,1) and the last

column to internal SO(3). τ0 is the 2-dimensional unit matrix, so that the first 4

Γ-matrices Γ0,1,2,3 = γ0,1,2,3⊗τ0 give a set of Dirac matrices in Minkowski space. The

last 3 Γ-matrices have the form Γ4,5,6 = iτ3 ⊗ τ3 ⊗ τ1,2,3, i.e. they are proportional

to ~τ in the internal space part. The interesting point to note here is the appearance

of a common prefactor iτ3⊗ τ3 in Γ4,5,6, which due to τ1τ2 = iτ3 is nothing else than

the matrix γ5 = iγ1γ2γ3γ4 in Minkowski space. We thus have Γ4,5,6 = γ5⊗ τ1,2,3 and

this will in fact lead to the anticipated appearance of products of the form γ5~τ in the

internal interactions, which is responsible for the structure of the NJL-Lagrangian

eq. (10). As will shortly be seen, this makes sure that internal parity violating

effects from the A4 symmetry structure are passed down to Minkowski space. In

more mathematical terms it can be related to the structure and existence of octonion

multiplication, when 6+1 spacetime is assumed to be spanned by the octonion units

I,J ,K,L,IL,JL and KL[6, 7, 3].
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Now that we have established products γ5 × ~τ in the couplings, we can try to

derive the parity violation of the weak interaction. In principle, the presence of

such a coupling corresponds already to a parity violating behavior, both in internal

and Minkowski space. However, for this to actually become perceivable, an addi-

tional appropriate ’chiral situation’ has to be provided, again both in internal and

Minkowski space. In Minkowski space this can be achieved, for example, by using

polarized beams or if there is a second vertex with a γ5-coupling in the diagram. An

analogous requirement must be met in the internal space. In other words, a con-

figuration with a handedness must be present, in order to pick up a non-vanishing

contribution from the coupling, and this in the case at hand is given by the local

chiral ground state structure fig. 1. In fact, the non-relativistic circumstances of

the internal R3 space make it a similar situation as one has in optical activity of

molecules, where in addition to a circularly polarized photon there must be a handed

molecule in order to produce a non-vanishing effect.

Writing Aµ = (Ãµ=0−3, ~C) in eq. (19) one can make explicit the separation of

ordinary QED and the internal interaction

ψ̄ΓµA
µψ = ψ̄γµÃ

µψ + ψ̄γ5~τ ~Cψ (27)

The second term looks quite promising, because it corresponds to a chiral interaction

in Minkowski space. Unfortunately, it is of order of the electromagnetic coupling

and not large enough to explain the Bethe-Slater effect fig. 3. On the other hand we

know since the time of Heisenberg[14], that ordinary magnetism is purely an effect

of the Coulomb interaction plus the Pauli principle, which lead to the exchange

integral J. What is therefore missing in the above equation, is an internal scalar

potential C0 to provide for the Coulomb force.

To introduce such a field we restart by considering one more dimension, namely a

space with SO(6,2) symmetry group instead of SO(6,1)and decompose it as

SO(6, 2) → SO(3, 1)× SO(3, 1) → SO(3, 1)× SO(3) (28)

i.e. we allow for a separate dynamics and time evolution within the fibers. After-

wards however (second arrow in eq. (28)), the fibers are fixed to their base point

in Minkowski space and become non-relativistic at rest (no boosts allowed) with

symmetry group SO(3).
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Introducing this preface step does not make much of a difference concerning the

fermions, but it affects the internal photon in the desired way. To see this, one

should remember that SO(6,2) possesses three 8-dimensional spinor representations.

Two of these are Weyl representations (8L and 8R) which build up a 16-dimensional

Dirac field, just as in 3+1 dimensions a Dirac fermion can be built from two 2-

dimensional Weyl representations. The third 8-dimensional spinor representation

8V coincides with the fundamental 8-dimensional vector representation of SO(6,2).

The fact that these SO(6,2) representations appear in 3 inequivalent forms is known

as triality[5], a characteristic property of this group, which makes it very special

indeed and again goes back to the existence of the division algebra of octonions.

When one decomposes these representations according to (28) one obtains[10]

8L → (1, 2, 1, 2) + (2, 1, 2, 1) → (1, 2, 2) + (2, 1, 2) (29)

8R → (1, 2, 2, 1) + (2, 1, 1, 2) → (1, 2, 2) + (2, 1, 2) (30)

8V → (2, 2, 1, 1) + (1, 1, 2, 2) → (2, 2, 1) + (1, 1, 3) + (1, 1, 1) (31)

Here representations of SO(3, 1)×SO(3, 1) are denoted by (a,b,c,d), where the first 2

numbers (a,b) stand for representations of the Lorentz group, and (c,d) characterize

representations of the internal SO(3,1). While (29) and (30) yield the same structure

as eq. (17) in the limit eq. (16), the expression (31) does not agree with eq. (18), but

according to eq. (31) contains the desired singlet field (1,1,1). Note that (2,2,1,1)

resp. (2,2,1) denotes the ordinary photon, while (1,1,2,2)→ (1,1,3)+(1,1,1) is the

(internally) non-relativistic decomposition of the internal ’photon’.

One may also construct the SO(6,2) Dirac spinor as the sum of 8L and 8R

8L + 8R → (1, 2, 1, 2) + (2, 1, 1, 2) + (1, 2, 2, 1) + (2, 1, 2, 1) = (12 + 21, 12 + 21)

where the underlined expression is a short form which makes it easy to understand,

that it decomposes into a Dirac fermion in Minkowski space times a Dirac fermion in

the internal space. This object should be chosen as the ’QED8-electron’ and enters

the QED8-Lagrangian which formally has the same structure as eq. (19) with the

indices now running from 0 to 7.

The Dirac matrices of SO(6,2) entering the QED8-Lagrangian will be called Gµ and

17



consist of 16×16 Matrices which can be written as tensor products of the form

G0 = τ1 ⊗ τ0 ⊗ τ0 ⊗ τ0 (32)

G1 = iτ2 ⊗ τ0 ⊗ τ0 ⊗ τ0 (33)

G2 = iτ3 ⊗ τ1 ⊗ τ0 ⊗ τ0 (34)

G3 = iτ3 ⊗ τ2 ⊗ τ0 ⊗ τ0 (35)

G4 = τ3 ⊗ τ3 ⊗ τ1 ⊗ τ0 (36)

G5 = iτ3 ⊗ τ3 ⊗ τ2 ⊗ τ0 (37)

G6 = iτ3 ⊗ τ3 ⊗ τ3 ⊗ τ1 (38)

G7 = iτ3 ⊗ τ3 ⊗ τ3 ⊗ τ2 (39)

where the first 2 columns on the rhs correspond to the Lorentz group and the last

2 to the internal SO(3,1). Looking closely at these equations one understands that

G0,1,2,3 yield the ordinary Dirac matrices in Minkowski space (up to trivial factors

τ0 ⊗ τ0), and G4,5,6,7 yield Dirac matrices in the internal space - however with a

prefactor γ5 ∼ τ3 ⊗ τ3.

Taking the non-relativistic limit in the internal fibers we end up with the γ-matrices

discussed after eq. (26). Furthermore, there is an internal scalar potential C0 = A4

in addition to the internal vector potential ~C = Aµ=5,6,7. What we have achieved

then is that we can apply the ordinary NRQED machinery to the internal spaces

(except for the appearance of factors of γ5 in the interactions). For example, the

internal dynamics will be governed by the (slightly modified) Pauli Lagrangian

L2f = ψ̄{i∂t +
1

2m
~D2 +

e

2m
γ5~τ ~B}ψ (40)

where m and e are the mass and charge of the fundamental fermion ψ = (U,D).

Dt = −∂t + ieC0 and ~D = −~∇ + ie ~C are covariant derivatives in the internal

dimensions. ~B is the internal magnetic field strength of the internal photon, C0 its

desired scalar and ~C its vector potential. The Pauli Lagrangian may be considered

as the leading order NRQED contribution to the 2-fermion interactions of internal

NRQED. There is also a leading 4-fermion Lagrangian[12, 13] which contains the

terms arising in the NJL-Lagrangian (10):

L4f =
ds
m2

(ψ̄ψ)2 +
dv
m2

(ψ̄γ5~τψ)
2 (41)
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with ds, dv = O(α) being couplings of the effective NRQED field theory. They

are obviously too small to account for the internal magnetic effects discussed in

the last section. Strong correlations are needed to explain the formation of the

internal tetrahedral structure. As discussed earlier, these naturally arise as exchange

contributions via the (internal) Pauli principle.

4 Conclusions

In this paper the SM Higgs mechanism has been analyzed on the basis of dynamics

taking place in a 3-dimensional internal space with a chiral tetrahedral structure. It

was shown that weak parity violation can be completely understood from interac-

tions within one single tetrahedron and has no spontaneous character. In contrast,

the breaking of SU(2)L is spontaneous and due to an alignment of all internal fibers

over the whole of Minkowski space.

Since this is a rather unusual approach it may seem hard to understand where it

comes from and to where it will lead, in particular because I have mostly restricted

myself to the symmetry breaking aspects and did not consider other questions[3, 4].

In fact, there is a certain physical picture in my mind where our universe resembles

a huge crystal of molecules, each ’molecule’ of tetrahedral form like in fig. 1, and

arranged in such a way that certain symmetries are (spontaneously) broken. For

such a model to be consistent, a 6+1 dimensional space time has been introduced,

i.e. the ’molecules’ extend to 3 internal dimensions which are orthogonal to physical

space. The strong correlations within this system provide the Higgs particle and the

weak vector bosons as bound states. Furthermore, as shown in ref. [4], internal spin

and vibrational excitations can be interpreted as the quark and lepton spectrum.

Then, it happens that an excitation in one molecule is able to excite an excitation

in the neighbouring internal space and thus can travel as a quasi-particle through

Minkowski space with a certain wave vector ~k which is to be interpreted as the

physical momentum of the particle.

In ferromagnets with Pauli spinors f = (f↑, f↓) the appropriate order parameter is

the sum of the spin vectors

~S = f+~τf (42)
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whereas in superconductivity the condensate of Cooper pairs

< f↑f↓ > (43)

determines the order of the system. The phenomena of high energy physics are such

that the relevant quantity is the (internal + relativistic) generalization of (43), but

not that of (42). In section 2 an intriguing explanation was found for this fact.

Furthermore it was shown that the chiral spin vectors eq. (7) play an important

role in the dynamics of the system. They are not only essential ingredients of the

Higgs doublet and the NJL Lagrangian, but in the internal spaces they interact in an

’antiferromagnetic’ way, thereby determining the local ground state of the system.

I have finished this paper leaving a lot of open questions. For example, the mixing

of the photon and Z-boson has not been worked out. Then there is the question,

whether the fundamental fermions U and D are in principle observable or whether

they act just as a sort of background fields for the physical excitations. Thirdly, it is

unclear, whether the condensate 〈ψ̄ψ〉 = 〈ŪU + D̄D〉 is really SU(2)D-symmetric or

whether 〈ŪU〉 6= 〈D̄D〉. This is a well justified question in view of the fact that the

chiral tetrahedron breaks SU(2)D. And finally, there is the question, which force

keeps the original tetrahedron (the circles in fig. 1) together.
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