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Taking the Definition of the Derivative: 
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And the smaller  , the more precise the approximation. 
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Let’s suppose that we have a perfect square and, therefore, we know its square root. 
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But also we have an integer that is not a perfect square and we want to calculate the approximate 
value of its square root. 
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Let’s assume:       
Then: 
 

          
 

This means:       
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Now we can do the following replacements: 
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But we said that: 
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On the other hand, the derivative of  ( )  is: 
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Hence, we can say that: 
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 Eq. 1 

 



And here we could find the “error” that we made when we did the approximation with the 
formula of the Derivative. 
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Now, with this error function in our hand, let’s try to find out a better approximation of  ( ). 
To do this, we are going to assume that     . 
So, let’s rewrite the error function as a function of  . 
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Now we have our error function as a function of  , the first approach of  ( ) will be: 
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 Eq. 3 

 
So, using the definition of the Derivative, we found in Eq. 3 the first approach of  ( ). 

 
From now we are going to find better approximations of  ( ), replacing the previous 

approximation into the error function of the new approximation. 
In other words, we are going to build a Sequence wich converges to  ( ). 

 
To do this, we will take the first approach and substract a new error value each time. 
The subsequent values of  ( ) will be: 
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And so on… 
Where  ( ) 

  is a function of  ( )  . 

 
So, we can say: 
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Where    is a factor that produces each approximation of  ( ). 

 
Then, using Eq. 2 for the error function: 
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So, we can say: 
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But, this will ensure that  ( ) 

 is a better approach than  ( )   
 ? 

What’s the relationship between    and      ? 

 
To answer these questions we have to analize two scenarios: 

1)        
2)        

 
So first, let       . 
Which means: 
 

         
 
Then: 
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So, the term that represents    is a parabola. 
Let’s find its global extrema. 
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Is it a Maximum or a Minimum? 
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The parabola is concave down, so it’s a Maximum. 
And this Maximum is negative. So, the graphic will be: 
 

 
Figure 1 
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As     (Because we said that       ), we are going to analize only the interval (   ) for  . 
 
In this interval, the slope of the tangent lines of the curve is always negative. And as   increases, 
the absolute value of the slope increases too (because it’s a concave down parabola). 
 
But let’s go further. 
For which value of  , the slope of its tangent line is -1? 
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So, in the interval (  
  √ 

√ 
 ) the variations in    are less than the variations in  . 

And also we know that    is always less than 1 when   is greater than 0 (from the formula of    
represented in the graphic). 
 
Then, we can say: 
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So, if   is always less than   (in the interval we mentioned), even though    is less than 1,  ( ) 

 will 

be a better approach than  ( )   
 . 

 

Now, let       . 
Which means: 
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So, the term that represents    is a parabola. 
Let’s find its global extrema. 
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Is it a Maximum or a Minimum? 
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The parabola is concave down, so it’s a Maximum. 
And this Maximum is positive. So, the graphic will be: 
 

 
Figure 2 
 
As     (Because we said that       ), we are going to analize only the interval (   ) for  . 
 
In this interval, the slope of the tangent lines of the curve is positive when   is less than the 
Maximum, and negative when it is greater. Plus, when    , the slope is less than 1. 
 

So, in the interval (  
√   

√ 
 ) the variations in    are less than the variations in  . And    is greater 

than 1. 
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Then, we can say: 
 

       
 
And if: 
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So, if   is always less than   (in the interval we mentioned), even though    is greater than 1,  ( )  

will be a better approach than  ( )   
 . 

 
Given the intervals we mentioned, we can say that the Sequence we proposed converges to  ( ). 

 
Let’s do some more math! 
 
The first approach of  ( ) is: 
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In this case,    > 1. 
Then: 
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So,    is in the interval that makes  ( ) 

 a better approach. 

 
The second approach would be: 
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In this case,    < 1. 
Then: 
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So,    is in the interval that makes  ( )  a better approach. 

 
As  ( ) 

 will be greater than  ( ) and a better approach than  ( ) 
 ,    wil also be in the interval 

that makes  ( ) 
 a better approach. 

And, as  ( ) 
 will be less than  ( ) and a better approach than  ( ) 

 ,    will also be in the interval 

that makes  ( ) 
 a better approach. 

 
So, the Sequence we proposed really converges to  ( ). 

 

 ( )   ( )

 

 √ 
 

( ( )   
  ( ))

 

  ( )
 

 
Remember we said that   is a perfect square, and   is an integer wich is the square root of  . 
Also we said that     . 
So    is 2 times a perfect square. 
Then: 
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In other words, we can say that the following Quadratic Sequence converges to  √ : 
 

     
    

 

  
         

 

 
         

 



The following graphics show the shapes of these convergences. 
 

Convergence to √ : 
 

 
 

Convergence to  √ : 
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Let’s go further to find a nicer Quadratic Sequence. 
 
Let: 
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We can say that the following Quadratic Sequence converges to  (√   ): 

 

   
 

 
  

    
 

  
    

 

 
         

 
 
 


