Convergence of Quadratic Sequences

Taking the Definition of the Derivative:
$f_{(x)}^{\prime}=\lim _{h \rightarrow 0} \frac{f_{(x+h)}-f_{(x)}}{h}$
We can say:
$f_{(x+h)} \cong f_{(x)}+h f_{(x)}^{\prime}$
And the smaller h, the more precise the approximation.

Let:
$f_{(x)}=\sqrt{x}$
Let's suppose that we have a perfect square and, therefore, we know its square root.
$b=\sqrt{a} \quad b \in \mathbb{N} ; a \in \mathbb{N}$
But also we have an integer that is not a perfect square and we want to calculate the approximate value of its square root.
$d=\sqrt{c} \quad d \in \mathbb{R} ; c \in \mathbb{N}$
Let's assume: $c>a$
Then:
$c=a+h \quad h \in \mathbb{N}$
This means: $d>b$
Then:
$d=b+m \quad m \in \mathbb{R}$
Now we can do the following replacements:
$\sqrt{c}=\sqrt{a}+m$
$c=(\sqrt{a}+m)^{2}=a+2 m \sqrt{a}+m^{2}$
But we said that:
$c=a+h$

Then:
$h=c-a$
$h=a+2 m \sqrt{a}+m^{2}-a$
$h=2 m \sqrt{a}+m^{2}$

On the other hand, the derivative of $f_{(x)}$ is:
$f_{(x)}^{\prime}=\frac{d}{d x} \sqrt{x}$
$f_{(x)}^{\prime}=\frac{1}{2 \sqrt{x}}$
$f_{(x)}^{\prime}=\frac{1}{2 f_{(x)}}$

Hence, we can say that:
$f_{(c)}=f_{(a+h)} \cong f_{(a)}+h f_{(a)}^{\prime}$
$f_{(c)} \cong f_{(a)}+\frac{2 m \sqrt{a}+m^{2}}{2 f_{(a)}}$
But:
$m=d-b$
$m=\sqrt{c}-\sqrt{a}$
$m=f_{(c)}-f_{(a)}$
Then:
$f_{(c)} \cong f_{(a)}+\frac{2\left(f_{(c)}-f_{(a)}\right) f_{(a)}+\left(f_{(c)}-f_{(a)}\right)^{2}}{2 f_{(a)}}$
$f_{(c)} \cong f_{(a)}+f_{(c)}-f_{(a)}+\frac{\left(f_{(c)}-f_{(a)}\right)^{2}}{2 f_{(a)}}$
$f_{(c)} \cong f_{(c)}+\frac{\left(f_{(c)}-f_{(a)}\right)^{2}}{2 f_{(a)}}$
Eq. 1

And here we could find the "error" that we made when we did the approximation with the formula of the Derivative.
$e=\frac{\left(f_{(c)}-f_{(a)}\right)^{2}}{2 f_{(a)}}$
Eq. 2

Now, with this error function in our hand, let's try to find out a better approximation of $f(c)$.
To do this, we are going to assume that $c=2 a$.
So, let's rewrite the error function as a function of c.
$f_{(a)}=f_{\left(\frac{c}{2}\right)}$
But:
$f(x)=\sqrt{x}$
So:
$f_{(a)}=\frac{f_{(c)}}{\sqrt{2}}$
Then:
$e_{(c)}=\frac{\left(f_{(c)}-\frac{f_{(c)}}{\sqrt{2}}\right)^{2}}{\frac{2 f_{(c)}}{\sqrt{2}}}$
$e_{(c)}=\frac{\left(\frac{\sqrt{2} f_{(c)}-f_{(c)}}{\sqrt{2}}\right)^{2}}{\sqrt{2} f_{(c)}}$
$e_{(c)}=\frac{\frac{\left(f_{(c)}(\sqrt{2}-1)\right)^{2}}{2}}{\sqrt{2} f_{(c)}}$
$e_{(c)}=\frac{f_{(c)}^{2}(\sqrt{2}-1)^{2}}{2 \sqrt{2} f_{(c)}}$
$e_{(c)}=f_{(c)}\left(\frac{(\sqrt{2}-1)^{2}}{2 \sqrt{2}}\right)$

Now we have our error function as a function of c, the first approach of $f_{(c)}$ will be:
$f_{(c)_{0}}=f_{(c)}+e_{(c)}$
$f_{(c)_{0}}=f_{(c)}+f_{(c)}\left(\frac{(\sqrt{2}-1)^{2}}{2 \sqrt{2}}\right)$
$f_{(c)_{0}}=f_{(c)}\left(1+\frac{(\sqrt{2}-1)^{2}}{2 \sqrt{2}}\right)$
$f_{(c)_{0}}=f_{(c)} \frac{3}{2 \sqrt{2}}$
Eq. 3

So, using the definition of the Derivative, we found in Eq. 3 the first approach of $f_{(c)}$.
From now we are going to find better approximations of $f_{(c)}$, replacing the previous approximation into the error function of the new approximation.
In other words, we are going to build a Sequence wich converges to $f_{(c)}$.
To do this, we will take the first approach and substract a new error value each time. The subsequent values of $f_{(c)}$ will be:
$f_{(c)_{1}}=f_{(c)} \frac{3}{2 \sqrt{2}}-e_{(c)_{0}}$
$f_{(c)_{2}}=f_{(c)} \frac{3}{2 \sqrt{2}}-e_{(c)_{1}}$
$f_{(c)_{3}}=f_{(c)} \frac{3}{2 \sqrt{2}}-e_{(c)_{2}}$
And so on...
Where $e_{(c)}{ }_{n}$ is a function of $f_{(c)}{ }_{n}$.
So, we can say:
$f_{(c)_{n}}=f_{(c)} k_{n}$
Where k_{n} is a factor that produces each approximation of $f_{(c)}$.
Then, using Eq. 2 for the error function:
$f_{(c)_{n}}=f_{(c)} \frac{3}{2 \sqrt{2}}-\frac{\left(f_{(c)_{n-1}}-f_{(a)}\right)^{2}}{2 f_{(a)}}$
$f_{(c)_{n}}=f_{(c)} \frac{3}{2 \sqrt{2}}-\frac{\left(f_{(c)_{n-1}}-\frac{f_{(c)}}{\sqrt{2}}\right)^{2}}{\frac{2 f_{(c)}}{\sqrt{2}}}$
$f_{(c)_{n}}=f_{(c)} \frac{3}{2 \sqrt{2}}-\frac{\left(\frac{\sqrt{2} f_{(c)_{n-1}}-f_{(c)}}{\sqrt{2}}\right)^{2}}{\sqrt{2} f_{(c)}}$
$f_{(c)_{n}}=f_{(c)} \frac{3}{2 \sqrt{2}}-\frac{2 f_{(c)_{n-1}^{2}}^{2}-2 \sqrt{2} f_{(c){ }_{n-1}} f_{(c)}+f_{(c)}^{2}}{2 \sqrt{2} f_{(c)}}$
$f_{(c)_{n}}=f_{(c)} \frac{3}{2 \sqrt{2}}-\frac{2 k_{n-1}^{2} f_{(c)}^{2}}{2 \sqrt{2} f_{(c)}}+k_{n-1} f_{(c)}-\frac{f_{(c)}}{2 \sqrt{2}}$
$f_{(c)_{n}}=f_{(c)}\left(\frac{3}{2 \sqrt{2}}-\frac{k_{n-1}^{2}}{\sqrt{2}}+k_{n-1}-\frac{1}{2 \sqrt{2}}\right)$
$f_{(c)_{n}}=f_{(c)}\left(-\frac{k_{n-1}^{2}}{\sqrt{2}}+k_{n-1}+\frac{1}{\sqrt{2}}\right)$
So, we can say:
$k_{n}=-\frac{k_{n-1}^{2}}{\sqrt{2}}+k_{n-1}+\frac{1}{\sqrt{2}}$
But, this will ensure that $f_{(c)}$ is a better approach than $f_{(c)_{n-1}}$?
What's the relationship between k_{n} and k_{n-1} ?
To answer these questions we have to analize two scenarios:

1) $k_{n-1}>1$
2) $k_{n-1}<1$

So first, let $k_{n-1}>1$.
Which means:
$k_{n-1}=1+r$
Then:
$f_{(c)_{n}}=f_{(c)}\left(-\frac{(1+r)^{2}}{\sqrt{2}}+1+r+\frac{1}{\sqrt{2}}\right)$
$f_{(c)_{n}}=f_{(c)}\left(-\frac{1+2 r+r^{2}}{\sqrt{2}}+1+r+\frac{1}{\sqrt{2}}\right)$
$f_{(c)_{n}}=f_{(c)}\left(-\frac{1}{\sqrt{2}}-\sqrt{2} r-\frac{r^{2}}{\sqrt{2}}+1+r+\frac{1}{\sqrt{2}}\right)$
$f_{(c)_{n}}=f_{(c)}\left(-\frac{r^{2}}{\sqrt{2}}+r(1-\sqrt{2})+1\right)$
So, the term that represents k_{n} is a parabola.
Let's find its global extrema.
$\frac{d}{d r}\left(-\frac{r^{2}}{\sqrt{2}}+r(1-\sqrt{2})+1\right)=-\sqrt{2} r+1-\sqrt{2}$
$-\sqrt{2} r+1-\sqrt{2}=0$
$r=\frac{1-\sqrt{2}}{\sqrt{2}}$
Is it a Maximum or a Minimum?
$\frac{d}{d r}(-\sqrt{2} r+1-\sqrt{2})=-\sqrt{2}$
The parabola is concave down, so it's a Maximum.
And this Maximum is negative. So, the graphic will be:

Figure 1

As $r>0$ (Because we said that $k_{n-1}>1$), we are going to analize only the interval $(0, \infty)$ for r.

In this interval, the slope of the tangent lines of the curve is always negative. And as r increases, the absolute value of the slope increases too (because it's a concave down parabola).

But let's go further.
For which value of r, the slope of its tangent line is -1 ?
$-\sqrt{2} r+1-\sqrt{2}=-1$
$r=\frac{2-\sqrt{2}}{\sqrt{2}}$

So, in the interval $\left(0, \frac{2-\sqrt{2}}{\sqrt{2}}\right)$ the variations in k_{n} are less than the variations in r.
And also we know that k_{n} is always less than 1 when r is greater than 0 (from the formula of k_{n} represented in the graphic).

Then, we can say:
$k_{n}=1-s$

And if:
$0<r<\frac{2-\sqrt{2}}{\sqrt{2}} \rightarrow \boldsymbol{s}<\boldsymbol{r}$ because when $r=\frac{2-\sqrt{2}}{\sqrt{2}}, s=\frac{\sqrt{2}-1}{\sqrt{2}}$ wich is less than r.

So, if s is always less than r (in the interval we mentioned), even though k_{n} is less than $1, f_{(c)}$ will be a better approach than $f_{(c)_{n-1}}$.

Now, let $k_{n-1}<1$.
Which means:
$k_{n-1}=1-r$
Then:
$f_{(c)_{n}}=f_{(c)}\left(-\frac{(1-r)^{2}}{\sqrt{2}}+1-r+\frac{1}{\sqrt{2}}\right)$
$f_{(c)_{n}}=f_{(c)}\left(-\frac{1-2 r+r^{2}}{\sqrt{2}}+1-r+\frac{1}{\sqrt{2}}\right)$
$f_{(c)_{n}}=f_{(c)}\left(-\frac{1}{\sqrt{2}}+\sqrt{2} r-\frac{r^{2}}{\sqrt{2}}+1-r+\frac{1}{\sqrt{2}}\right)$
$f_{(c)_{n}}=f_{(c)}\left(-\frac{r^{2}}{\sqrt{2}}-r(1-\sqrt{2})+1\right)$
So, the term that represents k_{n} is a parabola.
Let's find its global extrema.
$\frac{d}{d r}\left(-\frac{r^{2}}{\sqrt{2}}-r(1-\sqrt{2})+1\right)=-\sqrt{2} r-1+\sqrt{2}$
$-\sqrt{2} r-1+\sqrt{2}=0$
$r=\frac{\sqrt{2}-1}{\sqrt{2}}$
Is it a Maximum or a Minimum?
$\frac{d}{d r}(-\sqrt{2} r-1+\sqrt{2})=-\sqrt{2}$
The parabola is concave down, so it's a Maximum.
And this Maximum is positive. So, the graphic will be:

Figure 2
As $r>0$ (Because we said that $k_{n-1}<1$), we are going to analize only the interval $(0, \infty)$ for r.
In this interval, the slope of the tangent lines of the curve is positive when r is less than the Maximum, and negative when it is greater. Plus, when $r=0$, the slope is less than 1.

So, in the interval $\left(0, \frac{\sqrt{2}-1}{\sqrt{2}}\right)$ the variations in k_{n} are less than the variations in r. And k_{n} is greater than 1.

Then, we can say:
$k_{n}=1+s$

And if:
$0<r<\frac{\sqrt{2}-1}{\sqrt{2}} \rightarrow \boldsymbol{s}<\boldsymbol{r}$ because when $r=\frac{\sqrt{2}-1}{\sqrt{2}}, s=\frac{2 \sqrt{2}-3}{2 \sqrt{2}}$ wich is less than r.
So, if s is always less than r (in the interval we mentioned), even though k_{n} is greater than $1, f_{(c)} n_{n}$ will be a better approach than $f_{(c)_{n-1}}$.

Given the intervals we mentioned, we can say that the Sequence we proposed converges to $f_{(c)}$. Let's do some more math!

The first approach of $f_{(c)}$ is:
$f_{(c)_{0}}=f_{(c)} \frac{3}{2 \sqrt{2}}$
So:
$k_{0}=\frac{3}{2 \sqrt{2}}$
In this case, $k_{0}>1$.
Then:
$k_{0}=1+r_{0} \rightarrow r_{0}=\frac{3-2 \sqrt{2}}{2 \sqrt{2}}$ which is less than $\frac{2-\sqrt{2}}{\sqrt{2}}$
So, r_{0} is in the interval that makes $f_{(c)_{1}}$ a better approach.

The second approach would be:
$f_{(c)_{1}}=f_{(c)}\left(-\frac{k_{0}^{2}}{\sqrt{2}}+k_{0}+\frac{1}{\sqrt{2}}\right)$
$f_{(c)_{1}}=f_{(c)}\left(-\frac{9}{8 \sqrt{2}}+\frac{3}{2 \sqrt{2}}+\frac{1}{\sqrt{2}}\right)$
$f_{(c)_{1}}=f_{(c)} \frac{11}{8 \sqrt{2}}$

In this case, $k_{1}<1$.
Then:
$k_{1}=1-r_{1} \rightarrow r_{1}=\frac{8 \sqrt{2}-11}{8 \sqrt{2}}$ which is less than $\frac{\sqrt{2}-1}{\sqrt{2}}$
So, r_{1} is in the interval that makes $f_{(c)}$ a better approach.

As $f_{(c)_{2}}$ will be greater than $f_{(c)}$ and a better approach than $f_{(c)_{0}}, r_{2}$ wil also be in the interval that makes $f_{(c)_{3}}$ a better approach.
And, as $f_{(c)_{3}}$ will be less than $f_{(c)}$ and a better approach than $f_{(c)_{1}}, r_{3}$ will also be in the interval that makes $f_{(c)}$ a better approach.

So, the Sequence we proposed really converges to $f_{(c)}$.
$f_{(c)_{n}}=f_{(c)} \frac{3}{2 \sqrt{2}}-\frac{\left(f_{(c)_{n-1}}-f_{(a)}\right)^{2}}{2 f_{(a)}}$
Remember we said that a is a perfect square, and b is an integer wich is the square root of a.
Also we said that $c=2 a$.
So c is 2 times a perfect square.
Then:
$f_{(c)}=b \sqrt{2}$
$f_{(c)_{n}}=\frac{3}{2} b-\frac{\left(f_{(c)_{n-1}}-f_{(a)}\right)^{2}}{2 f_{(a)}}$
$f_{(c)_{n}}=\frac{3}{2} b-\frac{\left(f_{(c)_{n-1}}-b\right)^{2}}{2 b}=\frac{3}{2} b-\frac{f_{(c)_{n-1}^{2}}^{2}-2 b f_{(c)}{ }_{n-1}+b^{2}}{2 b}$
$f_{(c)_{n}}=\frac{3}{2} b-\frac{f_{(c)_{n-1}^{2}}^{2}}{2 b}+f_{(c)_{n-1}}-\frac{1}{2} b$
$f_{(c)_{n}}=b-\frac{f_{(c)_{n-1}^{2}}^{2}}{2 b}+f_{(c)_{n-1}}$

In other words, we can say that the following Quadratic Sequence converges to $b \sqrt{2}$:

$$
a_{n}=b-\frac{a_{n-1}^{2}}{2 b}+a_{n-1} \quad a_{0}=\frac{3}{2} b ; b \in \mathbb{N}
$$

The following graphics show the shapes of these convergences.
Convergence to $\sqrt{2}$:

Convergence to $2 \sqrt{2}$:

Let's go further to find a nicer Quadratic Sequence.
Let:
$a_{n}=\frac{1}{d_{n}}+b$

$$
d_{0}=\frac{2}{b}
$$

Then:

$$
\begin{aligned}
& \frac{1}{d_{n}}+b=b-\frac{\left(\frac{1}{d_{n-1}}+b\right)^{2}}{2 b}+\frac{1}{d_{n-1}}+b \\
& \frac{1}{d_{n}}+b=b-\frac{\frac{1}{d_{n-1}^{2}}+\frac{2 b}{d_{n-1}}+b^{2}}{2 b}+\frac{1}{d_{n-1}}+b \\
& \frac{1}{d_{n}}+b=b-\frac{1}{2 b d_{n-1}^{2}}-\frac{1}{d_{n-1}}-\frac{b}{2}+\frac{1}{d_{n-1}}+b
\end{aligned}
$$

$$
\frac{1}{d_{n}}=\frac{b}{2}-\frac{1}{2 b d_{n-1}^{2}}
$$

$$
\frac{1}{d_{n}}=\frac{b^{2} d_{n-1}^{2}-1}{2 b d_{n-1}^{2}}
$$

$$
d_{n}=\frac{2 b d_{n-1}^{2}}{b^{2} d_{n-1}^{2}-1}
$$

Let:
$d_{n}=\frac{1}{g_{n}}$ $g_{0}=\frac{1}{2} b$

Then:
$\frac{1}{g_{n}}=\frac{\frac{2 b}{g_{n-1}^{2}}}{\frac{b^{2}}{g_{n-1}^{2}}-1}$
$\frac{1}{g_{n}}=\frac{\frac{2 b}{g_{n-1}^{2}}}{\frac{b^{2}-g_{n-1}^{2}}{g_{n-1}^{2}}}$
$\frac{1}{g_{n}}=\frac{2 b}{b^{2}-g_{n-1}^{2}}$
$g_{n}=\frac{b^{2}-g_{n-1}^{2}}{2 b}$

As $g_{n}=\frac{1}{d_{n}}$ and $d_{n}=\frac{1}{a_{n}-b}$:
We can say that the following Quadratic Sequence converges to $b(\sqrt{2}-1)$:
$g_{n}=\frac{1}{2} b-\frac{g_{n-1}^{2}}{2 b} \quad g_{0}=\frac{1}{2} b ; b \in \mathbb{N}$

