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Abstract

The "Schrödinger cat" states supposed by quantum mechanics need not be considered intrinsi-

cally probabilistic or otherwise inconsistent with the existence of the particle in the physically real

state assumed by classical physics. The further states contemplated by the formalism of standard

quantum mechanics could be states, not of the particle itself, but of the apparatus - oscillatory dis-

turbances induced by reaction as the particle is measured and mimicking the wave characteristics

of a particle. If quantum states are understood in this way, much of what has seemed mysterious

in quantum behaviour becomes consistent with local realism.
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I. INTRODUCTION

The central problem of quantum mechanics or, as Feynman memorably told his students,

"the only mystery" [1] is illustrated in a compelling manner by the Mach-Zehnder interfer-

ometer of Fig. 1. The mystery is this: How does a particle that follows a single path

through the interferometer project its influence along both paths so as to "self interfere" as

those paths rejoin?

We explore here the possibility that it is merely an illusion, induced by the response

of the apparatus, that the particle takes both paths. It can hardly be doubted that in

some formal sense the alternative "Schrödinger cat" states supposed by standard quantum

mechanics (SQM) must exist. But it will be assumed in this paper that the particle is in a

single physically real state at all times, albeit that this state may be unknown or transitional

or capable of expression as a superposition with respect to the modes of some apparatus.

What might seem to be a further state of the particle will be, not a state of the particle

itself, but a state of the apparatus - an oscillatory excitation in the fields of the apparatus

induced by reaction as the particle is scattered (for instance at the surface of discontinuity

within a beam splitter). Insisting upon the strict operation of laws of conservation, it will

be argued that the response of the scattering medium must match exactly the change in the

wave characteristics of the particle, and must therefore take the form of a secondary wave

propagating through the experiment in the same manner as a particle.

Understood in this way, quantum states become consistent with local realism and the

measurement problem disappears. Self interference is then the interference of real not

probabilistic states, and it also becomes possible to resolve a threshold problem in the local

realistic modelling of a Bell’s experiment - the presence in each arm of the experiment of

orthogonal waves associated with the same particle.

This paper will concentrate on the self interference and measurement of photons. The

complications of the de Broglie wave, avoided here, have been discussed elsewhere [2]. The

argument will be presented in a general way in the next section, and developed in Secs. III

and IV by reference to measurement apparatus operating by refraction. Secs. V and VI will

then consider in turn, a local realistic approach to the Born rule and possible refutations of

that approach. After a preliminary discussion of beam splitting in Sec. VII, self interference

will be considered in Sec. VIII using as illustrations, the double-slit effect and the Mach-
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Zehnder interferometer. A local realistic treatment of Bell’s experiments will be presented

in Sec. IX, followed by some brief concluding remarks in Sec. X.
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FIG. 1: A Mach-Zehnder interferometer: In standard quantum mechanics, a probability wave

associated with the photon divides at beamsplitter BS1. Self interference then occurs as the

partial probability waves recombine at BS2. In the local realistic explanation here, the scattering

of the photon into one or other arm at BS1 induces by reaction secondary radiation precisely

anticorrelated with the change in the photon and capable of interference with the photon at BS2.

II. QUANTUM STATES

There is nothing mysterious in the proposition that the scattering of a particle in one

direction must result in a wave-like influence propagating in another direction. From New-

ton’s third law, or equivalently conservation, the scattering of the particle is accompanied

by a transfer of momentum of equal but opposite effect to the change in the particle. If

at the same time there is a change in some other property of the particle - spin perhaps or

polarization - a transfer of that property accompanies the transfer of momentum.
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It is also known that every particle, whether massive or massless, has wave characteristics

commensurate with its dynamic properties. These are, from the Planck-Einstein relation,

E = ~ω, (1)

a frequency ω, and from the de Broglie relation,

p = ~κ, (2)

a wave number κ, where E and p are respectively the energy and momentum of the particle,

and ~ is the reduced Planck’s constant. Thus what is imparted by particle to scatterer is

never simply an undifferentiated amount of four-momentum, but an oscillatory disturbance

of equal but opposite effect to the change in the wave characteristics of the particle.

All that need be explained then is why the reaction that occurs as a particle is measured

(the response of the apparatus) should so mimic the presence of a particle as to create the

illusion that the particle has somehow divided between available paths.

Notice firstly that there is nothing novel in the suggestion that the behaviour of a particle

might be simulated by what is not a particle. Such "quasi-particles" are well know to

condensed matter physics. There is the "hole" - the absence of an electron mimicking the

presence of a positron - as well as various other disturbances of a medium, such as excitons,

phonons and plasmons, that like the excitations of the apparatus to be considered below

propagate and interfere in the manner of particles.

In general, we would expect the response of a distributed medium to be dissipated in

some incoherent manner through the medium. That would be so at least for an impact

with a macroscopic object. Consider, for instance, that well known macroscopic object, the

cat of Schrödinger, and imagine that it has now collided with a semi-reflective wall. The

collision will transfer momentum to the wall, perhaps even leave an impression on the wall,

but the oscillatory changes thus induced in the surface molecules of the wall are unlikely to

coalesce into some cat-like wave propagating through the wall.

But things at the microscopic level are rather different. The elementary particles ex-

ist and combine in characteristic and well defined forms. They may be compelled by the

wave-like nature of those forms and the regularity of an array of scatterers to propagate in

particular directions of constructive interference. In quantum measurement, where the tra-

jectories and characteristics of incident and transmitted particles are closely constrained by
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the circumstances of the experiment, so also must be the response of the medium. Trivially,

we might thus write,

ψin − ψout = ψresp, (3)

where ψin and ψout are incoming and outgoing wave and ψresp is the response of the medium,

and where in the spirit of an S-matrix formulation, nothing has been said of mediating

influences or the delay between the excitation of those influences and their relaxation by

reradiation.

It is that delay that explains the refractive index, but we assume nonetheless that in any

local realistic explanation of the electromagnetic interaction between particle and medium,

the process of excitation and relaxation develops in a causal and continuous manner and in

accordance with Maxwell’s equations. Where the interaction is electromagnetic, Eqn. (3)

follows indeed from the symmetry under time-reversal of those equations. If the process

could be run in reverse, the measured particle and the reaction of the medium would recom-

bine to redeliver the unmeasured particle, now propagating in reverse [3]. But this could

occur only if the reaction were itself of a wave-like nature capable of interference with the

returning particle. In the mode of the apparatus adopted by the particle, the end effect

would be to reverse by destructive interference the increase in energy that occurred in that

mode. In the orthogonal mode, it would reinstate the energy lost in that mode.

As a simple example, consider the interaction of a photon linearly polarized at θ to the

horizontal, that is,

ψin = H cos θ + V sin θ, (4)

with an HV polarizing beam splitter, where H and V are eigenstates of horizontal and

vertical polarization respectively.

As this photon is forced into one or other mode, let us say the V mode, a reaction of

equal but opposite effect occurs in the apparatus. Thus,

ψout = V, (5)

and,

ψresp = H ′ cos θ − V ′ cos θ, (6)

where the prime denotes, not a state of the particle, but a state of the apparatus, having in

this case the effect of a torsional wave propagating through the beam splitter.
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In terms of energy transfers, if the incident photon had the energy,

E = EH + EV ,

and adopted the V mode of the apparatus, its energy in that mode would increase by EH

while decreasing by the same amount in the H mode. Conservation of energy would require

equal but opposite changes in the corresponding modes of the scattering medium.

According to SQM, a probability wave associated with the photon separates into partial

probability waves with amplitudes H cos θ and V sin θ. It remains in this probabilistic limbo

until a step is taken to ascertain from which channel the photon has emerged, at which point

(which could in principle be years later or not at all) the photon acquires physical reality

as an H or V photon. What is now contemplated is that the photon remains at all times

in a physically real state, but as it adopts the V mode of the beam splitter, the torsional

response of the medium exactly balances the gain by the photon in its V component and

the complete loss of its H component. In the mode not adopted by the photon we have the

reaction,

H ′ cos θ ≡ H cos θ,

and in the orthogonal mode, a composite disturbance,

V − V ′ cos θ ≡ V sin θ,

these being physically realistic waves formally equivalent to the probabilistic states supposed

by SQM.

The response of the medium thus comprises a fleeting imbalance of a wave-like form

peculiarly apt to couple with an accompanying or following particle of similar provenance.

This disturbance will be referred to compendiously as the "secondary wave" [4]. We will find

in the tendency of the apparatus to regain equilibrium by the reacquisition by interference

of the resulting imbalance, a local and realistic explanation of measurement. By following

the evolution of this secondary wave through the experiment it will be possible to offer a

local realistic explanation of self interference.

Crucial to this argument is a reliance upon conservation of a quality not realizable in

SQM. It is no longer suggested, as once it was [5], that conservation is merely approximate

or "statistical" in quantum processes. Yet in conceding roles to chance and nonlocality

SQM is necessarily careless of the conserved properties of physics. Eqn. (3) could not be an
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equation of SQM. According to SQM, Ψf is reached from Ψi by a reduction or collapse that

may be discontinuous and nonlocal and is certainly non-deterministic. Along with continuity

and causality, conservation fails at the instant of measurement, as also in consequence must

Maxwell’s equations.

In what follows, we assume (in accordance with local realism) the continued validity at

the microscopic level of Maxwell’s equations, as well as the local and causal operation of

laws of conservation.

III. THE SECONDARY WAVE

The secondary wave now proposed is in essence a fluctuation in the reradiation that is

well recognized as the origin of refraction [6]. There is a curious inconsistency between

the recognition in both classical and quantum physics that this reradiation is the cause of

refraction, and the disregard in SQM of all possibility that fluctuations in this reradiation

could influence the fate of the refracting photon.

Whether in measurement or otherwise, the interaction of photon with medium is solely

with the charged particles of the medium. In a dielectric, these are bound charges, and

the process of refraction is thus mediated by moments, primarily electric dipole moments,

induced in the molecules of the material. Reradiation from these moments interferes con-

structively in the direction of the photon flux, and the composition of this induced "polar-

ization field" with the field of the photon causes the change in phase velocity that is the

origin of the refractive index.

So much is well accepted. But consider refraction as it occurs in measurement, as when

a photon encounters the birefringence of a polarizing beam splitter or the partially reflective

surface of a non-polarizing beam splitter. There are now alternative paths of constructive

interference available, and at this point the continuous wave of classical physics would divide.

But not so the photon, which (at these energies) is indivisible and thus forced (projected)

in its entirety into one or other path.

As the photon "chooses" its path, its dynamic and wave characteristics change, and

there must be an equal but opposite reaction to this change. In a nonlocal theory, the

location of this reaction may be ill-defined (a possibility to which we will return in Sec.

VI), but in any local realistic theory it must take effect in the charged particles from which
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the photon is scattered. The response of the medium must therefore comprise changes in

induced moments of equal but opposite effect to the change in the photon, and a resulting

fluctuation in the reradiation from those moments .

It is important to notice that this reradiation inherits its frequency and spatial distri-

bution of phase from the photon driving the interaction. Phase matching, that is to say

the requirements of waveform continuity (for example, at the boundary between media of

differing index) will thus ensure that the reradiation is constrained to those directions of

constructive interference available to the photon itself.

We distinguish now two parts of this fluctuating polarization field. One is the field that

would have been generated had the photon been as free to divide as was the classical wave.

The other is the departure from the first field induced by reaction as each photon is forced to

adopt one or other path from the site of scattering. The first field will define that notional

point of equilibrium about which the system must fluctuate as the beam divides. It is the

second part, the fluctuation in the polarization field, that is the secondary wave of interest.

Consistently with Eqns. (5) and (6), the secondary wave (or properly, waves) must

comprise,

(a) a wave propagating in the direction not taken by the photon and having the energy

and wave characteristics of the wave that would have propagated in that direction had the

photon been able to divide, and

(b) a wave propagating in the direction that the photon does take, but of opposite phase

to the photon and having the effect of reducing the energy in that mode to that which would

have propagated in that direction had the photon been able to divide.

IV. THE EXTINCTION THEOREM OF EWALD AND OSEEN [7] [8].

Let us consider this induced polarization field a little more closely. In the semi-classical

modelling of refraction - in which the incident wave is continuous and the medium is quan-

tized - each induced moment is approximated as an harmonic oscillator, essentially an oscil-

lating electron constituting a small electric dipole,

p = − q2

mω2
E =ε0αE, (7)
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where E is the incident electric field, q and m are the charge and mass of the electron

respectively, and α is the mean molecular polarizability of the medium (it being assumed

that the frequency ω of the incident wave is not near the resonant frequency ωo of the

oscillator) [9].

At the ith dipole, the field Ei(ri, t) comprises the vacuum (externally sourced) field

Evac(ri, t) plus the reradiation from every other dipole, that is,

Ei(ri, t) = Evac(ri, t) +
∑
j 6=i
Eji(ri, t), (8)

where the field at ri from the kth dipole is,

Eji(ri, t) = ∇×∇× pj(t−Rij/c)

Rij

, (9)

and Rij =|ri − rj|.
The further modelling of the process could continue from here at the molecular level by

supposing (as in [10]) an idealized array of dipoles. However, the argument to follow will

turn not on the particular form of the medium, but on the assumption that whatever its

form, its response to the scattering of a photon must always be equal but opposite to the

change induced in that photon. Thus, it will suffi ce to consider a model that is in effect the

converse of the semi-classical model - a model in which a quantized wave (a flux of photons)

interacts with an idealized macroscopic medium.

In modelling this medium, we proceed to the continuous limit by assuming a uniform

polarization density

ρ = Nα,

where N is the number density of molecules. Eqns. (8) and (9) then become,

Etrans(r, t) = Evac(r, t) +

∫
∇×∇× [Nα

Etrans(t−R′/c)
R′

] dV ′, (10)

where R′ = |r− r′|.
Eqn. (10) is an integro-differential equation in which the transmitted field Etrans is due

in part to fields that it has itself induced. The equation is solved (in well-known manner

[11]) by stipulating that the polarization field (the integral in Eqn. (10) ) comprises the

transmitted field of velocity c/n, and a field that extinguishes exactly the vacuum field of

velocity c, that is

Epol(r,t) = −Evac(r,t) + Etrans(r,t), (11)
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where for a dielectric the refractive index n relating the two velocities is given by the Lorentz-

Lorenz relation (which need not concern us here).

That the polarization field has these two discernible parts - the transmitted field and

a field that extinguishes by interference the incident field - is known to classical physics

as the extinction theorem of Ewald and Oseen [12]. The theorem holds identically at all

points of space, supposes the local and causal development of the process of scattering, and

implies that if the process could be run in reverse it would return the original incident wave

(now propagating in reverse). As we noticed in Sec. II, this is also implicit in Maxwell’s

equations, from which the theorem may be derived [13].

Being a consequence of classical electromagnetic theory, and thus of local realism, the

theorem must fail in SQM because of the discontinuous and probabilistic nature of wave

function collapse. But by excluding chance and non-locality and asserting the theorem at

the level of the quantum, we will now a convenient bridge from the classical to the quantized

wave. In so doing, we depart from both the classical approach, which supposes a continuous

incident field, and from SQM, which supposes a photon that chooses its path by pure chance.

Of the photon, it need only be supposed that (as all experiment indicates [14]) it is,

or acts as if it is, a small electromagnetic waveform having the notable property that it is

(usually) indivisible. Being indivisible, it follows that there exists some internal constraint

ensuring that indivisibility. We do not know the nature of that force, but some inkling of its

strength is provided by the intensities needed to disrupt the photon in nonlinear processes

[15].

To extend the extinction theorem to the flux of photons, we simply express Eqn. (11) as

summations over the electric fields ei(r,t) of the photons constituting the flux, and over the

modes j of the measurement apparatus,

∑
j

∑
ieij (pol)(r,t) = −

∑
j

∑
ieij (vac)(r,t) +

∑
j

∑
ieij (trans)(r,t), (12)

where as measurement proceeds (observed or otherwise) all except one mode of the eij (trans)

must go to zero as the photon is forced (projected) into a single mode of the apparatus.

The summations over each of the modes j must satisfy independently equality (12). This

is clearly so where, as in the case of a polarizing beam splitter, the modes are orthogonal.

It is also demanded by conservation when in effecting a balancing of forces within a non-

polarizing beam splitter (as discussed in Sec. VII) the modes follow differing trajectories.
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But within each mode, the summation over transmitted photons fluctuates as photons be-

come projected into or from that mode. For Eqn. (12) to hold identically for each mode,

each such fluctuation in the transmitted field must therefore be anticorrelated exactly with

the corresponding fluctuation in the polarization field, that is to say, for all i and j, we must

have,

eij (resp)(r,t) = eij (vac)(r,t)− eij (trans)(r,t),

which is the response of the medium described in words at the conclusion of the preceding

section.

The fluctuation in the polarization field is not of course a photon. Nor could any

assemblage of such fluctuations constitute a cat. But the fluctuation is in a sense the

alter ego of the photon. It is anticorrelated with the change in the photon, has wave

characteristic matching those of following or accompanying photons, and is thus in a form

precisely adapted to influence by interference the measurement of those photons, or to (self)

interfere with the inducing photon itself if returned to the same path.

Nor is this fluctuation strictly a quasi-particle for it propagates in more than one channel

of the apparatus. But its existence explains why it might seem that the particle has divided

between available paths.

V. THE BORN RULE

In SQM, measurement is governed by the Born rule [16], which asserts (in a simple form)

that,

prob(ai) = |ui |ψ〉|2 (13)

where prob(ai) is the intrinsic probability that a particle in the state ψ will have the eigen-

value ai for which the corresponding eigenfunction is ui.

Attempts to derive the Born rule from first principles have been criticized as circular (see,

for instance, Refs [17] to [20]). It has been said of such derivations that it is necessary "to

put probabilities in to get probabilities out" [20]. There is nothing in the other postulates

of SQM that suggests intrinsic probability. Those postulates assimilate the particle to a

wave (the wave function or state vector), associate each "observable" property of the particle

with an Hermitian operator, and stipulate that the wave function is to evolve in accordance

with the time-dependent Schrödinger equation. These postulates are deterministic. They
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neither preclude the local realistic approach preferred here nor suggest the probabilistic

approach of SQM.

In excluding all extraneous considerations, the notion in SQM that probability is intrinsic

allows no bridge from the deterministic "Schrödinger phase" in the evolution of the state

vector to the discontinuous, acausal and nonlocal reduction or collapse that is assumed to

occur on measurement. The coexistence of both deterministic and non-deterministic phases,

or rather the diffi culty of saying how the one ends and the other begins, is also the source

of the "measurement problem" that has so confounded SQM.

In the limit of large numbers, the probabilities assumed by SQM do reproduce the division

that was expected (from conservation) of the continuous but divisible wave of classical

physics. But this is hardly surprising. These probabilities are not generated by the

Born rule, but "added by hand" - determined experimentally or adopted from (essentially

classical) rules of conservation. For example, a beam of photons, linearly polarized at

θ to the horizontal, divides at an HV polarization beam splitter, approximately in the

proportions:
N(H)

N(V )
≈

cos2 θ

sin2 θ
, (14)

thus conserving (to the same approximation) the beam’s energies of horizontal and vertical

polarization.

But in the context of SQM, it is not at all obvious why the quantized wave should divide

in this way. If the measurement of one particle is independent of that of the next, it might

be asked why each does not simply adopt that mode for which it has the greater incident

component or, even more reasonably, take the energetically more favorable path through the

apparatus. If measurement were governed by intrinsic probability, the division of a beam

in accordance with conservation would seem a fortuitous coincidence.

In this paper, it is the response of the apparatus that ensures that the beam divides in

accordance with conservation. Induced in the paths of following and accompanying photons,

and sharing their frequency and trajectories, the secondary wave is well adapted to couple

with and influence the measurement of the ensuing flux. It is only necessary to assume that

the fluctuating polarization field is reacquired by interference by the beam (as is known to

occur with refraction in a uniform medium) to see that the apparatus must itself fluctuate

about a state of equilibrium defined by conservation.

The approximate conservation observed in the measured stream may then be seen as
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merely incidental to this process of relaxation or recovery in the medium. What is exactly

conserved is the sum of the measured property in medium and measured stream together.

The forgoing is not of course a derivation of the Born rule. Intrinsic probability has

become subjective probability - the probability accorded from ignorance of underlying de-

terministic processes (as when a card player attributes a chance of 1/52 to the next card

being the ace of spades when it is certainly in fact the six of hearts). However, the connec-

tion with conservation is now explained, as also the seemingly approximate and probabilistic

nature of that conservation. Because there is no longer an intrinsically probabilistic phase

in the evolution of the state vector, the measurement problem does not arise.

It remains to consider why the Born rule should depend on the square of an amplitude.

In the measurement of photons, as in Eqn. (14), the reason is easily seen. The energy

of a wave is proportional to the square of its amplitude [21], and the energy of orthogonal

components of the wave must be independently conserved. That this same dependence

should hold for massive particles is implicit in the postulates of SQM, which as we have

seen, describe the behaviour of a particle in terms of the development and interference of a

wave function. More significantly, and this seems to be the true basis of the rule, it is also

consistent with the common underlying wave nature of matter and radiation suggested by

the Planck-Einstein and de Broglie relations (Eqns. (1) and (2) ).

VI. COUNTER-ARGUMENTS

To refute this explanation of measurement, it would seem necessary to identify some

mechanism by which the local and causal consequences of the response of the medium might

be suppressed. An interpretation of quantum mechanics that is nonlocal and acausal and

has an uncertainty principle is not without such "defence mechanisms". It will be argued

that their invocation here would lack logical consistency.

Three possibilities might seem worth considering:

(a) that the response of the apparatus is simply passed on to the wider environment;

(b) that by the uncertainty principle the fluctuations in the polarization field are virtual

rather than real; and,

(c) that the reaction of the medium is displaced nonlocally to some time or place suffi -

ciently remote that it plays no further part in measurement.
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We have already noticed the problem with (a). It is the interference of the polarization

field with the photon stream that explains refraction. It is implausible that fluctuations in

this same field should escape unnoticed by the photon stream.

Indeed it is known from the experiment of Beth in 1935 [22] and the exploitation of

the Beth effect in optical traps and the like [23] that photons refracted by a dielectric

target, not only impart linear and angular momentum to that target, but may do so to

the extent of causing observable movement of the target. These experiments evidence

the operation of Newton’s third law in the scattering of photons, they show the torsional

nature of the force between photon and target, and they provide ample demonstration that

momentum imparted by photon to medium is not simply passed without local effect to the

wider environment.

The suspended wave plate of Beth was what might be termed a single-mode device.

Allowed no possibility of maintaining equilibrium by a division of the beam, the device

was ultimately forced to move in response to the beam. But a measuring apparatus is a

multi-mode device that is able to minimize disequilibrium by returning by interference to

one particle the imbalance acquired from another.

In support of possibility (b), the argument would be that these fluctuations in the po-

larization field occur only within those brief periods when (according to SQM) energy may

exist in a virtual state. This would not be a novel application of the uncertainty principle.

It has been invoked to excuse the similar fluctuations that occur in a nonlinear crystal during

a process such as down-conversion [24].

As contemplated by the uncertainty principle, a fluctuation in energy δE may exist in a

virtual state for a time interval of order,

δt = ~/δE,

where for a 50:50 beam splitter and a photon of frequency ω, the permitted fluctuation δE

would be ~ω/2 in each mode per photon, and could thus endure only for a time,

δt = 2/ω,

which is of the order of the period of oscillation of the photon. But such a discrepancy in

energy would be temporary only if corrected, presumably in this case by the measurement of

a following photon or photons. The uncertainty principle could not suppress a fluctuation

induced by a lone photon or by any suffi ciently attenuated stream of photons.

14



In SQM, it is (c) that might seem the more obvious possibility, but would entail the

displacement non-locally of conserved quantities (including energy, momentum and polar-

ization). This would introduce an arbitrariness inconsistent with the symmetries contem-

plated by Noether’s theorem, and would seem to deny the local conservation and continuity

supposed by the gauge principles of modern field theories [25].

The logical diffi culties are indeed considerable. The reaction would take effect, not in the

charges that have caused the change in the photon, but in remote and otherwise uninvolved

charges and moments. Relative phase would then be indefinable, notably the relative phase

that should determine the manner in which the nonlocally displaced field fluctuation is to

interfere with whatever is already occupying the space that it will now inhabit. This is a

large problem for any interpretation of quantum mechanics that supposes nonlocality.

In the absence of a locally causal response from the medium, fields would be discontinuous

and, as noted above, Maxwell’s equations would fail at a boundary of discontinuity. But

(as discussed in the next section) partial reflection is conventionally explained by assuming

that Maxwell’s equations do remain valid across such boundaries.

Moreover, a nonlocal transfer can be instantaneous in but one frame of reference. In

any other frame the transfer would cause a temporary surplus or deficit of energy and

momentum. A related diffi culty would arise for conservation of angular momentum. Linear

momentum lost (or acquired) at one point might be eventually conserved by its emergence (or

disappearance) elsewhere, but the angular momentum associated with that linear momentum

would not be conserved.

And as we have already discussed, the nonlocality would be curiously selective. It does

not suppress that part of the polarization field responsible for the birefringence or partial

reflection that causes the beam to divide, but would suppress fluctuations in that same field

that are consequent upon that division. That some of these diffi culties may be well known

does not make them any less embarrassing to the notion of nonlocality.

Finally, it might be argued that if the response of the apparatus is allowed due effect,

the collapse supposed by SQM becomes redundant to the deterministic "Schrödinger phase"

in the evolution of the state vector. Between measurements it is assumed in SQM that

the system evolves as it would classically. Thus in an as yet unmeasured system (and for

unobserved Nature generally) the response of the medium is local and causal, must generate

by reaction a fluctuating polarization field as discussed above, and must lead through the
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composition of that fluctuating field with following particles to the division in accordance

with conservation discussed in Sec. III.

This process would thus achieve, unmeasured and unobserved, the division predicted by

conservation (and quantum mechanics), leaving neither opportunity nor necessity for the

discontinuous jump supposed by SQM.

VII. BEAM SPLITTING

As a preliminary to the discussion of the Mach-Zehnder interferometer in the next section,

we consider briefly a simple non-polarizing beam splitter based on partial reflection from a

polished dielectric surface. Partial reflection can be treated by the extinction theorem of

Sec. IV, but we consider it here, as is more usual, in terms of boundary conditions.

The continuous wave of classical physics was assumed to divide (in accordance with the

Fresnel relations) in such a way that the forces on the charges of the medium, whether arising

from incident or induced fields, were in a state of balance. This implied the continuity of

Maxwell’s equations across the inter-medial boundary, requiring (assuming a wave passing

from medium 1 to medium 2 through a boundary in the xy-plane) that,

(ε0E1+P1)z = (ε0E2+P2)z ,

(E1)xy = (E2)xy , (15)

B1 = B2.

E, B and P being the macroscopic electric, magnetic and polarization fields, respectively

[26].

Consider now the quantized wave. For the microscopic fields to remain continuous

(and Maxwell’s equations to hold) as photons are variously reflected or transmitted, there

must be a continuing readjustment, not of the boundary conditions (15) themselves, but

of the manner in which those conditions are satisfied. Take, for example, the first of

these conditions, which is obtained by asserting, in the z-direction, Coulomb’s law, which

in dielectric form is,

∇ · E = −∇ ·P
ε0

.

On the side of the boundary to which a photon departs, there will be (as compared with

the steady state supposed classically) a fleeting increase in the photon field, and on the
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other side of the boundary, a corresponding decrease in that field. This fluctuation in fields

will induce by reaction a compensating fluctuation in the dispositions of moments and in

the direction and strength of the polarization field. Whether the photon is reflected or

transmitted, the fields at the boundary will thus remain continuous and consistent with the

boundary conditions.

Why then should these excursions from the steady state be self-correcting? The fields

remain continuous because moments change in response to fluctuations in the photon field.

Each such change in the disposition and strengths of moments involves an exchange of

momentum concentrated upon a particular distribution of molecules that will be to that

extent in disequilibrium with the surrounding dielectric. Return to equilibrium should

be expected on conventional thermodynamic grounds - the minimization of energy and

maximization of entropy - but will here be facilitated by the nature of the induced imbalance,

which is eminently qualified in its wave characteristics to couple with the ensuing photon

stream.

In this process, each photon "chooses" its path, not by chance, but as determined by its

own particular circumstances, including the local state of imbalance in which it finds the

medium.

VIII. SELF INTERFERENCE

Self interference is to be understood here as the interference of a particle with secondary

radiation that has been induced by the scattering of that same particle. As we saw in Sec.

III, the phenomenon of refraction is ample evidence that mutual interference of this kind

does occur. When it occurs in refraction or diffraction, such mutual interference may be

regarded as a form of self interference in which the secondary wave is reacquired immediately

by the particle flux. This immediate self interference will explain the diffraction observed

at the slits of a Young’s experiment [27].

But such interference may instead be delayed. Thus in a beam splitter, the particle and

that component of the secondary wave that has taken the alternative channel part company,

and it is their later reunion that will explain the Mach-Zehnder and similar interferometers.

Although illustrating differing forms of self interference, the double-slit effect and the

Mach-Zehnder interferometer will be seen to have this in common - that they demonstrate
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the preference of the particle for that path through the experiment that best preserves its

characteristic transverse waveform.

Young’s experiment:

To explain the double-slit effect, it will be assumed that the wave associated with the

particle has suffi cient lateral extension to influence the material of the screen, directly or

indirectly, in the vicinity of both slits. In this, we suppose of the particle no more than the

lateral influence supposed of the corresponding probability wave of SQM.

The particle passes through the screen provided the centre of the wave (which is also its

centre of momentum and influence) finds one or other slit. As this occurs, outlying reaches

of the wave will interact with the scattering elements (charges) of the screen, and become

modified by interference with reradiation from those elements, but the wave will nonetheless

be carried through the screen.

There is nothing novel in the notion that a particle, for instance a photon or electron,

constitutes an extended wave form that may pass nonetheless through even the smallest of

pinholes. Except in an inelastic encounter, the field of one particle may pass through that

of another or through the fields of a distribution of particles such as those constituting a

screen. Although changed by the encounter, the particle will tend toward its free space

form as it departs.

Even if a particle cannot pass through a barrier, its field will be "felt" by a test charge

on the other side. That influence is indirect being relayed through changes induced in the

fields of the screen. Nonetheless the field of the particle, modified in phase by the response

of the screen, can be considered to penetrate the screen. If the charge is moving the analysis

becomes more complicated but the principle is the same.

As the particle interacts with the slitted screen, it suffers varying degrees of dephasing

from interaction with the screen, but those regions of its waveform encountering one or other

slit remain relatively unchanged and mutually coherent. The available paths of constructive

interference - the trajectories that will least disrupt the continuity and coherence of the

particle - are thus determined by the slits. From the geometry of the setup, we then have

in well known manner, but on the basis of local realism, Young’s condition for constructive
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interference.

d sin θ = nλ

where d is the slit separation, θ the angle of deflection of the photon, n the order of the

interference fringe, and λ the wavelength.

In following such a path, the particle is taking, as it were, the path of least resistance - the

path that will least disrupt its waveform - and to which it is compelled by whatever internal

force or effect is ensuring its indivisibility. Its preference for that path will be affected by

transient moments and currents, whether induced by the particle itself or by accompanying

or preceding particles, as well by any intervention, such as the seeking of "which way"

information, that diminishes (or enhances) the possibility of constructive interference.

The Mach-Zehnder Interferometer

Consider again Fig. 1. It will be convenient to concentrate now on photons, it being

assumed nonetheless that for a massive particle the de Broglie wave will play the role played

for a photon by its transverse electromagnetic wave [2].The interference at BS2 is now

between real waves, these being the photon and the secondary wave that was generated

by reaction at BS1 as the photon was forced to adopt one or other path through the

interferometer. As was discussed in Sec. VI, this fluctuation of the polarization field

propagates in both channels of the beam splitter maintaining microscopically the continuity

of fields supposed classically by Maxwell’s equations and the Fresnel relations.

As in SQM, each set of waves recombining at BS2 has originated from the scattering of

the same photon at BS1. The phase difference ∆ between the two paths is thus the same

from one photon to the next, and it follows that no matter how attenuated or incoherent is

the original beam, the recombining beams will be mutually coherent.

Let us suppose that BS1 and BS2 are non-polarizing lossless 50 : 50 beam splitters so

constructed and aligned that when the upper and lower optical paths to detector D1 differ

by ∆, the corresponding paths to detector D2 will differ by ∆ + π [28]. If ∆ = 0, the

waves propagating in the two arms will interfere constructively in the direction of D1, but

destructively in that of D2. The photon will favour the path that better preserves the

integrity of its waveform. Photons scattered at BS2 will thus register only at D1.

Suppose instead that the waves are neither exactly in nor out phase as they arrive at
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BS2. In SQM, the probability of detection where superposed probability waves of equal

amplitude have differing phases χ1 and χ2 is,∣∣eiχ1 + eiχ2
∣∣2 =

[(
ei(χ1+χ2)/2

) (
ei∆/2 + e−i∆/2

)]2
, (16)

≈ cos2 ∆

2
=

1 + cos ∆

2
, (17)

where ∆ = χ1 − χ2 (and where the first factor in (16) has been equated with unity).

The photon must maintain its characteristic transverse waveform notwithstanding the

disruption threatened by the differing phases of the recombining waves. As the photon is

projected into one or other path, the indivisibility of the photon thus induces by reaction

an imbalance mediated by induced moments in the material of the beam splitter. If the

recombining waves differ in phase by ∆, they will consistency of phase will be achieved in

the direction of detector D1 by inducing in the moments of BS2, a reaction of energy,

sin2(∆/2). (18)

The coherent merger of photon and secondary thus induces an imbalance in BS2 that will

tend to bias by interference a following photon toward detector D2. Conversely, coherence

in the direction of D2 must induce an imbalance,

cos2(∆/2), (19)

tending to bias a following photon toward D1. For equilibrium within BS2, we thus have,

from Eqns. (18) and (19), a division in the proportions,

N(D1)

N(D2)
≈

cos2(∆/2)

sin2(∆/2)
,

which corresponds to prediction (17) of SQM, but is derived now on the basis of local

realism.

It has been assumed in this treatment that secondary wave and photon propagate in

similar manner. It might be thought that since the induced moments are confined to the

dielectric, so also must be the reradiation from those moments. However the moments are

merely the sources of the polarization field, and such sources may extend their influence

far beyond the medium containing those sources. Thus in the conventional modelling of

refraction, the field at a point remote from the dielectric is the sum at that point of the

fields from all sources, including those from dipole reradiation. It is true that as a photon
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departs the medium, it regains its earlier wave length, but it carries with it nonetheless the

continuing influence of the polarization field in an altered phase and (usually) a change of

trajectory.

Again, there is no suggestion that the secondary wave is in any sense a photon or part

of a photon. It is a fluctuation in the polarization field capable of survival over the time

frame of the experiment because it is equal but opposite in effect to the change occurring in

the photon, and capable therefore of propagating in like manner.

Although we have concentrated on photons, neutron interferometry involves similar con-

siderations, with the strong nuclear force playing the part played by the electromagnetic in

photonic interferometry. It has been indeed said that in the context of neutron interferom-

etry, the use of the word "optical " is by no means metaphorical [29].

IX. ENTANGLEMENT

In the modeling of a Bell’s experiment, local realism has been handicapped by an inability

to replicate the orthogonal or conjugate waves that are assumed in SQM to be propagating

simultaneously in each arm of the experiment. In SQM, these are alternative probabilistic

states of the particle, but local realism can supply only one particle per arm per pair.

The extra wave is not to be dismissed as an extravagance of SQM that might be abandoned

in a physically realistic reinterpretation of quantum mechanics. The presence of two waves

in each arm is clearly evidenced by the need for compensation for birefringent "walk-off" in

the generation of entangled photons by down-conversion (see, for example, Kwiat et al [30]).

The additional wave is also implied by the interference that is evidently responsible for the

differing behaviour of the various Bell states.

Even without the additional wave, the detection loophole can be invoked with some

plausibility to explain the correlations observed in Bell’s experiments at particular analyzer

settings including those at the important T’sirelson bound. But such modelling is far less

successful in explaining the correlations observed at other settings, in particular those in the

45◦ : −45◦ basis (in the case of polarization-entangled photons) where SQM predicts 100%

correlation for photons in the Ψ+ Bell state and complete anti-correlation for those in the

Ψ− state. At the same settings, classical physics contemplates 50% correlation whatever the

Bell state under consideration, and it is here that the prospect of local realistic modelling
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has seemed unlikely, suffi ciently unlikely perhaps as to discourage any robust evaluation of

the claims of reported Bell’s experiments.

However, as will now be shown, the additional wave in each arm may be explained, as

in self interference, as a state of the apparatus - a secondary wave induced by reaction as

the entangled particle pair is created. We will take as illustration polarization- entangled

pairs sourced, as in recent Bell’s experiments (for instance, the important Weihs experiment

[31]), from type II spontaneous parametric down-conversion (SPDC).

In a nonlinear crystal, induced moments and reradiation from those moments have a

quadratic component, which in a intense pump laser may find its release in down-conversion

(the division of a pump photon into two "daughter" photons), subject for optimal effi ciency

to the phase matching conditions,

ωp = ω1 + ω2, and kp = k1 + k2, (20)

where ω and k designate, respectively, angular frequencies and wave vectors, while the suffi x

p identifies a pump photon and 1 and 2 the daughter photons.

In the nonlinear crystal, as in any dielectric, the interaction between beam and medium is

mediated solely by induced moments. Assuming local realism, and as discussed in Sec. III,

any imbalance induced in the photon field must be accompanied by an equal but opposite

reaction in those moments and a resulting fluctuation in the polarization field.

Let us suppose a typical type II SPDC event in which a pump photon (V -polarized) down-

converts to a V -polarized daughter photon going to Alice and an H-polarized daughter

photon going to Bob. The phase matching conditions (20), though consistent with the

conservation of energy and momentum, do not exhaust the requirements of that conservation.

Writing,

V (ωp) −→ V (ωV , θV )A +H(ωH , θH)B, (21)

(where θV and θH are the angles at which the photons diverge from the pump beam), it

becomes evident, not only that horizontal polarization has been gained at the expense of

vertical polarization, but that horizontal polarization is now propagating to one side of the

crystal at one frequency and vertical to the other at (usually) another frequency.

The asymmetry in Eqn. (21) would be redressed by the inclusion, in the direction of

Alice, of a fluctuation in the polarization field, of form,

1

2
[H ′(ωH , θH)− V ′(ωV , θV )],
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and in the direction of Bob, of form,

1

2
[V ′(ωV , θV )−H ′(ωH , θH)],

where reaction is again identified by a prime, and the negative implies a diminution in the

relevant mode of the polarization field (or a phase of π). On including these secondary

waves, Eqn. (21) becomes,

V (ωp) =⇒ [V (ωV , θV ) +
1

2
H

′
(ωH , θH)− 1

2
V

′
(ωV , θV )]A (22)

+ [H(ωH , θH)− 1

2
H

′
(ωH , θH) +

1

2
V

′
(ωV , θV )]B,

which remains consistent with the phase matching conditions (20), but waves propagating

to Alice are now in balance with those propagating to Bob. The formal equivalence of these

waves to the probabilistic waves of SQM may be seen from Eqn. (22) as follows,

[V (ωV , θV ) +
1

2
H

′
(ωH , θH)− 1

2
V

′
(ωV , θV )]A ≈

1

2
[V (ωV , θV ) +H(ωH , θH)]A =⇒ (VA +HA),

[H(ωH , θH)− 1

2
H

′
(ωH , θH) +

1

2
V

′
(ωV , θV )]B ≈

1

2
[H(ωH , θH) + V (ωV , θV )]B =⇒ (HB + VB).

so that, as assumed in SQM, H- and V - polarized waves are propagating to both Alice and

Bob. Now, however, these are physically real rather than probabilistic waves.

Interference between these waves, occurring independently at each end of a Bell’s exper-

iment, suggests immediately the significance of phase to the differing behaviour of the Bell

states. It becomes apparent, for instance, that with Alice’s and Bob’s analyzers at the same

setting, phase relationships will determine whether their measurements tend to correlation

or anti-correlation.

It is not suggested that the mere existence of these waves avoids Bell’s theorem [32],

but it will allow a local realistic modelling of the data sets of reported dynamic Bell’s

experiments [33] that is more plausible than has been possible hitherto. Certainly, the

conclusions reached in those experiments are not beyond dispute, as recent analyses [34] [35]

of deficiencies in the data sets of the Weihs experiment [31] have shown.

The antithesis between special relativity and nonlocality would itself be reason enough

to scrutinize very carefully the claims of these experiments.
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X. CONCLUSION

Various well-considered reinterpretations of quantum mechanics have sought to avoid

the measurement problem and the anomalies of intrinsically probabilistic collapse. But

confronted by self interference and entanglement, such reinterpretations have included, as

does SQM, some random or nonlocal step or branching or other discontinuity inconsistent

with the wave-like nature of the underlying processes.

Quantum mechanics is a theory of quanta, but it is also theory of waves. As we saw in

Sec. V, the wave nature of matter and radiation is implicit in the amplitude dependence of

the Born rule and explicit in the deterministic Schrödinger phase of SQM. Schrödinger’s

wave version of quantum mechanics was prompted indeed by de Broglie’s insights concerning

the wave nature of matter. But in its evolution and interactions, a wave is a peculiarly

causal and local phenomenon. Acausality implies discontinuity, while in the absence of

actual physical overlap, it is not apparent how a relationship of phase could be defined for

interfering waves.

There is thus a tension between the continuity of underlying wave forms and the non-

locality and acausality that has been perceived in self interference and entanglement. It

should not be surprising then that it is when introducing nonlocality or intrinsic probability

that reinterpretations of quantum mechanics have seemed ad hoc or contrived, or have led,

as in SQM, to logical inconsistency.

A return to local realism would avoid this tension, as well as the problems of measure-

ment and collapse. While classical physics has seemed unable to explain Feynman’s "only

mystery", the interpretation of quantum states proposed here permits a local realistic expla-

nation of self interference, and in the extension of that explanation to entanglement, removes

what has been a significant obstacle to the plausible modelling of Bell’s experiments.
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