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Summary: If an electromagnetic wave hits on electrons, so far only their reaction to the electric field 
component was calculated. By classical physics it can be shown that the electrons do not only per-
form the well-known transverse movement, but also a movement in the longitudinal direction at 
twice the frequency. This leads to an energy loss of the original electromagnetic wave without 
change of direction which was unknown up to now and has nothing to do with elastic or inelastic 
collision. The "lost" energy is radiated in two very different frequency ranges and the relative energy 
loss increases with decreasing frequency of the primary wave. An experimental confirmation of this 
phenomenon could influence the debate about “tired light”. 
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1 Introduction

The usual explanation of the Thomson scattering is: "The electric field of the incident electro-
magnetic wave accelerates an unbound electron, causing it, in turn, to emit radiation at the same 
frequency. The magnetic field of the original waveform can be neglected." The effect of the Lorentz 
force is ignored, even though the electron moves in the variable magnetic field of the wave. This may 
not be the whole truth. Effects such as energy loss caused thereby are examined in the following 
work.

2 Basic assumptions of the far field

In the far field, an electromagnetic wave is defined by the direction of propagation, power density S, 
energy density w and frequency ω. The values of the periodical electric and magnetic fields of the 
wave can be calculated with the Poynting formulae.

E=√Z 0⋅S , B=μ0√ S / Z 0 and S=c⋅w , where Z0 = 377 Ω is the characteristic impedance of 
free space. The maximum values are obtained by multiplying by a factor √2 .

In the far field, the electric and magnetic field vectors E and B and the wave vector k form a right-
handed system, which is drawn in the picture for a linearly polarized wave. 
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The picture shows a short section of the wave train. Rightmost is a snapshot of the vectors E and B. 
The wave vector k points to the observer.

If unbound, quiescent electrons are in the area of these fields, these are stimulated to oscillate and 
radiate energy. In the following two cases are discussed:

1. The electrons are part of an extended, thin plasma, wherein the mutual distance is consider-
ably greater than the wavelength. The movement of the positive ions, which are also present, 
can be neglected because of their much bigger mass. However, they cause a resetting force 
on the electrons, so that they tend to oscillate at the plasma frequency. In the interstellar 
medium, ωP is very low with only a few kilohertz and is neglected below. 

2. The wave can excite the electron shells of densely packed atoms to vibrate around their 
equilibrium positions. Even in transparent materials there are resonance effects which 
mostly lie in the UV region and are subsequently neglected. In solids, the distances between 
the "electron clouds" are significantly smaller than the wavelength, resulting in interference 
effects, which directs the radiation into certain directions. Those effects are well known in 
antenna technology.

3 Model of a wave packet

Every electromagnetic wave is limited in time, has a beginning and an end. Questions like coherence 
length, shape and volume of the continuous range in which the main part of the transferred energy is 
to be found are left to a follow-up article. Subsequently, only the consequences of the limited length 
of a wave packet are examined. Connections with "wave packets" of other branches of physics are 
not discussed. 

First, an envelope is modeled, which is zero beyond a certain interval (Slowly varying envelope 
approximation). Some continuous functions C(t), such as a Gaussian wave packet with cut slopes 
have unphysical discontinuities and are therefore less suitable. The frequently expressed assumption, 
the envelope is a decaying exponential function (damped wave) as one can hear after striking a bell, 
lacks any basis. In no atomic model one finds evidence of a lossy exchange of two forms of energy.

Regardless of the exact course, this function C(t) is a slow amplitude modulation using the modu-
lation frequency W. Slowly means W ≪ω . Each modulation generates so-called side band fre-
quencies in the vicinity of ω whose amplitudes typically decrease with increasing frequency separa-
tion. The side-band frequencies are ω±W ;ω±2 W ;ω±3 W ;.. ,  the entire frequency range is 
called natural line width. 

Numerical verifications show that modifications of the shape of the envelope have little effect, they 
change the results of this work only marginally. Therefore, the well-known von-Hann-Window

C=(1−cos (W⋅t ))/2 with the acceptable range 0≤W⋅t=2 π is chosen as the envelope of E and 



B . The short formula simplifies the following calculations because the energy of the wave is trans-
ferred in the immediate vicinity of only the three closely spaced spectral frequencies

ω ;ω+W ; ω−W . With this choice, the bandwidth is Δω≈2W and the line width is

Δλ≈ 4π W c
ω2 = λ2W

c π . Only those wave trains will be considered, which include at least 100 oscil-

lations, so it is assumed W ≪ω . This assumption is likely to be met for most spectral lines. For 
example, the natural line width of the sodium D-line amounts to about 10 MHz and therefore the 
length of a wave packet is approximately 107 oscillation periods. The limiting case W →0 de-
scribes an non-physical wave of constant amplitude and infinite extent and is not covered here. 

As soon as a free, unbound electron gets in the sphere of influence of a wave packet, it is affected 
during the period of time 0≤W⋅t<2π . Before and after the electron is at rest. The biggest part of 
the energy, about 92.44 %, is transported in the central region of the envelope between the time

W t1=π /2 and W t2=3 π /2 . This interval is called the coherence length L≈ π c
W with the 

above definitions. The extensions are energetically negligible. If the wave moves in the dispersion-
free space, the coherence length is unchanged and there is no wave packet spreading. 

The C(t) function describes only the dimension of the wave packet in parallel to the wave vector k. 
The extent transversely thereto, that is the three-dimensional structure and the volume are treated in a 
separate article in relation to the Fresnel zones. 

4 Movement of the electron in the y-direction

The fields of an electromagnetic wave exert a force on each charged particle. For the subsequent 
calculations at the place of the electron the following coordinates and functions are specified (see 
right part of the image above): 

• The wave vector k of an electromagnetic wave is parallel to the z axis and directed to the 
observer. 

• The x-axis points to the right, the magnetic field at the location of the electron is
B x=−C (t )⋅Bmax⋅cos(ωt)=ℜ(−C (t )⋅Bmax⋅e i ωt)

• The y-axis points upwards, the electric field at the location of the electron is
E y=C ( t)⋅Emax⋅cos(ωt)=ℜ(C (t )⋅Emax⋅e i ω t)

To simplify the calculations and to obtain compact results, these are mostly carried out using 
complex numbers. Only the real components are measurable.

A negatively charged electron is accelerated downward, and the speed follows from the formula
a y=qe E y /me by integration: 

v y=
qe E max

2me ω(ω2−W 2)
(ei ω t (ωW sin (W t)+i ω2cos (W t)−i ω2+i W 2)−iW 2) (1)

The integration constant is chosen such that at the start of the electromagnetic wave at the time
W⋅t=0 the condition vy = 0 is satisfied. The picture gives an idea of the time course of vy. 



After a further integration, the real component gives the y-coordinate of the electron 

y=
qe Emax

2me ω2 (cos (ωt )(cos(W t)−1)) (2)

This solution in the y-direction does not contain physical news, if the effects of the surrounding 
plasma and the movement of the electron in the z-direction are ignored. This is discussed further 
below. 

5 Radiation due to y-acceleration

The electron is accelerated by the incoming wave packet (primary wave)

a y=
qe Emax

me

1−cos (W⋅t)
2

cos(ω t) (3)

and emits energy. The value is obtained by calculating the power (Larmor formula) and subsequent 
integration over time during the duration of the wave packet 0≤W⋅t<2π . 

P y=
qe

4 Emax
2

24π ε0 c3 me
2 (1−cos(W⋅t))2(cos(ωt))2 (4)

∫P y dt=
qe

4 Emax
2

24π ε0 c3 me
2

3W t−4sin(W t)+cos(W t)sin(W t )
4W (5)

A y=
qe

4 Emax
2

24π ε 0c3 me
2

3π
2W

=
qe

4 µ0 c S y

24π ε0 c3 me
2

3π
2W

=
qe

4 µ0
2⋅S y

8me
2 W

(6)



Sy is the power density of the primary wave. This classical approximation is not valid for big power 
densities.

6 The cross section of the electron

The incident wave packet with the power density Sy is limited to the time period 0≤W⋅t<2 π . 
Since the envelopes of the electric and magnetic components are modelled with the function

C=
1−cos (W⋅t )

2 , one gets S y (t)=S 0
(1−cos (W⋅t))2

4
. The integration over the period of the 

wave packet results in the energy Q, which is distributed over the total cross-sectional area of the 
electron. 

Q= ∫
0

2π/W

S0
(1−cos(W⋅t ))2

4
dt=

3π S y

4W
(7)

A free electron can not store energy and has to re-radiate the amount it has previously absorbed from 
the wave package. Thus its actual absorption cross section σ can be calculated:

σ Elektron=
A y

Q
=

qe
4 µ0

2⋅S y

8me
2W

4W
3π S y

=
qe

4 µ0
2

6π me
2 =6.625⋅10−29m2

This result is identical with the classically calculated cross section of the electron.

7 Motion of the electron in the z-direction
The just described motion of the electron is in the y-direction. The magnetic field of the wave is 
oriented in anti-parallel to the x axis. The Lorentz force F z=qe v y×Bx ties together both and 
provides for the fact that the electron is accelerated in the direction of the positive z axis, so in 
parallel with k. When using formula (1) results for 

a z=
qe

2 Emax Bmax (1−cos(W⋅t ))ei ω t

−4me
2 ω(ω2−W 2)

(e i ω t( i ω2 cos(W t)−i ω2+ωW sin (W t )+i W 2)− iW 2)  (8)



When compared with the preceding image you'll notice a temporal compression and the frequency 
doubling. Their cause is no inherent "non-linearity" of the electron, but the fact that in the far field of 
every electromagnetic wave the electric and magnetic fields reverse polarity at the same time. The 
integration of equation (8) provides the speed, whose real part is

v z=
qe

2 µ0 S y

me
2

R1⋅R2

4ω6
with (9)

R1=cos (ωt )cos (W t)ω2−W 2−cos(ωt)(sin(W t)W +ω)ω

R2=cos(ωt)cos(W t )ω2−W 2+cos (ω t )(sin(W t)W −ω)ω

The integration constant has been chosen so that at time t = 0 the initial condition vz = 0 is satisfied . 
The following figure shows that the velocity vz is never negative, and that therefore the unbound 
electron will only move away from the light source. The same result is reached by elementary 
numerical integration (see Appendix). It is noteworthy that the initial and final velocity are equal, so 
that the electron is not permanently accelerated. Therefore, this displacement of the electron 
consumes no energy and is not a consequence of the radiation pressure. 

Evidently, the waveform shown in the image is the superposition of a cosine pulse and a wave packet 
with the frequency 2ω. Accordingly, the Fourier analysis of vz provides two well-defined frequency 
ranges: A very broad band with a focus on W and a narrow band with the centre frequency 2ω. In 
both these frequency bands energy is emitted at the expense of the primary wave.

By integration over the period 0≤W⋅t<2 π , the distance travelled by the electron is calculated 
during the passage of the wave packet 

z=
qe

2 µ0 S y

me
2

W 3 π
2ω6 (10)

This displacement in z-direction can be observed only in unbound electrons, because their mass is 
sufficiently small. If the primary wave hits atoms and stimulates their electron shells to vibrate, the 
far higher total mass of the atom must be inserted into the formula. Therefore, z is reduced by at least 



a factor of ( mproton

melectron)
2

=18362≈3.4⋅106 and thus negligible. 

The average velocity component of the electron in parallel with the wave vector k and the z-axis is

v z(mean)=
qe

2 µ0 S y

me
2

W 4

4ω6

The wave packet loses no net energy by the displacement of the electron, because the electron 
subsequently is at rest. In the period 0≤W⋅t<π radiation energy is temporarily converted into 
kinetic energy and transforms back in the period π≤W⋅t<2 π . Overall, there is no momentum 
transfer from the wave packet to the electron. 

These two consecutive accelerated movements cause the low frequency radiation, which is discussed 
below. The z-velocity obviously includes two different frequency components, which are discussed 
separately. 

8 High-frequency emission due to the z-acceleration (2ω)

The incoming wave packet accelerates the electron by the interaction of electric and magnetic field 
component in the z-direction at the frequency 2ω, in parallel with the wave vector k. First, the power 
is calculated with the Larmor formula using equation (8) 

P z=
qe∣a z∣

2

6π ε0 c3 =
qe

6 µ0
3 S y

2

24 π cme
4
(sin(ωt))4(cos(W t )−1)4

ω2

The integration over the period 0≤W⋅t<2π results the value of the radiated energy:

A z( fast )=
qe

6 µ0
3 S y

2

24π cme
4 ω2

105π
32W

=
35 qe

6 µ0
3 S y

2

256c me
4ω2 W

(11)

It should be noted that the power Pz is generated and emitted during a very short interval. 

The radiation pattern of the secondary radiation 
of a single electron is a torus, as we know from a 
dipole antenna. Whose axis is the k-vector of the 
primary wave and whose maximum radiation lies 
in the xy-plane (Θ ≈ π / 2). The intensity of the 
secondary wave in the z-direction (Θ = 0), that is 
parallel to the k-vector, is zero, because no 
longitudinal electromagnetic waves exist. 
Nothing is changed when the primary wave is 
circularly polarized. 

Because of the rotational symmetry of the torus, 
the radiation energy can not create a pulse component in the x-y-plane, and therefore also causes no 
change in the direction of the k-vector. This could reignite the discussion of the hypothesis "tired 
light". Although the wave packet loses energy, there is no scattering in the physical sense, which is 



of course always connected with a change in direction of the k-vector. The energy loss of the 
primary wave described above produces no image blur - not for astronomical observations and not 
during irradiation of compact transparent material such as lenses. If only a few electrons vibrate, the 
energy loss will be very small and difficult to detect. Whether it can be ignored in any case, is not 
the subject of this physical derivation and deserves a separate investigation. 

9 Radiation pattern with a small mutual spacing of the 
electrons

The torus is strongly distorted when the wave packet 
of the primary wave stimulates not only a single 
electron to oscillate, but many who are in close prox-
imity. In solids, the mutual distance of the electrons 
and electron shells is much smaller than the 
wavelength, which simplifies the description. 

If the electrons form a circular area having a diameter 
2a significantly exceeding the wavelength and the 
polarization is parallel to the surface, the radiation 
focuses close to the surface normal (Θ = 0) and the 
intensity function is the known Airy disk, as shown in the image. The surface normal of the circle 
indicates the direction of maximum intensity. With increasing angular deviation from the normal, the 
intensity decreases rapidly and, in particular in the plane of the circular surface, the radiation dis-
appears due to destructive interference. 

Since the polarization of the secondary wave is parallel to the surface normal, any radiation in the 
direction of the normal is prohibited. Therefore, a compromise between the conflicting radiation 
patterns torus and Airy directivity pattern must be found. 

If a glass cylinder of radius a is illuminated 
with light in parallel to the axis of symmetry, 
the plane wave fronts of the primary electro-
magnetic wave are parallel to the x-y-plane of 
the radiation. All electrons in any x-y-plane are 
forced to synchronous oscillations. As shown 
above, the velocity in conjunction with the 
magnetic field of the primary wave generates a 
very small movement of all electron clouds in 
the z-direction. Destructive interference ensures 
that in the x-y-plane (Θ ≈ π / 2) no secondary 
wave is emitted. 

The compromise is possible, if the radiation 
patterns torus and Airy disc are mathematically 
formulated and multiplied together: 

a) Electrons oscillating in the z-direction do not radiate energy into the z-direction (Θ = 0) because 
longitudinal electromagnetic waves do not exist. For the radiated field strength, the formula is

E∼sin (Θ) .



b) For constructive interference applies E∼
2 J 1(k a sin (Θ))

k a sin(Θ)
as for the diffraction at a circular 

aperture, where J1 is the Bessel function of the first kind and a is the radius of the glass cylinder.

The intensity of the radiation generated by the synchronous movement of the electrons in the z-
direction, is the square of the product

I z∼(E z)
2∼(2 J 1(k a sin (Θ))

k a )
2

(12)

As the picture shows, the radiation power of the secondary 
radiation disappears for Θ = 0 and has a maximum for

1,842=k a sin(Θ) . After the light has passed through 
the glass cylinder, an analysis should  show, that that the 
strong primary can be separated from the considerably 
weaker secondary wave due to different polarization and 
angle of observation.

The primary wave does not change polarization and 
frequency, the intensity profile corresponds after a 
sufficient distance to the well known Airy disk with a 
strong central peak, the angle of the first intensity 
minimum (innermost dark ring) can be calculated with the 

well-known formula (sin Θ)Airy=1,22 λ
2a . In the image, 

the intensity of the primary wave is indicated by the area brightness. 

The highest intensity of the secondary wave (2ω) is observed on concentric circular rings. For half 

the opening angle of the innermost circle, the formula is (sin Θ)2 ω=0,586 λ
2a . In the picture 

orange lines indicate two annular areas in which the secondary radiation should be measurable. The 
main difference, however, is to be expected in terms of polarization. The orientation of the lines 
shows the position-dependent linear polarization of the secondary wave. This is independent of the 
polarization of the primary wave, and upon whether it is linear or circular. Illustratively stated, the 
orange lines are short sections of the z-axis, seen from the particular view. In this section, the 
electron motion in parallel to the z-axis is discussed. 

An analysis in the opposite direction of the primary wave can facilitate the detection of the secondary 
wave, because there the intensity of the reflected primary wave can be significantly reduced by a 
suitable coating of both ends of the cylinder.

10 Low-frequency radiation as a result of z-acceleration

In the z-direction, the electron is accelerated with two different time constants. The previous section 
dealt with the radiation of frequency 2ω, subsequent the low-frequency component is discussed, 
which can be observed only in unbound electrons. A suitable low-pass filtering of equation (9) yields 
the mean velocity of the electrons: 

v z(slow )=
qe

2 µ0 S y

me
2

(1−cos(W t))2

8ω2
(13)



and the acceleration

a z(slow)=
qe

2 µ0 S y

me
2

(1−cos(W t))sin (W t )
4ω

(14)

One first calculates the power with the Larmor formula

P z(slow)=
(qe⋅az (slow))2

6π ε 0c3 =
qe

6 µ0
3 S y

2

96π c me
4
((cos (W t )−1)sin(W t ))2

ω2

and then integrates over the period of the wave packet. The radiated energy is

A z(slow)=
qe

6 µ0
3 S y

2

96π c me
4 ω2

5π
4W

=
5qe

6 µ0
3 S y

2

384 cme
4 ω2W

(15)

Since the movement of the 
electrons is considered in parallel 
to the k-vector, the energy is 
mainly emitted in the x-y-plane. 
The picture shows, that the low-
frequency radiation is emitted not 
continuously during the period 

0≤W⋅t<2 π , it focuses 
around the two time points

t 1≈
2π
3W and t 2≈

4 π
3W , 

measured from the start of the 
primary wave. The difference 
depends on the contour of the 
envelope.

Since the electric field strength is proportional to a z(slow ) , the mean  radiated frequency 
corresponds to the variable factor ω( slow)≈(1−cos(W t))sin (W t) . Because the period of 
oscillation is hardly different from the duration of the wave packet, the frequency can be very 
imprecisely defined, the bandwidth of this secondary wave is very large and the signal is more like a 
noise. For the polarization, the same considerations apply as for the high-frequency component. 

Example: From the wavelength λPrim=550 nm and line width Δλ=2nm follows
W =6,23⋅1012 Hz . If light passes through thin plasma,  secondary radiation is a broadband 

spectrum in the frequency range f (slow)≈1.5⋅1012 Hz corresponding λ( slow)≈200 µm . 
Interestingly, the cosmic background radiation is measured approximately in the same range. This 
radiation should be detectable perpendicular to the direction of propagation of the primary wave.

11 Specific energy loss as a result of z-acceleration
A free electron may not save energy and radiates all the energy, which it receives from the primary 
wave. Every time a wave packet excites a free electron to oscillate, it loses a tiny fraction of its 
energy, and then continues running with slightly reduced frequency. This extends the wavelength of 



the primary wave by a tiny amount (redshift). For the three energy components, the following 
relationships apply: 

A y=
qe

4 µ0
2⋅S y

8 me
2W

(6)

Az( fast )
A z(slow )

=21
2  A z( fast )+Az(slow)=

115qe
6 µ0

3 S y
2

768c me
4 ω2 W

R=
Az( fast )+Az (slow)

Ay
=

115qe
6 µ0

3 S y
2

768c me
4ω2W

8me
2W

qe
4 µ0

2⋅S y

=
115qe

2 µ0 S y

96c me
2 ω2

Of particular interest is the energy or power ratio R, when an electron is stimulated by the primary 
wave packet to execute short-term oscillations and therefore radiates secondary waves. The relative 
energy loss increases with decreasing frequency, and does not depend on the modulation frequency 
W, thus the duration of the wave packet. Because the energy difference is emitted with no preferred 
direction, the initial wave packet undergoes no change of direction, there is no scattering in the 
classic sense. 

12 Concluding Remarks

The trigger for this investigation was a side note in http://en.wikipedia.org/wiki/Thomson_scattering 
(version October 25, 2013). This is ".. the main cause of the acceleration of the particle will be due  
to the electric field component of the incident wave, and the magnetic field can be neglected." 
Really? After only two hours programming work for a simulation using the Matlab program (see 
Appendix) amazing features of the electron motion in the z-direction showed up. They could not be 
removed by program changes (for example, better Integration procedures or smaller step size). The 
rest of the examination was - despite the use of symbolic algebra programs – the painstaking proof 
that the simulation is correct. Perhaps the side note will be adjusted to reality someday. 

Although the results of this work may contribute to the discussion about interesting aspects of tired 
light , this was neither starting point nor target of the investigation. 

13 Equipment: 
Eugene Hecht: Optics

John David Jackson: Classical Electrodynamics

The Software packets „Mathematica“ , „Reduce“ and „Matlab“

OpenOffice Writer

perseverance and the infinite patience of my wife

14 Appendix
The following Matlab program is a simple simulation without any mathematical tricks. It generates 
some pictures to illustrate some results mentioned in this investigation. After copying in the Matlab 
editor window, it should be stopped after the selected rows (breakpoint) to look at the intermediate 



results carefully. A change from the Hann Window to the Blackman Window shows that the shape of 
the envelope has little effect. It would be a great pleasure if someone would discover the correct form 
of the envelope.

%Thomson scattering; Author: Herbert Weidner
qe=-1.6e-19; me=9.11e-31; c=3e8; %basic units
cc=100; %points per oscillation
lambda=1e-6; %Meter
T=lambda/c; dt=T/cc;
S=1e6; %W/m² power density (Poynting)
%wave propagation z direction
Ey0=sqrt(377*S); %linear polarzation; Z0=377 Ohm, points in y-direction
Bx0=12.566e-7*S/Ey0; %µ0, points in -x-direction
%z-direction to the observer, E x B = k (right-handed)
%a free electron is moved
c=30; %number of cycles
yz=zeros(2,c*cc); vyz=zeros(2,c*cc); %az=zeros(1,c*cc); 
n=1:c*cc; %ma(y)=qE
%in the far field E and B are in-phase
ay=(hann(c*cc))'.*sin(2*pi*n/cc)*qe*Ey0/me; %x-acceleration
Bx=-(hann(c*cc))'.*sin(2*pi*n/cc)*Bx0; %- because EBk is right-handed
for n=2:c*cc-1 %compute vy and y 
    vyz(1,n)=vyz(1,n-1)+dt*(ay(n-1)+ay(n))/2;
    yz(1,n)=yz(1,n-1)+dt*(vyz(1,n-1)+vyz(1,n))/2;
end
az=-qe*vyz(1,:).*Bx/me; %qv(y)B(x)=ma(z)
plot(vyz(1,:)); ylabel('y-velocity (m/s)');
title('wave packet, 30 oscillations'), xlabel('time')
%----Breakpoint in the following line ------
for n=2:c*cc-1 %compute vz and z
    vyz(2,n)=vyz(2,n-1)+dt*(az(1,n-1)+az(1,n))/2;
    yz(2,n)=yz(2,n-1)+dt*(vyz(2,n-1)+vyz(2,n))/2;
end
plot(vyz(2,:)); ylabel('z-velocity (m/s)');
title('velocity of the electron parallel to the k-Vektor')
xlabel('time (arbitrary units)')
n=1:size(vyz,2);
%----Breakpoint in the following line ------
plotyy(n,az,n,vyz(2,:)); 
ylabel('left: az, right: vz (m/s)');
title('a and v in z-direction'), xlabel('time')
%----Breakpoint in the following line ------
plotyy(n,vyz(1,:),n,vyz(2,:)); 
ylabel('left: vy, right: vz (m/s)');
title('velocity in y- and z-directions')
xlabel('time (arbitrary units)')
%----Breakpoint in the following line ------
plotyy(n,yz(1,:),n,yz(2,:)); 
ylabel('left: y, right: z in m');
title('coordinates of the electron in y- and z-direction')
xlabel('time (arbitrary units)')
%----Breakpoint in the following line ------
fprintf(1, 'vy/vz= %e\n',max(abs(vyz(2,:)))/max(vyz(1,:)))
%path of the electron in the y-z-plane
scatter(yz(1,:),yz(2,:),'.')
xlabel('deflection in y-direction (in m)')
ylabel('deflection in z-direction (in m)')
title('path of the electron in the y-z-plane')

Herbert Weidner, 28. Oktober 2013
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