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1. ABSTRACT 

 
The purpose of this project is to test the proposed circuitry and materials required in order to attempt 
to measure the thermal properties of the fluid (either atmosphere or ocean) expected to be found on 
the surface of Titan, a satellite of Saturn. The proposed experiment forms part of the contribution of 
the University of Kent at Canterbury Unit for Space Sciences to the Surface Science Package of the 
Huygens Probe, part of the joint ESA/NASA Cassini Mission to the Saturn system launched in 1996. 

The experiment uses the “transient hot wire” method to obtain an accurate measure of both the 
thermal conductivity and diffusivity of a surrounding fluid. The advantage of this method is that it 
requires only a measurement of variation of resistance in a wire over a short period. This method is 
widely used in laboratory research, but has never before been attempted on such a small scale and at 
so great a distance. 
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2. INTRODUCTION 

 
This project concerns the implementation of the “transient hot wire” method of thermal property 
measurement in a remote sensing device, part of the Surface Science Package on the Huygens Probe, 
part of the Cassini Mission to Titan, a satellite of Saturn, in 1996. This method, first described by 
Nagasaka and Nagashima1 in 1981, has since become a common method of measurement of thermal 
properties on Earth. Put simply, the method involves passing a small (of the order of milliamps) 
current, in the form of a pulse or a constant amount, through a wire made of a pure conductor 
immersed in a fluid. For the purposes of this project, the constant current method was chosen for 
simplicity. The resulting change in potential difference between the ends of the wire (due to the 
change in resistance of the wire) bears a simple mathematical relationship to the length of time 
current has been flowing for the first few seconds after the current has begun to flow. This 
corresponds to the dissipation of heat from the wire by conduction. It is observed that after about ten 
seconds, loss of heat by convection in the fluid becomes a significant consideration, and the potential 
difference then deviates from the simple relationship mentioned above. It is therefore vital to record 
accurately and at high sampling frequency the changes in potential difference during the first few 
seconds of the experiment. The constant of proportionality in the voltage/time relationship (gradient 
of an appropriate graph) must be determined accurately in order to obtain accurate values of thermal 
conductivity and diffusivity using the equation derived in reference 1. 

Previous work on this method by Grant2 showed that a high sampling frequency and accuracy were 
necessary for this experiment and also that appropriate devices were not freely available. To this end, 
a custom-built circuit has now been provided, designed along the same lines as the circuit to be sent 
with the Huygens Probe. Carbon fibre has previously been used as the sensor material, but it is too 
fragile for a long mission with harsh landing conditions. Very thin (of the order of 50 µm diameter) 
platinum wire was therefore chosen, mainly because of its durability and high level of purity. Other 
methods of measurement were considered – for example the Needle Probe method used by Asher, 
Sloan and Grabowski9, but this method is not as accurate and is more difficult to construct. 

The present project consisted of two parts: 

- Establishment of the relationship between temperature and resistance for the wire, as this value is 
needed in the final set of equations (see Section 3). 

- Writing of appropriate software for interfacing the analogue to digital converter to a PC and 
displaying the results, and obtaining measurements of potential difference at a sufficiently high 
sampling rate to yield accurate values for the thermal conductivity and diffusivity of water at 
room temperature. 
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3. THEORY 

 
There are three main ways in which heat may be transferred through a fluid3: 

i) Conduction 

This is the mode of heat transfer due to intermolecular interactions in a fluid. Fourier first stated a 
law which fully describes the effect of this heat flow: 

 q = dQ
dt

= −λA dΔT
dn

 (1) 

where dQ/dt = heat flow in unit time 
  λ = thermal conductivity 
  A = cross-sectional area of fluid perpendicular to direction of heat flow 
  dΔT/dn = temperature gradient in direction normal to surface of the emitter 

 q′′ = q
A

 (2) 

q’’ is often termed the heat flow. 

 q′′ = −λ dΔT
dn

 (3) 

is the most general form of Fourier’s law. 

ii) Radiation 

This is the mode of heat transfer due to the emission of electromagnetic radiation from the emitting 
surface. It is described by the Stefan-Boltzmann law: 

 dQ
dt

= σA(T14 − T24) (4) 

where σ = Stefan-Boltzmann constant (5.67x10-8 Wm-2K-4) 
  T1,T2 = temperatures of the two materials involved 

iii) Convection 

This mode of heat transfer results from the macroscopic movement of fluid around the emissive 
material and has the effect of altering the influence of one or both of the other modes of transfer. 
Two forms of convection occur:  

Forced convection results from a mass movement of fluid brought about by the action of a pump or 
fan. 

Natural or free convection results from a local reduction in the density of the fluid. This fluid of 
lower density will rise from the emitting surface, bringing about a transfer of heat independent of the 
other modes. It has been found that 
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 dQ
dt

= hA(T14 − T24) (5) 

where h is a constant of proportionality dependent on the nature of the fluid and emissive body 
A = area of emissive surface 
T1, T2 = temperatures of the emissive surface and the surrounding fluid respectively 

As our aim is to determine the thermal conductivity and diffusivity of a fluid, the experiment must be 
designed to minimise the loss of heat by radiation and convection. From equation (4), it can be seen 
that heat flux due to radiation is dependent on the surface area of the emitting body. By employing a 
very thin (50 µm diameter) wire in this capacity, this mode of heat loss can be largely neglected. 
Convection, too, depends on the surface area of the body, but as will be seen (Section 3.1) the onset 
of convective losses is evident in the deviation of the voltage/ln(time) relationship from a straight 
line. 

 

3.1 THEORY OF MEASUREMENTS 

As 

 qx′′ = −λΔT
x

 (from (2)) 

Then in three dimensions 

 q′′ = −λgradΔT (6) 

The heat flux, and therefore temperature, at any point in a material is a function of the three 
dimensions of space and time. Consider the case of a rectangular parallelepiped with a point P at its 
centre, its edges parallel to the x, y and z axes and of lengths 2dx, 2dy and 2dz respectively. Call the 
faces in the planes x-dx and x+dx ABCD and A’B’C’D’ respectively. Heat will flow across the face 
ABCD at a rate 

 dQABCD
dt

= 4 �qx′′ −
∂qx′′ 
∂x

dx�dydz (7) 

where  𝑞𝑥′′ = flux at P across a parallel plane. 

Similarly, the heat flow across A’B’C’D’ is given by  

 
dQA′B′C′D′

dt
= 4 �qx′′ −

∂qx′′ 
∂x

dx�dydz (8) 

Therefore, the rate of gain of heat across both faces is given by  

 dQx
dt

= −8 �∂qx
′′ 

∂x
�dxdydz (9) 

Extending this result to three dimensions, the total rate at which heat is gained by the parallelepiped 
is 
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 dQV
dt

= −8 �∂qx
′′ 

∂x
+ ∂qy′′ 

∂y
+ ∂qz′′ 

∂z
�dxdydz = −8dxdydz div qx′′  (10) 

This is equivalent to 

 dQV
dt

= 8ρc δ∆T
δt

dxdydz  (11) 

where  𝜌 = density 
  c = specific heat capacity at temperature T 

Equating (10) and (11) we have 

 ρc δ∆T
δt

+ �∂qx
′′ 

∂x
+ ∂qy′′ 

∂y
+ ∂qz′′ 

∂z
� = 0 (12) 

Equation (12) holds at all points in a material, as long as these points are not themselves sources of 
heat. 

For a homogeneous isotropic solid with thermal conductivity which is independent of temperature, 
𝑞𝑥′′, 𝑞𝑦′′ and 𝑞𝑧′′ are given by appropriate variations of equation (2). Equation (12) becomes 

 δ2∆T
δx2

+ δ2∆T
δy2

+ δ2∆T
δz2

− 1
Κ
δ∆T
δt

= 0  (13) 

where  

 Κ = thermal diffusivity = λ
ρc

 (14) 

The solution of (13) is  

 ∆T = Q

8(πΚt)
3
2�

e���x−x
′�
2+�y−y′�

2+�z−z′�
2� 4Κt� � (15) 

where Q is the strength of an instantaneous point source, i.e. the temperature to which the amount of 
heat liberated would raise a unit volume of the substance. The amount of heat liberated by the source 
is given by Qρc. 

This interpretation of this solution is as the temperature in an infinite solid due to a quantity of heat 
Qρc instantaneously generated at t=0 at the point (x’,y’,z’). 

To solve (13) for a line source, integrate (15) along the z axis: 

 ∆T = Q

8(πΚt)
3
2�
∫ e���x−x

′�
2+�y−y′�

2+�z−z′�
2� 4Κt� �∞

−∞ dz (16) 

Therefore 

 ∆T = Q
4πΚt

e���x−x
′�
2+�y−y′�

2+�z−z′�
2� 4Κt� � (17) 
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and the heat liberated per unit length of the line source is Qρc. 

If heat is liberated at a rate φ(t)ρc in unit time per unit length of a line parallel to the z axis and 
through the point (x’,y’) then the temperature at a time t after the supply of heat began is, from (17): 

 ∆T(t) = 1
4πΚ ∫ φ(t′)t

0 e−r2 4Κ�t−t′��  dt
′

t−t′
 (18) 

where r2 = (x-x’)2+(y-y’)2 

If φ(t) = q’, a constant, then 

 ∆T = q′

4πΚ ∫
e−udu
u

∞
0    (19) 

 ∆T = −q′

4πΚ
Ei �

−r2

4Κt
� (20) 

where −𝐸𝑖(−𝑥) = ∫ 𝑒−𝑢

𝑢
∞
𝑥 𝑑𝑢 

For small x (large t or small r) 

−𝐸𝑖(−𝑥) = 𝛾 + ln(𝑥) − 𝑥 +
1
4
𝑥2 + 𝑂(𝑥3) 

where γ=0.5772... (Euler’s constant) 

Therefore 

 ∆T = q′

4πΚ
ln �4Κt

r2
� − γq′

4πΚ
  (21) 

This is the solution for temperature in the case of a solid heated by an infinitely thin wire carrying 
electric current. 

Let q = quantity of heat produced per unit time per unit length of the wire. 

Then 

 q = q′ρc (22) 

Substituting this expression into (21) gives 

 ∆T = q′

4πρcΚ
ln �4Κt

r2
� − γq′

4πρcΚ
  (23) 

However, it is known that 

 Κ = λ
ρc

  (from (14)) 

Substituting into equation (23): 
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 ∆T = q′

4πλ
�ln �4Κt

r2
� − γ�  (24) 

If C = exp(γ), then substituting gives 

 ∆T = q′

4πλ
�ln �4Κt

r2
� − ln(C)�  (25) 

Therefore 

 ∆T = q′

4πλ
ln �4Κt

r2C
�  (26) 

This result shows the linear dependence of temperature on ln(time) for a thin wire within a solid or 
fluid material solely as a result of conduction processes. 

Differentiating (26) with respect to ln(t) gives1 

 d∆T
d(ln(t))

= q
4πλ

 (27) 

which yields an expression for λ, the thermal conductivity of the material under test: 

 λ = q 4π⁄
d∆T d(ln(t))⁄  (28) 

For the purposes of this experiment, a variation on equation (28) is used: 

 λ = I2R
4πL

× dR
d∆T

× d(ln (t))
dR

 (29) 

Equation (14) can then be used to determine the thermal diffusivity once the thermal conductivity is 
known. 

 

3.2 THEORY OF ERRORS 

 
While the experiment is being conducted, it must be realised that losses may occur and must be 
accounted for. The following are the main losses to be considered: 

i) Losses by conduction through the walls of the test chamber 

For a free-standing wire, only the losses through the walls are of concern. As the walls are far from 
the wire (i.e. much greater than the diameter of the wire) these losses will not be significant. 

ii) Losses by radiation 

The amount of heat lost in this manner is given by 

 Q = σ �� T1
100

�
4
− � T2

100
�
4
�F (30) 
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where  σ = Stefan-Boltzmann constant 
  T1, T2 = temperatures of wire and fluid 
  F = radiative surface area 

As the wire used had a diameter of 50 µm, the surface area was very small (of the order of 3x10-5 m2) 
so these losses are also minimal. 

iii) Losses by convection 

The theory of measurement allows the effect of the onset of convection (namely, deviation of the 
gradient of dT versus ln(t) from a straight line) to be clearly seen in the output, and can thus be 
excluded from further consideration. In addition, convection may be delayed by constricting the 
volume of the test chamber. 

iv) Eccentricity 

If the axis of the wire does not coincide with the axis of the (cylindrical) test chamber, an eccentric 
correction is needed. For our purposes, the body of fluid can be treated as cylindrical. 

 

3.3 ERRORS FROM PRINCIPAL EQUATION 

Using Equation (30) the accuracy of the experimental apparatus can be determined: 

 δλ
λ

= 2δI
I

+ δR
R

+ δL
L

+ δd∆T
d∆T

+ δdln(t)
dln(t)

 (31) 

It is clear from this equation that accurate measurement of current (and the requirement of constant 
current) is essential. The resistance of the wire must also be accurately known, for not only is it 
involved in the above equation, but the apparatus may also be required to act as a thermometer to 
calibrate other experiments during the voyage to Titan and after landing.  

Note that, given the equation defining resistance: 

 δR
R

= δl
l
− δa

a
+ δρ

ρ
 (32) 

where  l = length of wire 
  a = cross-sectional area of wire 
  ρ = resistivity 

which can also be written5 

 δR
R

= δl
l

(1 + 2ν) + δρ
ρ

 (33) 

where  ν = Poisson’s ratio 

indicates that, if it is possible to make an educated guess as to the amount of change in the length of 
the wire as a result of, for example, temperature change, shock of landing or the force of the fluid 
entering the testing chamber, it is possible to know how much error to allow for in the calculations. It 
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would appear to be reasonable to assume that resistivity will not change, given a small change in 
length (perhaps 1%). A 1% change in length would then give an approximately 1.6% change in 
resistance. 

It is also crucial to know as accurately as possible the time interval (sampling rate) used.  

The ideal experimental apparatus would consist on an infinitely long and infinitely thin wire 
surrounded by an infinitely thin layer of fluid. This would ensure that no temperature gradient forms 
in the fluid and hence no convection will occur. In practice, a wire of approximately 10cm in length 
and 50µm in diameter in a container approximately 12cm by 5cm by 3 cm was sufficient to delay the 
onset of convection for about 5 seconds.  
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4. EXPERIMENT 

 
4.1 DETERMINATION OF THE TEMPERATURE COEFFICIENT OF RESISTANCE 

 
After mounting the supplied 50µm wire in a plastic test box, a Keithley 195 digital multimeter was 
used to measure the change in resistance of the wire directly (to an accuracy of 10-3 Ω) while in the 
test chamber, hot water was allowed to cool or cold water allowed to warm up towards room 
temperature. The water was well stirred throughout to ensure a constant temperature, and readings of 
resistance were taken for every 0.5°C change in temperature, as measured by a digital platinum 
resistance thermometer accurate to 0.1°C. 

Graphs were plotted of the results, Figures 4.1, 4.2 and 4.3 being those of cooling water and Figures 
4.4, 4.5 and 4.6 those of warming water (i.e. from below room temperature). The results obtained 
showed a high degree of consistency and can be found in section 5.1. The original experimental data 
can be found in Appendix 1. 

 

Figure 4.1 – First Cooling Run 
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Figure 4.2 – Second Cooling Run 

 

 

Figure 4.3 – Third Cooling Run 
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Figure 4.4 – First Warming Run 

 

Figure 4.5 – Second Warming Run 
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Figure 4.6 – Third Warming Run 

 

Figure 4.7 – Combined Warming and Cooling Runs with New Wire  
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Concerns were raised at this stage that the wire may have been soldered to the mounting in the test 
chamber incorrectly, resulting in a dry joint. When a new wire was fitted, the change of resistance 
with temperature was investigated – the result of this test is in Figure 4.7. This new wire was used to 
make the measurements of ΔR versus ln(time) for the remainder of the project. 

 
 
4.2 APPLICATION OF THE SUPPLIED TEST EQUIPMENT 

It was necessary to write driver software for the test box, following the instructions given in 
reference 6. This was written in Turbo Pascal, this being the only compiled language available, and 
having sufficient graphics facilities for the needs of the project.  

The test box itself caused a few problems – the 50-way “D”-type connection from the box to the 
PC30AT board was a female type, but male was required. A suitable connector was soon fitted. It 
was then found that the 4-way connections to the platinum wire had been connected to the wrong 
pins of its 9-way connector. Once discovered, this was soon rectified. After further problems with 
obtaining meaningful results, it was found that the polarity of the operational amplifier in the test box 
had been changed since the original instruction sheet had been written. It was then found necessary 
to alter the value of a resistance in the test box, as it had originally been intended to use a 25µm 
diameter wire (resistance ~25Ω) whereas a 50µm diameter wire (resistance 5.2Ω) was actually used. 
Once these initial teething troubles had been overcome, progress in making meaningful 
measurements was quickly made – raw data was obtained and a graph-plotting procedure was 
developed. This was further refined so that it was possible to exaggerate the vertical scale, so that 
once found, the section of interest could be examined more carefully. It was then possible to make 
approximate measurements from the monitor screen, printed screen dumps or by reference to the X 
and Y values of sample points in the section of interest. The vertical scale was altered to read first in 
volts, then in ohms, rather than the arbitrary units used by the test box. It was found that the wire’s 
container had to be kept as immobile in order to avoid forced convection due to vibration. 

An attempt was made to sample in the ln(time) domain, i.e. taking readings more frequently early on 
in the experiment and less frequently later on, as convection set in. It was decided that a constant 
sampling rate (10Hz) yielded sufficient sample values in the required area. Problems were found 
with obtaining exact timing of sampling – this was eventually overcome by utilising timers on the 
PC30AT board, the PC’s own timer proving inadequate for the task. 
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5. RESULTS 

 
5.1 MEASUREMENTS OF VARIATION OF RESISTANCE WITH TEMPERATURE 

 
Six sets of measurements were made, three for cooling and three for warming (to room temperature). 
As can be seen from the graphs (following pages) some sample points show a slight deviation from 
an otherwise straight line, usually at the “end” where measurements began. It is believed that these 
are not valid points, as it is unlikely that an even temperature would have been reached in the short 
time that those particular measurements were made. 

The values of (dR/dT) derived from the graphs by the method of least squares are as follows: 

  Figure 4.1 => 0.0206 Ω/°C 
  Figure 4.2 => 0.0212 Ω/°C 
  Figure 4.3 => 0.0211 Ω/°C 
  Figure 4.4 => 0.0216 Ω/°C 
  Figure 4.5 => 0.0211 Ω/°C 
  Figure 4.6 => 0.0207 Ω/°C 

The mean of these results is 0.0211 Ω/°C 

An estimate of the error involved is therefore  

(1 – (0.0211/0.0206)) x 100% ≈ 2.5% 

so  

   δ(dR/dT)/(dR/dT) ≈ 0.025 

The new wire was similarly tested – the results may be seen in Figure 4.7. By the method of least 
squares, dR/dT was found to be 0.0185 Ω/°C. 

 
 
5.2 MEASUREMENTS OF RESISTANCE CHANGE AND LN(TIME) 

 
A value of dΔR/dln(t), from a curve fitted to the data is 0.00712 Ω/ln(s), however, this was obtained 
before accurate sample timing had been achieved. The screen dumps taken after timing correction 
gave values of dΔR/dln(t) of 0.0075 Ω/ln(s). 

From equation (29): 

 λ = I2R
4πL

× dR
d∆T

× d(ln (t))
dR

 

where dR/dΔT = gradient of graph from section 5.1 = 0.0185 Ω/°C 
  I = 0.238 A 
  R = 5.3 Ω 
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  L = 0.099 m 
  d(ln(t))/dR = reciprocal of gradient of graph from section 5.2 = 200/1.5 = 133.33 ln(s)/Ω 

gives a value for thermal conductivity λ for water at 20°C of 

λwater = 0.596 (to 3 decimal places) 

being a -0.3% difference from the expected value at 20°C (approximately 0.598). 

Thermal diffusivity Κ is given by equation (14), thus given values of density and specific heat 
capacity of water at 20°C of 

ρ = 998.21 kg/m3 

cp = 4181.8 J/kg °C 

then  

    Κwater = 1.43 x 10-7 m2/s 

which is a 4% difference from the expected value at 20°C (approximately 1.49 x 10-7 m2/s). 

 
 

5.2.1 Error Calculation 

The total error in the experiment is given by the sum of the errors in 2I, R, L, dΔT and d(ln(t)): 

2δI/I = 0.02/0.25 = ±8x10-3 

δR/R = 0.2/4.9 = ±0.04 

δL/L = 0.002/0.099 = ±0.02 

As dΔT = µdΔR, 

error in dΔT = error in µ + error in dΔR = ±0.05 

δd(ln(t))/d(ln(t)) = 2/100 = ±0.02 

Total error budget = ±14% 

The experimental results show an error of -0.3% for thermal conductivity and -4% for thermal 
diffusivity, so our calculation of ±14% puts our values near the true figure – the best which can be 
expected at this stage in testing. The timing must be done accurately to ensure accurate results.  
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6. CONCLUSION 

 
The project was successful in its aim of verifying that the test box circuitry was capable of producing 
results which gave accurate values for the thermal properties of water, giving confidence that the 
method and proposed circuitry (suitably ruggedized) would be capable of similar performance on the 
surface of Titan. The circuit, the model for the one to be flown with the Surface Science Package, 
proved stable over a 20-bit range (a greater than expected accuracy). Whether to employ on-board 
processing to convert time data into logarithmic data, or to send the raw information directly to 
Earth, remains to be decided. The feasibility of the method has been established. 

The graph plotting software must still be refined, perhaps using the refractometry experiment’s 
software as a model. The method must still be tested with liquids other than water, for example 
toluene (around room temperature) and eventually liquid methane/ethane mixtures similar to those 
expected to be found on Titan. 

Future experimentation should also consider the effect on accuracy of varying the sampling rate, for 
although the output of the test box is bandwidth limited to 10Hz, Nyquist’s theorem implies that the 
maximum amount of accuracy may be obtained by reading this output at 20Hz or greater. It will at 
least be necessary to ensure a precise sampling rate – it has not so far proved possible to do this 
reliably in software. Ideally the current flow should also be computer-controlled. It is believed that 
errors in measurements encountered in this project are largely due to these timing inaccuracies. 
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Appendix 1 - Experimental Data 

First Cooling Run Second Cooling Run Third Cooling Run 

Temperature (°C) Resistance (Ω)  Temperature (°C) Resistance (Ω)  Temperature (°C) Resistance (Ω) 
47 6.485  47 6.551  44 6.49 

46.5 6.477  46.5 6.541  43.5 6.482 
46 6.468  46 6.532  43 6.472 

45.5 6.457  45.5 6.52  42.5 6.462 
45 6.449  45 6.51  42 6.451 

44.5 6.438  44.5 6.5  41.5 6.439 
44 6.429  44 6.49  41 6.429 

43.5 6.418  43.5 6.479  40.5 6.418 
43 6.409  43 6.468  40 6.407 

42.5 6.398  42.5 6.455  39.5 6.396 
42 6.389  42 6.444  39 6.386 

41.5 6.379  41.5 6.433  38.5 6.376 
41 6.369  41 6.423  38 6.365 

40.5 6.357  40.5 6.413  37.5 6.355 
40 6.347  40 6.402  37 6.345 

39.5 6.336  39.5 6.391  36.5 6.334 
39 6.326  39 6.381  36 6.324 

38.5 6.316  38.5 6.37  35.5 6.313 
38 6.305  38 6.36  35 6.302 

37.5 6.296  37.5 6.35  34.5 6.292 
37 6.285  37 6.339  34 6.281 

36.5 6.275  36.5 6.329  33.5 6.271 
36 6.265  36 6.318  33 6.26 

35.5 6.255  35.5 6.307  32.5 6.25 
35 6.245  35 6.297  32 6.24 

34.5 6.235  34.5 6.286  31.5 6.228 
34 6.223  34 6.276  31 6.217 

33.5 6.213  33.5 6.265  30.5 6.206 
33 6.203  33 6.255  30 6.196 

32.5 6.193  32.5 6.244  29.5 6.185 
32 6.182  32 6.233  29 6.175 

31.5 6.171  31.5 6.222  28.5 6.165 
31 6.162  31 6.212  28 6.155 

30.5 6.151  30.5 6.201  27.5 6.144 
30 6.14  30 6.19  27 6.133 

29.5 6.131  29.5 6.179  26.5 6.122 
29 6.12  29 6.169  

28.5 6.109  28.5 6.159  
28 6.098  28 6.149  

27.5 6.088  27.5 6.138  
27 6.078  27 6.127  

26.5 6.068  26.5 6.116  
26 6.057  26 6.106  

25.5 6.047   
25 6.037   

24.5 6.026   
24 6.016   

23.5 6.006   
23 5.995   

22.5 5.985   
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First Warming Run Second Warming Run Third Warming Run 

Temperature (°C) Resistance (Ω)  Temperature (°C) Resistance (Ω)  Temperature (°C) Resistance (Ω) 
3 5.578  1 5.577  1.5 5.604 

3.5 5.588  1.5 5.584  2 5.612 
4 5.598  2 5.592  2.5 5.621 

4.5 5.61  2.5 5.602  3 5.631 
5 5.62  3 5.613  3.5 5.641 

5.5 5.63  3.5 5.624  4 5.652 
6 5.641  4 5.635  4.5 5.662 

6.5 5.652  4.5 5.645  5 5.673 
7 5.663  5 5.655  5.5 5.683 

7.5 5.674  5.5 5.666  6 5.693 
8 5.685  6 5.677  6.5 5.704 

8.5 5.696  6.5 5.688  7 5.714 
9 5.709  7 5.699  7.5 5.725 

9.5 5.717  7.5 5.709  8 5.735 
   8 5.72  8.5 5.746 
   8.5 5.731  9 5.757 
   9 5.742  9.5 5.767 
   9.5 5.752  
   10 5.763  
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 Combined Warming and Cooling Runs with New Wire 

Temperature (°C) Resistance (Ω) 
26 5.36 

25.6 5.353 
25.3 5.347 
25 5.341 

24.7 5.335 
24.3 5.328 
23.9 5.32 
23.6 5.313 
21 5.266 

20.8 5.261 
20.3 5.251 
20.1 5.247 
19.7 5.24 
13.5 5.121 
12.4 5.101 
12.6 5.105 
12.9 5.11 
14.1 5.133 
15.9 5.168 
16.7 5.182 
17.2 5.192 
17.4 5.195 
17.9 5.204 
18.2 5.209 
18.5 5.215 
48 5.763 

47.5 5.756 
47 5.746 

46.5 5.735 
46 5.726 

45.5 5.716 
45 5.706 

44.5 5.697 
44 5.687 

43.5 5.677 


	1. Abstract
	2. Introduction
	3.  Theory
	3.1 Theory of Measurements
	3.2 Theory of Errors
	3.3 Errors from Principal Equation

	4. Experiment
	4.1 Determination of the Temperature Coefficient of Resistance
	4.2 Application of the Supplied Test Equipment

	5. Results
	5.1 Measurements of variation of resistance with temperature
	5.2 Measurements of Resistance Change and ln(time)
	5.2.1 Error Calculation


	6. Conclusion
	7. References

