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The solar corona and chromosphere are often marked by eruptive features, such as
flares, prominences, loops, and coronal mass ejections, which rise above the photo-
spheric surface. Coronal streamers and plumes can also characterize the outer atmo-
sphere of the Sun. All of these structures, fascinating in their extent and formation,
frequently emit continuous spectra and can usually be observed using white-light coro-
nagraphs. This implies, at least in part, that they are comprised of condensed matter.
The continuous spectra associated with chromospheric and coronal structures can be
viewed as representing the twenty-eighth line of evidence,and the eighth Planckian
proof, that the Sun is condensed matter. The existence of such objects also suggests that
the density of the solar atmosphere rises to levels well in excess of current estimates
put forth by the gaseous models of the Sun. In this work, the densities of planetary
atmospheres are examined in order to gain insight relative to the likely densities of the
solar chromosphere. Elevated densities in the solar atmosphere are also supported by
coronal seismology studies, which can be viewed as constituting the twenty-ninth line
of evidence that the Sun is composed of condensed matter.

In order to explain the occurrence of the dark lines
in the solar spectrum, we must assume that the solar
atmosphere incloses a luminous nucleus, producing
a continuous spectrum, the brightness of which ex-
ceeds a certain limit. The most probable supposi-
tion which can be made respecting the Sun’s consti-
tution is, that it consists of a solid or liquid nucleus,
heated to a temperature of the brightest whiteness,
surrounded by an atmosphere of somewhat lower
temperature.

Gustav Robert Kirchhoff, 1862 [1]

Observation of a white-light flare was initially reported by
Richard Carrington in 1859 [2]. Though once considered rare
events [3,4], the production of such emission has now become
associated with many, if not all, flares [5]. It has been well-
established that hard X-ray class flares (≥ M5) emit white-
light [3]. However, the mechanism for producing this light
has remained elusive [6, 7], despite the prevalence of these
objects [3–5]. Devoid of condensed matter, a gaseous model
has little means to account for the generation of white-light
flares. In 2010, Watanabe et al. [8] proposed that the emission
generated by white-light flares was associated with electrons
accelerated to half of the speed of light [9]. More than 150
years after Carrington’s discovery, astrophysicists advanced a
scenario through which white-light could be produced within
the theoretical constraints imposed by accepting the idea of a
gaseous Sun [10–14].

Beyond solar flares, many coronal structures are associ-
ated with the emission of white-light. These include promi-
nences and coronal mass ejections [15–23], streamers [24–
26], plumes [27], and loops [28–30]. Indeed, coronal struc-
tures have long been observed with white-light coronagraphs
[25,26], an instrument invented by Bernard Lyot [31,32].

The existence of white-light in coronal structures presents
a significant problem for the gaseous models of the Sun [10–
14]. In these models, white-light at the photosphere is pro-
duced by a vast sum of processes (bound-bound, bound-free,
free-free, and scattering) taking place within the Sun itself
(see [33] for a complete review of this topic). In order to gen-
erate the thermal spectrum at the surface, this light must leave
the hypothetically gaseous solar body through a photospheric
layer regarded as an ‘optical illusion’ created by a dramatic
change in solar opacity [34]. The current solution is so convo-
luted that it has been described by the author as the Achilles’
Heel of gaseous solar models [33]. In no other instance is a
simple spectroscopic line, such as the thermal spectrum of the
Sun, produced by the extensive summation of vastly unrelated
spectroscopic processes [33]. Furthermore, the mechanisms
associated with the generation of the solar spectrum are of
no value in explaining the thermal emission from graphite on
Earth, material from which Planckian radiation was initially
studied [33]. As a result, these approaches are not relevantin
accounting for the thermal signature of the Sun [33].

The observation of white-light in coronal structures only
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acts to accentuate this problem for the gaseous models. These
objects are fleeting and devoid of the long time-lines (millions
of years) currently required by the gaseous models to produce
white-light from the center of the Sun. Moreover, these struc-
tures lack the large complement of processes summed within
the gaseous models of the Sun to generate the white-light of
the photosphere [33]. As a result, though some of the same
mechanisms are invoked [3, 4], scientists who adhere to the
gaseous models must now have recourse to additional effects:
the scattering of photospheric light [16] or the acceleration of
electrons to sub-relativistic velocities [8].

In the end, the simplest means of accounting for the pres-
ence of white-light, both on the photosphere and within coro-
nal structures, is to recognize that the Sun is comprised of
condensed matter [35–37]. The material found on the photo-
sphere is being ejected into the solar atmosphere. Hence, it
can be found within the corona. In fact, since photospheric
metallic hydrogen has been hypothesized to be metastable
(see [35] and references therein), it is reasonable that material
ejected into the corona remains partially metallic in nature. In
time, sparse filaments of condensed metallic hydrogen might
come to constitute the framework for coronal streamers for in-
stance, helping to explain why these objects also emit white-
light. As a result, it is now advanced that the white-light emis-
sion of coronal structures constitutes the twenty-eighth line of
evidence (see [35–39] and references therein for the others),
and the eighth Planckian proof, that the Sun is comprised of
condensed matter.∗

Unlike the gaseous models of the Sun [10–14], the metal-
lic hydrogen model [35–37] advances that the solar body has
a nearly uniform density throughout which approaches∼1
g/cm3 at the level of the photosphere. Thus, the presence
of condensed matter, expelled from the photosphere into the
chromosphere and corona, strongly suggests that the densities
in these regions are not negligible. In sharp contrast, within
the context of a gaseous Sun and calculated electron densi-
ties, the coronal solar atmosphere is said to possess“densi-
ties which are many trillions times smaller than that of the
gas composing the Earth’s atmosphere; in fact, coronal den-
sities are low enough to be considered an almost perfect vac-
uum in laboratories”[40, p. 284]. These statements are di-
rectly linked to the use of the gaseous equations of state [10,
p. 130ff] and the belief that the solar body retains most of its
mass in its core [10–12]. As a result, the question must natu-
rally arise as to whether or not trillion fold decreases in densi-
ties, relative to the Earthly atmosphere, are reasonable for the
solar corona. This is especially concerning relative to there-
alization that the Sun is expelling condensed matter [35–39]
into its outer atmosphere.

∗The Planckian proofs are all related to thermal emission in condensed
matter. They do not imply that the objects which are the subject of these
proof necessarily display a perfect thermal spectrum. The proofs are invoked
when the spectrum is continuous and when an object’s emissivity is most
simply accounted for by invoking condensed matter.

To get some sense of reasonable densities for the corona,
one can have recourse to the characteristic features of plan-
etary atmospheres, with several important cautionary notes.
First, the temperatures around the Sun and the inner planets
are not at all comparable. Second, the molecular weight of
material around the Sun might be either much smaller, or in
the case of condensed hydrogen,much larger, than found in
planetary atmospheres. Thirdly, the solar atmosphere might
have substantial local density fluctuations well beyond any-
thing observed in planetary atmospheres. This is especially
relevant since condensed matter is being expelled into a par-
tially gaseous solar atmosphere. These factors will impactthe
comparisons that can be extracted.

Consider the known densities of the Earth’s atmosphere at
sea level (1.229 kg/m3 or 0.0012 g/cm3 [41]) while taking into
account that the Sun/Earth ratio of acceleration due to grav-
ity is a factor of 28 [42]. The simple product of these values
(ignoring temperature effects and assuming that the Sun’s at-
mosphere is composed of particles of the same mean molecu-
lar weight as in the Earth’s atmosphere (28.97 g/mole [43])),
results in a density of 0.0336 g/cm3 near the solar surface.
This is well above current estimates for the solar atmosphere.
In fact, the gaseous models of the Sun predict that, as one
proceeds out from the photosphere to the top of the chromo-
sphere, the density drops from∼10−7 g/cm3 to∼10−15 g/cm3,
respectively [44, p. 32].

In reality, the aforementioned assumption that the average
molecular weight in the lower solar atmosphere is similar to
the Earth’s cannot be correct. At the same time, temperature
effects should substantially raise the amount of material found
in the Sun’s atmosphere. The Sun is known to expel matter
into the corona and, if this is condensed matter, may have lo-
cal densities well beyond that found in the atmosphere of the
Earth at sea level. But even this simple calculation, based on
the characteristics of the Earth’s atmosphere, points to signifi-
cant problems with current estimates of chromospheric densi-
ties, inferred from gaseous solar model [44] which it exceeds
by a factor on the order of 105–1010. Similar conclusions can
be reached by considering Venus [45] or Mars [46].

Though some may dislike such comparisons, as too many
variables could alter the final result, the author is not attempt-
ing to set a final density for the lower atmosphere of the
Sun. The discussion rests simply in highlighting that the cur-
rently accepted solar values are well outside the bounds of
reason, especially when considering that the Sun is much hot-
ter than the inner planets and constantly expelling matter into
its corona. This implies that a much higher average molecu-
lar weight for the solar atmosphere can be expected than one
based on the atomic weight of hydrogen. Unlike the Sun,
the inner planets do not eject much material into their atmo-
spheres. As a result, the atmosphere of the Sun is likely to
possess great local variability in its densities. This may also
be true when comparing the atmosphere of the quiet Sun near
the solar poles with that above the equator, as a result of coro-
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nal holes above the former.
Finally, it remains highly significant that, when a comet

approaches the Sun, it can result in intense shock wave propa-
gation throughout the corona (e.g. [47]). Such behavior calls
for highly elevated atmospheric densities. It is not reason-
able to expect that shock waves and seismic activity could
propagate within a corona whose density remains inferior to
earthly vacuums. As such, seismological findings and shock
wave propagation are highly supportive of the realization that
the solar chromosphere and corona are much denser than cur-
rently surmised from the gaseous models of the Sun. Along
these lines, it is concerning that the Sun can be studied using
coronal helioseismology [48–51] which suggests a twenty-
ninth line of evidence that it is comprised of condensed mat-
ter. It is not possible to conduct coronal seismological studies
in an atmosphere sparser than the best laboratory vacuums.
Seismology is a science which can be applied exclusively to
the condensed states of matter.
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